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The attached pdf files are chapters for a course in quantitative ecology. Drafts of all 14
chapters are now available. A date is included in the chapter designator to make it
possible for readers to determine whether they have previously downloaded the chapter.
The chapters are simply text files so that students can print them out as needed.
Modifications to take advantage of various web features will be added later. The first
order of business has been to make the textual material readily available. Inasmuch as
there are over 400 pages, some users may prefer to look up a topic in the Table of
Contents and scan it in the pdf files without printing them all out. For classroom use,
students will no doubt prefer to print out assigned and relevant chapters.

The text is intended to be essentially self-contained, but quite a few references have been
included. These serve several purposes. One is to supply more information on a topic,
and further sources. A second is to provide support for the text. Textbooks produced by
the major publishing houses are usually reviewed by independent authorities in the
subject matter field before being published (and are often reviewed in journals after
publication). Also, editors and proofreaders normally go over the text quite carefully
before publication. This text has not benefited from such services, so readers may want to
check back to sources on occasion (I would appreciate being informed of any apparent
errors, etc., at the email address linked to my name above).

The text stems originally from notes used in teaching a course in 1983 at the Center for
Graduate Studies in Richland, Washington (now the Tri-Cities Branch of Washington
State University). Before the most recent (1996) use, I reviewed current issues of the
journal, Ecology, in an effort to determine just what statistical procedures might be most
prominent in ecological papers. This turned out to be the analysis of variance by a very
wide margin, so we spent a great deal of time on that subject in the course that year.
While a chapter is devoted to ANOVA in the present version, I do not now believe that it
should be a major component of the course. I think frequency of analyses of variance in
ecological publications has more to do with editorial insistence on evidence of “statistical
significance” than it does with utility as a research tool.

In my opinion, a major weakness in ecological work today stems from the use of
“canned” programs without adequate understanding of the underlying techniques.
Certainly the computer saves a huge amount of time and effort, and makes it possible to
do computations that were not possible in the past. But it is essential to understand the
basis for an analysis before applying it. Consequently the present course depends on
EXCEL spreadsheets for exercises, and students are required to work through problems
by direct computations so that they see how the equations “work”. There is, of course,
no objection on my part if you use software to check your answers! The most tedious
aspect of this course is doing bootstrapping in EXCEL. Anyone who wants to use
bootstrapping extensively will quickly realize the advantages of learning a programming
language. Because many ecology students do not know how to program, it has seemed to
be necessary to use spreadsheets to explore bootstrapping. After students learn how to
bootstrap, they may want to use the Visual Basic for Applications (VBA) programs
attached as EXCEL files, and described in the Appendix, for further applications of
bootstrapping.
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Two final comments: I suspect that most graduate programs in Ecology and Wildlife
Management will not accommodate more than 4 semester hours of a “quantitative
ecology” course. I have assumed that such a course will have as prerequisite one course in
elementary statistics (but experience shows that most students require a refresher, hence
Chapter 1). I don’t believe that 4 semester hours is nearly enough background if students
are to be grounded in the quantitative techniques that they will need. I suspect that this is
why there are so many rather dubious analyses in the literature that appear to be based on
blind use of sophisticated commercial software. I am thus uncertain how the course
should be taught. In earlier efforts I tried to cover a very large amount of material.
Subsequently, I felt that bootstrapping is such an important and useful development for
ecologists that it “had” to be included. Doing so is likely to make it impossible to cover all
the material included here in one semester.

The second comment is that the course has much about large mammals in consequence of
my own recent experience. I hope it will be possible to use more examples dealing with
other components of ecosystems in future revisions, and would welcome suggestions and
general comments.

Dr. D. P. DeMaster kindly arranged for inclusion of the text in the National Marine
Mammal Web Pages (National Marine Fisheries Service), and Chris Boucher
accomplished the actual installation. Keith Brenden has been handling revisions. Anyone
is welcome to download and use the pdf version, but the usual copyright restrictions
apply insofar as further duplication is concerned.

L. L. Eberhardt
2528 W. Klamath Avenue
Kennewick Washington 99336
 November 7, 2002
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1.0 STATISTICAL BACKGROUND 
                 

1.1 Introduction 
 
 In most of the following chapters, it will be assumed that readers have at least taken an 
introductory course in statistical methods. Some basic concepts will nonetheless be reviewed in this chapter 
to provide background for the following material. Some essential definitions are listed here. Students should 
look these up in any introductory statistics textbook, but preferably in a text that they  have used in the past. 
An effort has been made to keep the introductory terminology to a minimum, and it will be supplemented as 
we go along, and by auxiliary reading. 
 
1.2 Some basic statistical concepts 
 
Random variables  
 

In even quite simple situations, we need to be able to distinguish between an abstract label for an 
observation, and the observations that we actually make in some real-world situation. Statisticians do this by 
using capital letters (X1, X2, X3, ..., XN) for the abstract label and lower case letters (x1, x2, ..., xn) for the 
observations we make in practice. Note that the ellipsis (...) means that some letters are left out -- from the 
first three given, we can infer that these are X4, X5, etc., thru XN-1). More importantly, note that this is a 
series of finite length -- N random variables in all. In some cases, we need to consider an indefinitely long 
series of numbers, and write X1, X2, X3, ... to indicate that fact. Also, note that the random variables run 
from X1 to XN, but that the observations end in xn. This is because we often want to sample a large 
population and thus only record n of the N possible observations.  
 
 Example 1.1 Coin-tossing Consider a simple coin-tossing example. Put 10 
coins in a jar, shake well, spill them out and count the number of 
heads. You will get observations like the following table (note that the 
individual observation, xI, is the total number of heads out of 10 coins 
and that the table is based on 100 tosses of 10 coins):  

 
5,5,2,4,3,4,5,6,5,6 
4,6,3,7,4,6,5,3,5,4 
6,5,5,2,5,5,3,3,6,7 
5,8,4,3,4,5,6,5,5,3 
5,6,7,5,8,8,7,3,7,7 
5,4,6,5,3,6,4,6,5,4 
3,3,6,4,7,5,6,6,3,4 
6,4,5,6,6,4,3,4,8,3 
6,2,8,5,7,4,6,4,5,6 
1,6,6,7,5,3,5,6,7,3 

 
One can continue this process indefinitely, so we may have to consider 
an infinite sample space. In many cases, we will be considering finite 
sample spaces, although we often will not know N. In this case, we do 
know that N = 100, but if we are considering some natural population 
over a large area, we likely will not know N, and we may in fact have 
estimating N as our objective. There is some ambiguity in notation here 
in that N can be considered to be a fixed population of the outcomes of 
100 tosses, or a sample (n) of the infinite number of possible tosses. 

 
Much of statistical methodology consists of describing the outcomes of "experiments" like coin-

tossing, and making inferences about the process that led to the set of observations. Most of the theory 
underlying statistical methods depends on having a model for the underlying process. Such models are 
described as probability density functions ( abbreviated as pdf). Such a model for the coin-tossing example 
is the binomial distribution, often written as Bi(n,p) which says that the probability that a randomly obtained 
observation denoted as xi takes the value k is: 
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                                    Prob{xi = k} = fk = (
n
k )pk(1-p)n-k                                    (1.1) 

 

where (
n
k ) is evaluated as  

n!
(n-k)!k!  , in which, for example, 5! (read as "five factorial") is calculated as 

5x4x3x2x1 = 120. 
                                     
 This equation gives the pdf for a binomial having n trials (10 in the coin-tossing example). In the 
example, the random variable can take 11 possible values 0,1,2,3, ..., 10, but in the 100 trials listed above, 
we observed no zeros and no 9's or 10's. In many practical examples, we won't know the value of p, and 
want to estimate it from the observed data. If we can somehow establish that it is appropriate to assume the 
model of eq.(1.1), then we can calculate its expected value, defined as: 
since we are here considering a discrete random variable that is only defined on the sample space 
0,1,2,...,10, the integral can be replaced with a summation, and this can be evaluated with some algebra to 
find that E(x) = np. We can then turn this around to estimate p from the mean value of our sample, which is 

calculated as the sum of the observations (496) divided by the number of observations (100) or E(x) = np = 
4.96. Since n=10, we estimate p as: 
 

                                                  p̂  = 
4.96
10   = 0.496. 

 
The "hat" over p denotes that it is an estimate of the parameter, p, of the binomial pdf. From the structure of 
the experiment we can infer that the value of p should be about 0.5, that is, if the coin is "unbiased", the 
probability that it turns up heads should be 1/2. 
 

 The sample mean, x-  = Σxi/n is often described as a "statistic" derived from a set of observations. 
Other commonly used statistics are the sample variance: 
 

 
 

and the standard error of the mean, s.e. = [
s2
n  ]

1/2
. Note that statistics are functions of the data. The mean 

can be written as x-  = 
1
n (x1 + x2 + x3 + ... + xn) , which is a linear function of the random variables x1, x2, 

..., xn. There are some simple rules from probability theory about linear functions of random variables that 
make it easy to derive useful results about means. 
 
 No doubt the most important probability density function (pdf) in statistics is the normal 
distribution, which is written as: 

 
The parameter µ is the mean of the distribution and σ the standard deviation. Tables of the frequency 
distribution (f(x)) of this distribution are available in almost any statistics text, but with parameters µ = 0 

s 2 =
Σ(xi −x)2

n −1

f (x) =
1

σ 2π
e

−
x−µ( )
2σ 2 

 
  

 

 
  
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                                             (1.3)

 E(x) = xfxdx
x=0

x=∞

∫ =   x x
n( )

x=0

x=10

∑   px
 (1- p)n-x

                                                         (1.2)
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and σ = 1, which is described as the unit normal distribution or standard normal distribution, often 
represented by the notation N(0,1), while observations drawn from eq.(1.3) are described as N(µ,σ2).  
 
1.3 The Central Limit Theorem 
 
 A very useful result from mathematical statistics is the Central limit theorem: 
 

"Let X be a random variable with mean µµµµ and variance σσσσ2, then the random 
variable Z: 

has a distribution that approaches the standard normal distribution as n approaches 
infinity. 
 

This says that, if n is large, then we are virtually guaranteed that the sample mean will have nearly a normal 
distribution. Inasmuch as the great bulk of modern statistical methods depend on the normal distribution, 
this result is very reassuring. The important question then is "how large must n be for approximate 
normality?", and the answer depends very much on the frequency distribution underlying the observed xi.  
 
Example 1.2 Frequency distributions  Consider the data from the coin-
tossing experiment (Example 1.1). The random variable tabulated is the 
number of heads in 10 tosses. We can tabulate the frequency of each 
outcome (0,1,2,3,...,10 heads) and compare it with the expected 
frequency calculated from eq.(1.1), giving the following result: 
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Fig. 1.1 Frequency distribution of number of heads observed in 100 tosses of a coin compared to 
number expected from eq.(1.1), Bi(10,0.5). 
 
 The observed data are not as symmetrical as the expected binomial 
distribution, but the variance (2.34) is a reasonably good approximation 
to the variance from the theoretical binomial (2.5) and the mean (4.96) 
of 100 trials is very close to the theoretically expected value (5). The 
expected binomial variance of the random variable x, the number of heads 
in 10 tosses, is readily calculated as np(1-p) = 5(.5)(.5) = 2.5. It is 
worthwhile to compare (Fig. 1.2) the expected binomial distribution with 
a normal distribution with the theoretical mean and variance, as 
calculated from eq.(1.2). 
 

Z =
x − µ( ) n

σ
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Fig. 1.2 Expected values from a binomial distribution of outcomes of 10 tosses of coins compared 
to frequencies calculated from a normal distribution (broken line) with the theoretical mean (5) and 
variance (2.5) for the binomial distribution. 
 
Note that the normal distribution is continuous, i.e. that it takes on 
all values over the interval considered and is thus only an 
approximation to the discrete distribution of the results of coin-
tossing, in which only integer values can be observed (i = 1,2,3,...,n 
heads). Hence the points representing the binomial distribution in Fig. 
1.1 properly should not be connected by lines. Because the normal 
distribution has an infinite range it isn’t strictly proper to use it in 
Fig. 1.2 because there is only a finite possible range of outcomes (0 to 
10). However, it is often used as an approximation. Note, too, that 
there is less area under the normal distribution in Fig. 1.2 because 
theoretically some observations will be greater and lesser than the 
range plotted.  
 
 
 
1.4 Simple linear regression 
 
 Simple linear regression follows the model: 
                                     yi = α + βxi + εi                                           (1.4) 

where yi is the dependent variable and xi the independent variable and the error term (ε)  is a deviation from 
the “true” relationship. Estimates of α and β are  frequently written as a and b, giving the estimated or fitted 
relationship as: 
      yi = a + bxi                                               (1.5) 
 
Estimates of regression parameters, α and β do not require any assumptions, and can be calculated from any 
set of x,y pairs. However, tests of significance and confidence limits require adding some assumptions, 
which center around the εi being normally distributed with mean zero and variance σ2. The assumptions 
will be discussed after we consider the "machinery" of regression analysis. 
 
 The estimates are obtained by the method of least-squares,  an important and useful tool that traces 
back to Legendre and Gauss (known also for the normal distribution) in the early 1800's. Other ways of 
fitting a straight line to data are available, but seldom used. The approach is based on minimizing a sum of 
squared deviations, written as: 
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     S = Σ[yi -(α + βxi)]2                                  (1.6) 
 
where the summation runs from 1 to n. This is accomplished by the methods of calculus, finding the partial 
derivatives: 
 

   
 
these give the normal equations (α and β are replaced by the symbols for estimates, a and b): 
 

    Σyi = na + bΣxi                                                     (1.8) 

    Σ yixi = aΣxi + bΣxi2 
 
and these can be solved jointly to give the estimates: 
 
 
 

                 
 

Note that the deviations of eq.(1.4) are in the vertical plane, being deviations of yi from the fitted line. Fig. 
1.3 shows two of the deviations from a regression line fitted to some counts of deer. The fitted line appears 
on the graph along with a measure of the fit, R2, which will be defined below. 

 
876543210

0

100

200

300

YEAR

N
U
M
B
E
R
 
O
F
 
D
E
E
R

y =  - 41.714 + 32.179x   R^2 = 0.936

DEVIATION

DEVIATION

 
Fig. 1.3. Simple linear regression fitted to successive counts of the number of deer on a study area by the 
method of least squares.  
 

b =
Σ(yi − y)(xi − x)

Σ(xi − x)2

                         
∂S
∂α

=  2 Σ (y i  -  α - βxi ) =  0                                     (1.7)

 
∂S
∂β

=  2Σ xi (yi  -  α - βxi ) = 0

a = y − bx                                       (1.9)
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Table 1.1 gives the analysis of variance results for the deer data from EXCEL, in ANOVA format (the 
analysis of variance is discussed in Chapter 6). Figure 1.4 shows the deviations from the mean of the y-
values, and a comparison with Fig. 1.3 shows why the reduction in Sum of Squares from regression is so 
substantial (compare Total SS with Residual SS). The residual S.S. is computed  
from the residuals from the fitted regression line, i.e.: 
 

 

          Residual SS               = Total SS      -  Regression SS 
 
 
 
 Eq.(1.11) can be obtained by introducing the definition of b after squaring the intermediate step above. 
 
Table 1.1 Analysis of variance in regression of deer data of Fig. 1.3 as obtained in EXCEL. 
 
ANOVA       

 df SS MS F P value  
Regression 1 28992.89 28992.89 73.25 0.0004  
Residual 5 1979.11 395.82    
Total 6 30972.00     

       
 Coefficie

nts 
Standard Error t Statistic P-value Lower 95% Upper 95% 

Intercept -41.71 16.81 -2.48 0.06 -84.94 1.51 
Slope (b) 32.18 3.76 8.56 0.00 22.51 41.84 
 
 
EXCEL gives the slope coefficient (b) as "X Variable 1" because the regression program is also set up to 
handle multiple regression, where there will be 2 or more independent variables. ANOVA is discussed in 
detail in Chapter 6.  

Residual S. S. = [yi − (a + bxi )]
2 = [yi − ((y − bx) + bxi)]

2                  (1.10)
i = 1

n
∑

i = 1

n
∑

= [(yi − y) − b(xi − x)]2

i = 1

n
∑

= [yi − (a + bxi)]
2 = (yi − y)2 - b2 (xi − x)2

i = 1

n
∑                  (1.11)

i = 1

n
∑

i=1

n

∑
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Fig. 1.4 Deer data as in Fig. 1.3 but showing deviations from the mean of the y-values,  y

_
 . This shows why 

the Residual S.S. is ordinarily much smaller than the Total Sum of Squares, which is calculated from the 
deviations illustrated here. 
 
 If the F-value is not significant, there clearly is not much to be gained from the regression line. For 
simple linear regression, the square root of R-squared (R) is Pearson's product-moment correlation, usually 
simply referred to as "the" correlation coefficient (but written as a lower-case r), and calculated as follows: 

 
The correlation coefficient is related to the slope of the regression line (b) by the following expression: 
 

this is sometimes expressed by 
sy
sx

   r, i.e., the ratio of the sample standard deviation of y to that of x times r. 

R2 is also used for multiple regression (described below), where the square root is not the ordinary 
correlation coefficient, so it is useful to have another expression for R2. This is: 

 
The quantity R2 is often described as measuring the "percent of variance accounted for by regression", in 
consequence of the fact that it is the ratio of the Regression SS to the Total SS. 
 
Another valuable expression is that of the estimated variance of the slope: 
 

sb
2 =

s2

(xi − x)2

i =1

n

∑
                                       (1.15)

b =[ Σ(yi −y )2

Σ(xi −x )2 ]1/2   r                                                (1.13)

  r =  Σ(yi −y )(xi −x )
[Σ(xi −x )2 Σ(yi −y )2 ]1 / 2                                         (1.12)

R2 =

(yi

^
− y)2

i =1

n
∑

(yi − y)2

i =1

n
∑

                                             (1.14)
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  This expression is particularly useful because it makes it possible to suggest how the 
estimate of b with smallest variance might be obtained. Concentrating the selection of values of xi at which 
to observe yi at the ends of the possible range of x will evidently give the smallest obtainable variance on b 
(by giving the largest possible value of the denominator in eq.(1.15)). However, such a course is 
recommended only when one can be virtually certain that the underlying relationship is linear. We will 
consider ways to test for nonlinearity in the regression line in a section below. Note, for example, that the 
data of Fig. 1.3 seem clearly to follow a curved relationship. Concentrating the observations at x-values at  
the ends of the range of observable y would make it impossible to detect such curvature. Whether we can 
concentrate observations depends, of course, on the nature of the data. In the case of the counts of deer, we 
normally make only one observation per year, if the data are an actual census (i.e., a complete count of the 
deer on an area). In the case of a sample estimate of the number present, it may be possible to take repeated, 
independent samples and thus get several estimates per year (replicates).  
 
 A confidence interval for the slope, b, uses the t-distribution: 
 
 

 
 
Note that α now represents the significance level for the t-distribution, and not the parameter of a regression 

line. Additional confidence intervals for values predicted from the regression line of y or  y
_

  for a given x 
are given in standard references (e.g., Snedecor and Cochran). Much more detail on regression analysis is 
given in texts on the subject. An extensive treatment is given by Draper and Smith (Applied Regression 
Analysis, J. Wiley and Sons Third Edition, 1998). The main parts of the book are presented in matrix 
algebra notation, but the authors do give a short introduction to the matrix algebra that is adequate to let one 
follow their presentation of regression topics, and not difficult to understand.  
 
 In order to justify any significance tests in regression analysis we must consider the assumptions. 
The model now becomes: 
 
 
                            yi = α + βxi + εi   (1.17) 
 
 
where, as with the ANOVA model, we now assume that the εi are normally distributed with mean zero, 

variance σ2, and are uncorrelated (independent). An important additional assumption is that the xi values 
are all measured without error. If the xi are subject to measurement ("sampling") variation, then the 
regression line can still be calculated as given above, but its interpretation changes, as do the tests of 
significance.  For the most part, the assumptions for linear regression are somewhat less troublesome than 
for ANOVA in general. However, we usually need large numbers of replicates to do any testing of the 
assumptions. Possibly the most important precaution is to be sure that any replicate values of y are indeed 
obtained independently. In much ecological data it appears likely that the variances of sets of y-values may 
be proportional to the xi at which they are taken, or that the coefficients of variation of the replicate y-
values may be approximately constant. The F-tests will then be less-reliable. However, simple linear 
regression is quite "robust" to uncertainties about the assumption of normal errors, so long as the x-values 
are not subject to error.  
 
 A simulation is useful in appraising the assumptions for simple linear regression. Using eq. (1.17) 
as 
 
               yi = 2 + 0.30xi + εi 
 

b ± tα,d. f .sb                                                     (1.16)
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with the xi as 1,2,3, ... ,10 and the εi generated as observations from a normal distribution with mean 0 and 
variance = σ2 = 1, one can generate a table of "data" as before. This was done to produce a set of data for 
20 regression lines. 
The first 5 data sets are as follows: 
 
   Simulated yi 
x True y 1 2 3 4 5 
1 2.30 2.86 1.28 2.61 3.26 1.88 
2 2.60 0.90 2.08 2.58 1.68 1.11 
3 2.90 1.56 3.35 1.35 4.28 3.50 
4 3.20 3.85 2.84 2.02 3.67 2.46 
5 3.50 1.62 4.20 4.87 1.49 4.68 
6 3.80 4.39 5.78 5.22 2.77 3.62 
7 4.10 3.66 2.61 4.70 4.24 4.99 
8 4.40 3.95 3.90 5.98 2.59 3.81 
9 4.70 4.45 6.15 6.41 5.53 3.72 
10 5.00 4.50 5.53 6.09 3.54 4.32 
 
Note that the simulated data vary appreciably from the "true values" computed from yi = 2 + 0.30xi, which 
appear in the second column above. The simulated data points should follow a normal distribution around 
the true regression line. Plotting the data (Fig1.5) suggests a certain amount of clumping near the center in 
some cases, but also shows considerable variability around the true line. If we plot all 200 deviations used 
to construct the simulations (20 simulations for each of 10 x-values (Fig. 1.6) then it does appear that the 
underlying distribution is roughly symmetrical, but it should be apparent that one cannot do much testing 
for normality with smaller samples (say 10 or 20) of deviations from a regression line. 
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Fig. 1.5 Simulated regression data plotted with the true regression line from which the data were simulated 
by adding normal deviates with mean zero and unit variance. 
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Fig. 1.6 Plot of 200 normal deviations with mean zero and unit variance used to obtain 20 regression 
simulations.  
 
 The regression program in EXCEL used to produce Table 1.1 was run on all 20 sets of generated 
data and the estimates of intercept (a) and slope (b) were tabulated along with the residual M.S. (s2) and the 
confidence limits for b. The error M.S. estimates ranged from 0.5 to 2.41, but averaged 1.05, very close to 
the expected 1.0. Estimates of the intercept (a; true value 2.0) ranged from 0.2 to 2.83, averaging 2.02, 
while slope estimates (b; true value 0.30) ranged from 0.11 to 0.54, averaging 0.31. The 95% confidence 
limits (Fig. 1.7) for the 20 regression estimates of the slope (b) vary considerably, but include the true value 
in 19 of 20 cases, as expected (0.95(20)=19). It should be noted that this was a fortuitous outcome -- much 
larger simulations would be needed to be sure that the confidence limits actually include the true β in 95% 
of cases.  
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Fig. 1.7 Confidence limits (95%) for slope of 20 simulated regression lines, shown with the true value 
(0.30). Note that confidence limits for the 3rd data set do not include (are above) the true value.  
 
1.5  Multiple regression 
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 Multiple regression is somewhat of a risky proposition for ecologists, inasmuch as relationships 
between several ecological variables tend not to be linear. However, it can be used to explore curvilinear 
relationships (which we will do below and in the Exercises) and there are various circumstances where a 
linear model may be useful. It is also true that a multiple regression model is behind many other kinds of 
analyses. The analysis of variance can be obtained through a multiple regression model, but with a different 
structure than that used here.  
 
 The general model is like that for simple linear regression, but adds more independent variables. 
We will use 2 here, but EXCEL will compute models with many x-variables. The basic model is: 
 
and the same assumptions are made. We again minimize the sum of squares leading to normal equations in 

three variables and the following solutions for the parameters (a, b1, b2): 

                        a = y
_

  - b1x
_

 1 -  b2x
_

 2                                        (1.19) 
 

 

 
where: 
 

 
 
Our first use of the above equations will be with x = x1 and x2 = x2, which may look suspicious, but the 
purpose is legitimate inasmuch as we can now fit a second-degree polynomial (a "quadratic" to many 
statisticians) as an aid in studying curvature in regression data. To illustrate, we use the deer data of Fig. 1.3 
getting the curve of Fig. 1.8. Snedecor and Cochran (1967) show how to do the Analysis of variance in 
regression in stages, fitting first x1 and then x2 to see whether there is any gain in adding a second variable. 
In the present case, we know that the second variable is necessary to yield a curve. 
 

 
Fig. 1.8. Second degree polynomial fitted to deer data of Fig. 1.3, using multiple regression with x1 = x, and 
x2 = x2. 
 

b1 = [Σ(x2i − x2 )2 Σ(yi − y)(x1i − x1) − Σ(x1i − x1)(x2 i − x2 )Σ(yi − y)(x2 i − x2 )]/ D

b2 = [(Σ(x1i − x1)2 Σ(yi − y)(x2i − x 2 ) − Σ(x1i − x1)(x2 i − x2 )Σ(yi − y)(x1i − x1 )]/ D

D = Σ(x1 i − x1)2 Σ(x2i − x2 )2 − [Σ(x1i − x1)(x2i − x2 )]2

yi = α + β1x1i + β2 x2i + ε i                                                     (1.18)
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Multiple regression can be used for a wide variety of analyses. For example, the analysis of variance can be 
represented and computed in a multiple regression format. A wide range of analyses based on multiple 
regression equations are described in some statistic texts under the heading of "General Linear Hypotheses". 

1.6 A test for significant deviations from regression using replicate points. 

A test for significant deviations from linearity depending on fitting a curve and testing to see 
whether the improvement in fit might simply be due to chance will be discussed in the next section. In some 
cases, however,  replicate counts may be available, so that one can use the variability within years to test 
significance of deviations from linearity. This is the preferred approach, when available. The advantage is 
that we do not need to specify an alternative model like the quadratic or cubic, which may very well be the 
wrong model. Note, for example, that population growth data such as that of Fig. 1.8 are known to follow 
an exponential or geometric curve rather than the second degree polynomial used in Fig. 1.8. Some counts 
of brown bears at spawning streams provide an example for the test (Fig. 1.9). In this case, the test consists 
of making the usual analysis of variance to test for significance of the linear regression (Table 1.2), and then 
using the pooled variance of individual observations within years to estimate "pure error" (Draper and 
Smith 1998:49). The data for calculation of pooled error appear in Table 1.3. A sum of squares of 
deviations from the mean is calculated for the data in each year where there are two or more observations 
and these values are summed to give an overall sum of squares, which is subtracted from the "residual" sum 
of squares in Table 1.2 to yield the "lack of fit" sum of squares (i.e., the variability not accounted for by 
"pure error"). The number of counts used to calculate pure error (32) is similarly subtracted from the 
degrees of freedom for residual error to get the degrees of freedom used to calculate a mean square for 
"lack of fit". The resulting F-test indicates significance at the 0.05 level, but there does not seem to be much 
evidence of a consistent pattern of change in Fig. 1.9. 

Table 1.2 Test of significance for deviations from regression 
 df SS MS F Prob. 
Regression 1 0.127 0.127 6.258 0.016 
Residual 47 0.954 0.020   
Total 48 1.081    

Lack of fit 15 0.479 0.032 2.150 0.034 
Pure error 32 0.475 0.015   
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Fig. 1.9 Logarithms of counts of brown bears on salmon spawning streams. 

Table 1.3 Data for computation of "pure error" for brown bear counts. 
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   Sum of  
Year Bears/hour ln (bears/hr) squares d.f. 

 
3 39.85 9.5219   
3 64.04 4.1595   
3 61.88 4.1252   
3 61.2 4.1141   
3 55.24 4.0117 0.2819 4 
4 68.7 4.2297   
4 59.3 4.0826   
4 67.9 4.2180   
4 65.3 4.1790 0.0134 3 
5 49.4 9.9000   
5 51.4 9.9396   
5 61.6 4.1207   
5 47.4 9.8586   
5 52.45 9.9599 0.0400 4 
6 51.88 9.9489   
7 45.14 9.8098   
7 62 4.1271   
7 48.13 9.8739   
7 49.58 9.9036   
7 51.21 9.9359 0.0572 4 
8 62.06 4.1281   
8 66.59 4.1986   
8 62.32 4.1323   
8 66.88 4.2029   
8 65.03 4.1748   
8 64.58 4.1679 0.0051 5 
9 54.17 9.9921   
9 67.49 4.2120   
9 66.67 4.1998   
9 62.8 4.1400   
9 61 4.1109   
9 62.42 4.1339 0.0311 5 
10 48.68 9.8853   
10 51.47 9.9410   
10 58.51 4.0692   
10 57.65 4.0544   
10 54.08 9.9905 0.0238 4 
11 61.12 4.1128   
11 55.15 4.0101   
11 68.29 4.2238   
11 61.52 4.1194 0.0229 3 
Sums 2386.08 166.2194 0.4753 32 
 
 
1.7 Testing for curvilinearity without replications 
 



                     1.14 

 

 Trend data are often collected without replications. Occasionally this is because an absolute count 
is made annually of individuals on an area; more often it is because the investigators cannot afford to make 
replicate sample counts (seasonal changes limit the time that such "replicates" are likely to be  valid, too). 
In such circumstances, checking for nonlinearity of regression depends on fitting a straight line and a curved 
line, and appraising the improvement, if any, provided by the curve. The simplest curve available is the 
second degree polynomial ("quadratic") considered in the section (1.5) on multiple regression above. 
Sometimes it may be worth trying a third-degree polynomial ("cubic"), which is readily computed by 
multiple regression in EXCEL. The model is: 
 
where x1 = x, x2 = x2, x3 = x3. If a graphics program that fits polynomials is available, it is worthwhile to 
use it for a quick preliminary check. Often the 3rd degree polynomial has too much curvature, and the 

practical approach is to stick with the quadratic. 
 
 The procedure is straightforward. One first fits the simple linear regression model, obtaining the 
ANOVA of Table 1.1. Then fit a quadratic, and obtain the fit illustrated in Fig. 1.8, along with the 
corresponding regression ANOVA (Table 1.4).  
 
Table 1.4 Analysis of variance in regression based on a multiple regression fit of a second degree 
polynomial (Fig. 1.8) to the deer data. 
 
ANOVA      

 df SS MS F Significance 
F 

Regression 2 30702.90 15351.45 228.19 0.0001 
Residual 4 269.10 67.27   
Total 6 30972.00    
 
    
 From the linear regression table (Table 1.1), extract the residual sum of squares and use it as the 
first entry in a new table (Table 1.5). From the ANOVA table giving the multiple regression fit (Table 1.4) 
also extract the residual sum of squares and make it the second entry in the new table. Use the 
corresponding degrees of freedom in both cases. Subtract the S. S. for curvilinear regression from the S.S. 
for linear regression. This quantity, with 1 degree of freedom, represents the improvement in fit provided by 
curvilinear regression and is tested against the M.S. for curvilinear regression by an F-test. Table 1.5 gives 
the new arrangement for the deer data. 
 
 
Table 1.5 Test for curvilinearity of regression using the difference between Residual Sum of Squares in 
linear regression and multiple regression. 
 
TEST FOR CURVILINEARITY-ORIGINAL SCALE     
SOURCE    d.f. S. S.  M. S. 
Dev. from linear regr.  5 1979.11  
Dev. from curvilin. regr  4 269.10  67.27 
Difference    1 1710.01 1710.01 
  F-RATIO   25.42 
  SIGNIFICANCE LEVEL 0.0073 
 
 Note that the F-ratio in this table is reversed from the usual regression case. Previously we 
calculated the F-ratio from M.S.regr/M.S.resid, with 1 and n-2 degrees of freedom. Now we use 
M.S.diff/M. S.dev from curvil. regr., with 1 and n-3 d.f. (n-3 because the 3 parameters of eq.(1.19) are fit to 
the data). In the rare case of using a cubic model, one would use the same procedure, but n-4 d.f. because a 
4th parameter is fitted in the cubic (3rd degree polynomial) model. 
 

yi = α + β1x1i + β2 x2i + β3 x3i + ε i                                                     (1.20)
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 It is worthwhile to look at the equations for residual S.S. on which the test is based. From eq. 
(1.10) the S.S. for linear regression is: 
 
                       S. S. Residual (linear regr.) = Σ[yi -(α + βxi)]2    
 
The corresponding S.S. for the quadratic (2nd degree polynomial) would be: 
 
 S.S. Residual (quadratic) = Σ[yi -(α + β1x1i + β2x2i)]2              (1.20) 
 
From these equations, it can be seen that an improved fit with the quadratic model should reduce the S.S. 
considerably. If not, then the F-ratio should be small and non-significant. 
 
 There are various difficulties in using this test on real data, mostly associated with the inaccuracies 
of censusing animals and the very real prospect that a population may cease to grow for a variety of reasons. 
Ecological data are like that! Some statistics books and editors advise checking assumptions before analyses 
are published. As noted previously here, such tests require more data than are ordinarily available, and may 
thus be misleading and contradictory. 
 
 Following the advice to test assumptions, one might well use the above test to see whether 
population growth data are linear or non-linear. It is worthwhile to conduct such a test as a way to explore 
the data. An Exercise asks the student to conduct these tests on actual data on growth of a number of 
populations. Theoretically, the outcome should be that the test will show nonlinearity and thus lead to using 
a transformation. In the real world, the results are confusing. The moral is that experience and accepted 
theory dictate the advisability of a transformation. 
 
1.8  Basic models for population growth 
 
 Most ecology textbooks describe population growth by the familiar exponential model: 
 
    Nt = Noert        (1.22) 
 
Where Nt is population size at time t, No the starting population size, and r the "instantaneous" rate of 
population growth. It is worth pointing out that a great many populations do not follow the commonly 
assumed model, inasmuch as they reproduce only during a short annual period, and thus follow what has 
been called a "birth-pulse" model, spurting up in numbers at the time of reproduction, and then decreasing 
through the rest of the year due to mortality. Eq. (1.22) describes continuous change, with reproduction and 
mortality assumed to be going on constantly in any short time period. A model closer to the truth is of the 
"compound interest" type: 
 
    Nt = No(1 + r)t                                               (1.23) 
 
Thus, where equation (1.22) describes a smoothly ascending continous curve, eq.(1.23) describes a "step 
function" jumping up at specific times and then staying flat in the interim. Neither model is correct at all 
times, but they do agree at specific times. Figure 1.10 sketches out the likely actual time trend of a 
population, along with the results of eqs.(1.22) and (1.23). Either model can be described by Nt = Noλt, 
with λ representing er or (1+r). When we use a log transform to represent population growth data as a 
straight line (thus performing "log-linear" regression), it is important to have in mind this interpretation of 
the slope of the regression represented by the two models. Note that eq. (1.23) is actually only defined at the 
time of reproduction or recruitment, but the plot (dashed line) connects these “jumps” by a straight line. 
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Fig. 1.10 The two population growth models of eqs. (1.22) and (1.23). 
 
1.9 Testing for differences between regression lines  
 
 An essential feature of regression analysis is the ability to determine whether a number of fitted 
regression lines differ. We start out by considering whether the slopes (βi) of several lines are significantly 
different. If not, then it is logical to test whether the intercepts (αi) are different. This leads to the Analysis 
of Covariance, discussed in the next section.  
 
 Most of the data for testing equality of slopes comes from the calculations presented in Section 
1.4. The main new feature lies in estimating a common slope. In order to compare the several slopes, we 
will first need to combine individual slopes to obtain a "pooled" value to compare with the individual 
values. This also can be obtained by weighting the individual slopes inversely by their variances. The 
weights come from the variance estimate for individual slopes, eq. (1.15). A basic assumption in assessing 
regression lines is that they all have the same variance about regression, as estimated by the residual (error) 
mean square of eq. (1.10).  As always, if there is enough data it is worthwhile to test that assumption. 
Usually only gross differences can be detected with small to moderate sized data sets. If we assume a 
common variance (s2), then the weights can be taken as: 

 
Thus the slope based on the widest spread of x-values gets the most weight, and the pooled slope becomes: 

where we have k regression lines to analyze so the summations run from 1 to k. In the analysis, we pool 
familiar sums of squares for the k regression lines, namely: 

    
and use these to arrive at a pooled estimate of the residual (error) sum of squares. The resulting mean square 
is then used as the denominator in an F-test, where the numerator is: 

                         S.S.diff = Σwi(bi -  b
_

 )2                                      (1.26) 
 
with k-1 degrees of freedom.  
 

b =
Σwibi

Σwi
                                             (1.25)

wi = (xi

i = 1

n
∑ − x )2                                                          (1.24)

SSy = Σ(yi − y )2 ,SSx = Σ(xi − x )2 ,and SSxy = Σ(yi − y )(xi − x )
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 For an example, we compare rates of population increase for data on deer, horses, and elk. Models 
for rate of growth (eq. (1.22) or (1.23)) indicate that the data should be log-transformed (using logarithms to 
base e), whereupon the slope of a simple linear regression line will estimate a rate of population growth. 
This rate of increase for deer (Fig. 1.11) is apparently appreciably higher than those of the other two 
species. Note that there will be a difference in interpretation of the slopes (b) depending on whether 
eq.(1.22) or (1.23) is assumed to hold. Details appear in Section 11.2. 
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Figure 1.11 Loge transformed data on numbers of three species with fitted regression lines. 
 
 The first 3 columns of data in Table 1.5 are calculated from the individual data sets and summed to 
get the "pooled" data. The slopes (bi) are calculated from eq. (1.9), and the first 3 sums of squares (S.S.) on 
the right are calculated from the right side of eq. (1.11), i.e., from SSy - b2SSx, and summed (totalling 
0.363). The fourth S.S. (2.039) in this column is also calculated from eq. (1.11), but using the "pooled" 
data, while the S.S. labelled  
"Difference between slopes" (1.676) is obtained as the difference between the pooled value (2.039) and the 
sum (0.363) of the individual sums of squares. The F-test is the ratio of 2 mean squares, 1.676/0.113 = 
14.79 with 1 and 18 d.f., and is highly significant (P = 0.001) as might be expected from the difference in 
regression lines (Fig. 1.11). 
 
Table 1.5. Data for a test of significance of equality of slopes for 3 regression lines.  
Source SSx SSxy SSy Slope d.f. S.S. M.S. 
Horses 17.5 3.3760 0.6548 0.1929 5 0.00348 0.00070 
Deer 28.0 13.6636 6.9713 0.4880 6 0.30359 0.05060 
Elk 42.0 8.0081 1.5830 0.1907 7 0.05608 0.00801 

      0.36315  
Pooled 87.5 25.048 9.209 0.2863 18 2.03884 0.11327 

        
  Difference between slopes 1 1.676 1.676 
      F 14.794 
      Prob. 0.0012 

 
 The "Difference between slopes" S.S. of Table 1.5 can be calculated directly from eq. (1.26), using 

the weights calculated from eq. (1.24) to calculate the weighted slope (b
_

 ) of eq. (1.25). The calculations 
appear in Table 1.6. Note that Table 1.6 is not needed for the F-test but provides some further insight into 
the basis for calculations. 
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Table 1. 6. Calculations for eq. (1.26).  
 

                     Weights   bi          wibi        (bi - b
_ 

 )2  wi(bi - b
_ 

 )2 
 Horse 17.5 0.193 3.376 0.0087 0.1525 
 Deer 28.0 0.488 13.664 0.0407 1.1394 
 Elk 42.0 0.191 8.008 0.0091 0.3838 
  87.5 Sum 25.048 S.S. 1.6757 
   b-bar 0.286   
 
 Another example concerns a situation where it seems likely that the regression intercept (α) should 
be zero. The data come from a study of Hawaiian monk seals. These seals occupy 5 sites spread over about 
1300 miles northwest of the main Hawaiian Islands, and are classified as Endangered under the Endangered 
Species Act. To monitor their abundance, "beach counts" are conducted annually on most of the sites. 
These amount to tallying all seals seen in covering all beaches on a site. Only a fraction of the seals using a 
site are ashore at any given count. However, individual seals can be identified by tags, scar patterns, and the 
use of temporary bleach marks. In those instances where many counts can be made over 6 weeks or so, it 
becomes possible to achieve a virtually complete tally of the population using the site. A further description 
of monk seal dynamics appears in Section 14.5 (Case Histories). 
 
 The analysis in this example thus contrasts the mean beach counts against population totals for 3 
sites, using regression through the origin. Because α is now assumed zero, the regression model becomes yi 
= βxi + ei. The least-squares estimate of β is; 
            

which is eq. (1.9) without the means, e.g., Σ(xi - x
_

 )2 is now Σxi2 . Apart from this change in definitions, the 
analysis (Table 1. 7) proceeds as in the previous example, with one other exception. Inasmuch as α is not 
included in the model, we use n-1 d.f. where regression analyses with 2 parameters (α and β) use n-2 d.f. 
 
Table 1. 7 Data for a test of equality of slopes for 3 regression lines relating mean  
beach counts to total abundance for Hawaiian monk seals at 3 sites. 
 
Source SSx  SSxy  SSy  Slope d.f. S.S.  M.S. 
KURE           63431   26670.2 11782.3 0.420 11 568.50  51.68 
LAYS        6576511     98198.4 60015.1 0.301 9 283.36  31.48 
FFS        1338292  410254.5 126842.6 0.307 4        1078.76  269.69 
                                         1930.62  
Pooled    2059374.0     635123.1 198639.9 0.308 24       2764.196 115.17 
  Difference between slopes  1 833.580 833.58 
          F 7.238 
          Prob. 0.013 
 
 It thus appears that there is a significant difference among sites, with one site (Kure) having a 
significantly greater slope (b) than the other two, where the slopes are virtually identical. The two 
relationships appear in  
Fig. 1.12. The site with the largest total counts (French Frigate Shoals) contains many small islands, some 
of which are small enough that it has been difficult to approach seals for identification. The "total" counts at 
that site have thus not been considered complete, but the data for the recent 5 years (1991-1995) considered 
here now suggest that the apparent total counts do agree with the relationship between beach counts and 
totals at Laysan, suggesting that the FFS data may now approximate actual totals. 

b =
Σyi xi

Σxi
2                                              (1.29)
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Fig. 1.12. Relationship between mean beach counts and total counts at three monk seal population sites. 
Regression through the origin for Kure is shown by a solid line, while the same regression for Laysan and 
French Frigate Shoals appears as a broken line. 
 
 One other issue illustrated by the monk seal data should be discussed here. This is the aggravating 
question of "outliers". In some data sets, there are points that seem evidently to lie well away from a trend 
evident in the bulk of the points. This is the case with the Laysan data. There are two years (Fig. 1.13) that 
are well away from the trend line (and were not used in the analysis of Table 1. 7). Simple and direct 
methods are not available for deciding to exclude "outliers". However, in extreme cases like this one, we 
can simply consider the probability of such a deviation. The standard deviation of the distribution of points 
around the regression line for Laysan is the square root of the Mean Square of Table 1.7, which is 31.48 1/2  
= 5.6. Deviations of the two suspect points from the regression line are 65 and 62 units, or about 10 
standard deviations away from the line. Clearly these two deviations have an extremely low probability of 
arising by chance alone. Corroboration is also available in that the two points (they occurred in successive 
years) represent an increase in population size that is simply not feasible, and a subsequent decrease that 
surely would have been detected (dead seals) if it occurred. 
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Fig. 1.13. Position of two aberrant counts at Laysan Island relative to the regression line and data from 
which it was calculated.  
 
 
1.10 The Analysis of Covariance 
 
 The analysis of covariance depends on the availability of an auxiliary measurement linearly related 
to the variable of interest. Consider a one-way analysis of the yield (yi) of fruit trees subjected to several 
different treatments (different types of fertilizer or perhaps insecticides) that presumably will increase yield. 
Yield of individual trees may vary with the size and location of the tree, so a useful auxiliary variable may 
be the yield (xij) of a given tree in the year before the treatments were applied. Hence, a one-way model 
without information from the auxiliary variable is: 
 
    yij = µi + εij 
 
but the auxiliary variable can be introduced by: 
 

                yij = µi + β(xij - x
_

 ..) + εij            (1.28) 
 
so that the adjusted mean for a given treatment becomes: 

     y
_

 i. = µi + β( x
_

 i. - x
_

 ..) + e
_

 i. 
 
The ANOVA for a covariance adjustment then tests whether adjusted means are significantly different. The 

dot notation is used with multiple subscripts to indicate which subscript is involved in averaging. Thus x
_

 i. 
Denotes the average over j for the ith group. 
 
 A key assumption in the analysis of covariance is that the same linear relationship holds in all of 
the treatment groups. Thus we need to use the methodology of Section 1.9 to test the hypothesis that βi 
within treatment groups are not significantly different. Some investigators may proceed with the analysis 
without testing homogeneity of the slopes. This is not wise unless there is a good deal of prior experience 
on which to base such a decision. Inasmuch as both analyses depend on much the same computations, 
prudence calls for computing the results given in Table 1.5 and 1.7 in any case.  
 
 The data are arranged in the same way as in the previous section, but we here assume the same 
number of observations in each treatment group, giving a table like the following: 
 
        A        B        C 
  x y x y x y 
  x11 y11 x21 y21 x31 y31 
  x12 y12 x21 y21 x32 y32 
  . . . . . . 
  x1j y1j x2j y2j x3j y3j 
  . . . . . . 
  x1n y1n x2n y2n x3n y3n 
 
To provide an example, a table of data from Snedecor and Cochran follows: 
 
        A         D          F  
 x y x y x y 
 11 6 6 0 16 13 
 8 0 6 2 13 10 
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 5 2 7 3 11 18 
 14 8 8 1 9 5 
 19 11 18 18 21 23 
 6 4 8 4 16 12 
 10 13 19 14 12 5 
 6 1 8 9 12 16 
 11 8 5 1 7 1 
 3 0 15 9 12 20 
Means 9.3 5.3 10 6.1 12.9 12.3 
 
From the ANOVA for simple regression we had the following results (eq.(1.11): 

                                   Total S.S.  -   Regression S.S. =  Error (Residual S. S.) 
 
The error term can be written in various ways 
 
 
 

 
with the last result being most useful here. It is obtained by using the definition of b in developing eq. (1.29) 
from equation for the Residual (Error) Sum of Squares above. The above calculations are expressed for one 
group of data, so in dealing with several groups below, a subscript for the jth observation in  the ith group 
needs to be added. 
 
 The calculations proceed by computing the 3 components of eq.(1.29) and arranging them in an 
ANOVA type of table in which the Total S.S. is calculated from the entire set of data, using overall means 
of x and y, e.g.with the other values SSy, and SSxy calculated in the same manner. Thus, 

 
                 The Error line is calculated by using the group means, e.g., 

The Between S.S. are readily obtained by subtracting the line for Error S.S. from Total S. S. These 
calculations then give the following table from the data above: 
 

(yi − y)2 − ( ˆ y i − y)2 = (yi − ˆ y 
i=1

n

∑
i =1

n

∑
i =1

n

∑ )2

(yi −
i =1

n

∑ ˆ y i)
2 = [yi −(a + bxi)]

2

i =1

n

∑

= (yi − y )2 − b 2 (xi − x )2

i =1

n

∑
i=1

n

∑

SSx = (xij − x .. )
2

j =1

n

∑
i =1

k

∑SSy = (yij − y .. )
2,   and SSxy = (yij − y .. )(xij − x ..)

j =1

n

∑
i =1

k

∑
j =1

n

∑
i =1

k

∑ .

SSx = (xij − x i .)
2

j =1

n

∑
i =1

k

∑

= (yi − y )2 −
[ (yi − y )(xi − x )]2

i =1

n

∑
(xi − x )2

i =1

n

∑i=1

n

∑                           (1.29)
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Source d.f. SSx SSxy SSy M.S. 
Total 29 665.9 731.2 1288.7  
Between 2 72.9 145.8 293.6  
Error 27 593.0 585.4 995.1 36.86 
 
The M.S. due to error is calculated from SSy/d.f. = 995.1/27 = 36.86 in the Error line of S.S. just as it 
would be done without the auxiliary variable. The other entries in the table are needed to obtain a reduction 
in the error sum of squares as shown below. 
 
 The "reduction due to regression" is obtained from (SSxy)2/SSx in the Error line, and is subtracted 
from the Error sum of squares as computed without the auxiliary variable, giving an estimate of error mean 
square adjusted by the regression data. The complete calculation of an adjusted error mean square is thus: 
 
Source d.f. SSx SSxy SSy M.S. 
Total 29 665.9 731.2 1288.7  
Between 2 72.9 145.8 293.6  
Error 27 593.0 585.4 995.1 36.86 
Reduct. due to regr 1   577.9  
Dev. from regr 26   417.2 16.05 
 
 An estimate of a common slope is also obtained from the error line,  

b = SSxy/SSx2 = 585.4/593.0 = 0.987. This value then can be used to get adjusted values of  y
_

  from the 
following: 

                      y
_

 i,adj  =  y
_

 i. - b(x
_

 i. -   x
_

 ..) 
 
The adjusted mean for the first group of data (group A in the table above) is thus: 

                                          5.3 - 0.987(9.3 -10.73) = 6.71 = y
_

 i,adj 
 
The results of the covariance adjustment can then be assembled to produce a covariance-adjusted F-test, as 
in the following table: 
 
Table 1.8 Covariance F-test in one-way classification  
               
       Deviations from regression 
  d.f. SSx     SSxy     SSy     Reduc.  d.f. S.S. M.S. 
Treatments 2 72.867     145.8    293.6     
Error  27 593.000   585.4    995.1   577.9    26 417 16.05 
T+E  29 665.867   731.2   1288.7      802.94  28 486  
             2 68.6 34.28 
 
The F-ratio is 34.28/16.05 = 2.14 with 2 and 26 d.f. and does not suggest a significant treatment effect (P = 
0.14). 
 
 
 The whole purpose of the exercise is to get a more sensitive F-test of main effects than would be possible 
without the auxiliary variable. Such an improvement depends, of course, on the presence of a significant 
linear relationship between the variable of interest (yi) and the auxiliary variable (xi), and this relationship 
needs to be checked out first (i.e., do regressions on the data in each group (A, D, and F) first). 
 
 
 
1.11 ANOVA as a regression model 
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 To sketch out a basis for doing an analysis of variance with a regression model, we need the 
concept of a "dummy variable" which is simply a variable that takes only values of 0 or 1. Consider the 
multiple regression model: 
 
                                     yi = µ + β1x1i + β2x2i +β3x3i  
 
and let xi = 1 if yi belongs to a particular group in a one-way ANOVA and 0 otherwise. Then we can write: 
 
 y1 = µ + β1 
 y2 = µ + β1 
 y3 = µ + β1 
 y4 = µ + β2 
 y5 = µ + β2 
 y6 = µ + β2 
 y7 = µ + β3 
 y8 = µ + β3 
 y9 = µ + β3 
 y10 = µ + β4 
 y11 = µ + β4 
 y12 = µ + β4 
 
and thus have a regression model conforming to a one-way ANOVA with three observations in each of 4 
groups, giving the general model of E(yi) = µ + βi, as is appropriate for one-way analysis of variance. 
Draper and Smith (1998) give extensions to two-way and higher analysis and methods of fitting. The 
approach is likely not of much importance here, but is mentioned to emphasize an earlier remark that 
models of the multiple regression type can be used for a wide variety of purposes, often subsumed under the 
heading of "General Linear Hypotheses". 
 
1.12  Stepwise regression 
 
 This is an approach to regression that permits adding variables one step at a time while searching 
for the "best" model for a given data set. Consider the test for curvilinearity of Section 1.7. We first fitted a 
linear regression of the form yi = α + β1x1i and then extended the model to become a second degree 
polynomial yi = α + β1x1i + β2x2i2, using multiple regression to fit the model. We then tested for a 
significant "improvement of fit" by comparing the reduction in Sum of Squares obtained by subtracting the 
deviations from curvilinear regression (Residual S.S.) from the deviations from linear regression, and tested 
significance of the improvement by an F-test. We noted that the process could be extended to a third-degree 
polynomial yi = α + β1x1i + β2x1i2 + β3x1i3 to test for a more extreme curvature. We used multiple 
regression to fit the models, letting x2i = x1i2, (and x3i = x1i3 if the model were extended to test the further 
improvement of adding a "cubic" term). This kind of procedure is employed in stepwise regression, but is 
not, of course, restricted to polynomials. Any series of variables can be tested successively for the 
improvement of fit produced as each new variable is introduced. Computer programs are available that will 
test all combinations of a set of candidate variables but the results are practically guaranteed to be 
misleading, as enough manipulation will almost always produce a "good fit". One should use stepwise 
regression only when there is a logical sequence of models to test, and even then it is likely that the final 
model will be "over-fit" (i.e., have too many independent variables). One useful approach is to develop a 
model on half the data and check it on the other half. Usually, ecologists do not have enough data to hold 
half of it in reserve while studying a model. An alternative is known as "cross-validation". In it a series of 
fits are used and each observation is left out in turn, and used to check the error variance estimate from the 
fitted model. Such a test is "computer-intensive", i.e., depends on the ability of the modern computer to 
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conduct many calculations in a short time. Anyone planning to use stepwise regression should consult 
references like Draper and Smith (1998) first.  
 
1.13  Logistic regression 
 
 This is a form of regression analysis developed for data of the binomial form, i.e., in which the 
variable of interest is either 1 or 0 (or "yes" or "no", "present or absent", etc., which can be coded as 1 or 
0). Usually we express results as a proportion, e.g, the proportion surviving after some time interval or some 
treatment. Logistic regression originated in the field of bioassay, in which the response to a given dose of 
some substance is studied quantitatively. If one plots the response (proportion surviving or otherwise 
responding to some treatment) against the dose (often quantity of some substance given an individual) the 
resulting curve is usually sigmoid (s-shaped). The cumulative normal curve provides a convenient s-shaped 
model, and is used in bioassay in "probit" analysis. Details of methods used for bioassay are given by D.J. 
Finney (Statistical Method in Biological Assay, 3rd Ed. 1978, Charles Griffin and co., Ltd. London).  
 
 Joseph Berkson proposed using the logistic function as a bioassay model in 1944.  The basic 
model is: 
 

   P=
1

1+e−(a+bx)                                               (1.30) 

 
where P denotes the dependent variable and x is the independent variable ("dose" in bioassay). Because P is 
a proportion,  
 

 
 
and we can now consider the ratio of P and Q: 
 

    
P
Q  = eα + βx                                                              (1.32) 

 
The ratio of P to Q is sometimes called the "odds ratio", no doubt because it expresses the odds for a 
particular outcome. 
 
Now the natural logarithm of this “odds ratio” {eq.(1.32)]is a linear function, 
 

    ln(
P
Q ) = α + βx                                                       (1.33) 

 
This is called the "logit" transformation.  
 
 There is an interesting sidelight to the logit transform. Consider a table of proportions (e.g., several 
species of plants classified by whether they have flowers, fruits or neither). One can then calculate the 
natural logarithm of the "odds ratio" and analyze the linear model of eq. (1.33). This is termed log-linear 
regression by some authors and can be extended to behave like the analysis of variance. It has been used 
largely in the social sciences, but could well be of interest in ecological circumstances where one must 
analyze tables of proportions (or tables in general, for that matter). It should be noted that we will also use 
the term “loglinear regression” to refer to the log transform of eq.(1.22). 
 
Example 1.3 An example of logistic regression 

 

Q=1−P=
e−(a+bx)

1+e−(a+bx)                                     
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 In aerial counts of wildlife populations, the number of 
individuals in a group has a marked effect on visibility. This has been 
studied by using animals with attached radiotransmitters and recording 
the frequency of observation of groups containing these individuals. 
Such a study of elk has been used to correct for visibility (M. D. 
Samuel et al. 1987. Visibility bias during aerial surveys of elk in 
northcentral Idaho. Journal of Wildlife Management 51:622-630). The 
following table shows the data (only small samples were available so 
that larger groups had to be combined). 

    
Table 1.9 Sighting data from an aerial survey of radio-marked elk.
     
      Logit 
Group   Proportion transformation 
size Missed Seen seen loge(P/Q) 
1  18 5 0.217 -1.281 
2  7 6 0.462 -0.154 
3  5 5 0.500 0.000 
4  4 6 0.600 0.405 
5  4 9 0.692 0.811 
6  6 4 0.400 -0.405 
11  3 14 0.824 1.540 
23  0 10 1.000  
 

The simplest way to fit this data is to use eq. (1.33), i.e., regress 
the logit values (right-hand column) against x. In this case, the 
investigators used the logarithm of group size in their analysis, so we 
use ln (group size) for x in Fig. 1.14, which shows the regression fit. 
 
 Due to the fact that the independent variable is from a binomial 
distribution the linear model implied by eq. (1.33) does not give the 
best fit to the data. Instead, the technique of maximum likelihood 
estimation is recommended. If we assume a particular frequency 
distribution (probability distribution function in Section 1.2) 
underlies a set of observations, then it may be possible to find 
expressions that often minimize the variance of an estimated quantity. 
Methods of mathematical statistics are required to derive such 
estimators, but many of the commonly-used estimates are also maximum 
likelihood estimates. In the present case, there is no simple expression 
for estimating the parameters of eq. (1.32) so that an iteritive method 
is required to solve the maximum likelihood equations. The method used 
here is due to J. Berkson (Tables for the maximum likelihood estimate of 
the logistic function. Biometrics 13:28-34, 1957). Maximum likelihood 
estimates for logistic regression can also be obtained in some of the 
available statistics programs (e.g., SYSTAT). 
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Fig. 1.14. Regression of logit values on logarithm of group size 
from aerial survey of elk. 
 

 The parameters obtained from the regression analysis (Fig. 1.14) 
are α = -1.118 and β = 0.974, while those obtained from the maximum 
likelihood fit are somewhat different, being α = -1.305 and β = 1.155. 
Fits to eq. (1.30) are not substantially different (Fig. 1.15). 
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Fig. 1.15  Fits of eq. (1.30) to observed data on elk sightability 
using regression (eq.(1.33) and maximum likelihood methods. 

Example 1.4 
 

 Two further examples (Fig. 1.16) are based on reproductive rates 
in Hawaiian monk seals at two sites. The curves were fitted as above, 
using regression and maximum likelihood estimates.  
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Fig. 1.16 Logistic fits of reproductive rates against age of the 
female for Hawaiian monk seals at two sites. 
 
In the upper curve, it appears that the regression and maximum 
likelihood methods give about the same results, while neither 
provides much of a fit in the lower curve. Deteriorating 
conditions (poor food supplies and survival) at the site may be 
changing the curve, so that it does not represent a stable 
situation. Circumstances at the site shown in the upper curve have 
been reasonably good, but there is no particular reason to suppose 
that reproductive rates should follow a logistic curve. 
 
 For comparison, some data on judging sound intensity were 
fitted by the two methods (Fig. 1.17). These data appear to fit 
the logistic very well, and the two methods of estimation give 
virtually indistinguishable results. 
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Fig. 1.17. Logistic curve fitted to data on judging sound 
intensity. 

 
1.14  Locally weighted regression 

 When there is no suitable model for a curve, locally weighted regression provides a way to fit a 
smoothed line. The method is variously called "loess" or "lowess". Some authors use "loess", but ecologists 
will no doubt be confused by the implication of wind-deposited soil!. Weighted linear regressions are fit at 
each point on the graph (e.g., if the data span 30 years, then such regressions are fit at each of the 30 years) 
by selecting data points in the immediate neighborhood of each point on the x-abcissa. The number of 
points in each such neighborhood might be taken to be, say, about 30% of the total number of observations. 
However, this can be varied in the fitting program, and depends on the purpose at hand. If one wants a 
thorough smoothing, then 50% or more of the points might be used in each regression. If the smoothed 
curve is to follow the data point closely, then  a small fraction, perhaps as little as 10%, of the points should 
be used in each fitting. Experimentation with the fitting program will help in developing an approach for a 
particular data set. Weights diminish by a cubic function, so points very near to the selected point get by far 
the most weight. The fitted regression line determines only the y-value for the selected abcissal value. In 
effect, the technique behaves much like a moving average, but has various advantages. Programs to produce 
lowess fits are available. SYSTAT has a routine for lowess fitting in the plotting routine (after loading the 
data in a file, bring up "plot", and select the "smooth" function. It will then be necessary to indicate the 
fraction of the data points to use in each neighborhood). The lowess method was developed by W. S. 
Cleveland (Journal Amer. Statistical Assoc. 74:829-836). 
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 The smoothed line in Fig. 1.18 illustrate the technique. This approach to smoothing is preferable to 
the usual moving-average smoothing because it does not leave blanks at the end of the series, and uses what 
seems to be a better averaging approach. The lowess technique can be illustrated by smoothing French 
Frigate Shoals monk seal beach count data. At each point along the line (here, each year) the nearest n 
points are used to form a weighted linear regression (9 points were used in producing Fig. 1.18). The 
regression line is used only to determine the smoothed value for the given point. Inasmuch as the weights 
and the regression line must be computed for every point used along the x-axis (the years 1957 to 1993 in 
the present example), enough calculations are involved to make use of a computer desirable.  
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Fig. 1.18. Locally-weighted regression line ("lowess" smoothing) for the French Frigate Shoals monk seal 
beach counts. For each year on the graph, a weighted linear regression is computed from the n nearest 
points, with the contribution of each point weighted by a cubic function of distance of the data point from 
the base point. The regression line for 1987 is shown on the graph, along with the weights assigned to the 9 
nearest points. The regression line determines only one point on the smoothed line. 
 
1.15  Non-linear least-squares 
 
 The method of least-squares was discussed in Sec. 1.4, and eq.(1.6) was used to develop least-
squares estimates for linear regression. The same approach can be used to fit non-linear functions, starting 
with the same equation for sum of squares: 

    S = Σ[yi -f(x)]2   
where f(x) is now some non-linear function, such as the logistic function of eq. (1.30). One could find a 
minimum for the sum of squares, S, by a direct search routine. This is labor-intensive, and there are various 
computer programs that do the job very quickly and efficiently. Some of these call for partial derivatives of 
the function (used to "linearize" the function so that the approach to a minimum can be done in successive 
iterations). Others use numerical approximations to the partial derivatives, or direct search routines. 
SYSTAT contains two such routines under the "nonlin" function. It requires that a model be furnished, but 
this can be written in the notation used in EXCEL (really statements in BASIC language, which underlies 
EXCEL). Thus eq. (1.30) is entered as: 
 
                 P = 1/(1 + EXP(-(A+B*X))) 
 
The data need to be entered by using the Editor function (or can be read in from an EXCEL file, or copied 
to the Editor via a clipboard). Names used for variables (P,X) above are used as column headers in the data 
file, and the SYSTAT fitting routine recognizes the other labels (except built-in functions like EXP) as 
variables to fit (such as A and B above). Trial values can be furnished (i.e., rough estimates of A and B) and 
the number of iterations can be set (these have built-in "default" values). It may be necessary to use trial 
values if the program doesn't converge in, say 20 iterations (the default value)), but further iterations can be 
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tried, first. Since the program is iterative, it may get stuck in various ways, and it is then desirable to quit, 
and start over with different guesses at starting parameters. 
 
1.16 Exercises 
 
1.16.1 Coin-tossing. Students should try a coin-tossing experiment like the one reported in example 1.1. Put 
10 coins in a jar and make 100 tosses, recording the number of heads in blocks of 10. Make a frequency 
distribution and compare it with Fig. 1.1. Try another set of 100 and compare the two frequency 
distributions. Compute the sample means and variances, and compare them with the theoretical values.   
 
1.16.2 Simulating the binomial on a computer. Coin-tossing gets tiresome after awhile, and it is important to 
look at a different probability model. In order to get large samples without the tedium of mechanical 
approaches, we can resort to the computer. Students familiar with a programming language will likely prefer 
to write a simple program. However, useful results can be obtained in EXCEL and are readily in reach of 
those without programming experience. Those with only a passing experience with EXCEL may have to 
resort to the HELP function (or a colleague with experience) but it is important to carry out the following 
exercise because it should provide a capsule view of “monte carlo” simulations. Also, the next two chapters 
on bootstrapping depend on use of EXCEL. Insert the statement “=RANDBETWEEN(0,1)” in a cell in an 
EXCEL spreadsheet, and copy down to fill 10 cells in a column. This generates a series of 0’s and 1’s with 
probability 1/2 of getting either. Now copy the row to the right for 100 columns (it is convenient to use the 
automatic numbering system in a column above the 10 entries to keep track—a handy little number pops up 
beside to indicate how many numbers you have entered). Now sum the columns (use the summation 
function in the legend at the top of the sheet). This row of numbers (the sums) is now equivalent to the table 
of data in Example 1.1. Now use the histogram procedure (in the Tools menu) to construct a histogram of 
frequencies of results. These should approximate the bars in Fig. 1.1. Note that every time you make a 
change in the worksheet it recalculates the table of random values (this function can be turned off). It is 
worthwhile to calculate several histograms just to get a notion of how variable the outcomes are. Next 
calculate the expected values from eq.(1.1). Find the factorial function (“FACT” in Math and Trig 
functions). Actually, all you need to know is that FACT(5) gives the value of 5! Use this function to 
calculate the factorial part of eq.(1.1) next to a column numbered 0 to 10. Then enter the rest of the 
equation in the next column (because p=0.5=1-p these entries will all be the same, but we’ll use the 
approach for a case where p is not 1/2 below). The product of the two columns gives the proportions of 
eq.(1.1) which add to unity. Now multiply 100 times the proportions, and you have the expected values, 
which should approximate what you have in the histograms. The Chart Wizard in EXCEL will plot 
expected and observed values (you need to look under “Custom Types” to find one that plots a line and 
bars). One last chore is to recalculate the expected values using a value of p=0.9 which gives a distinctly 
asymmetric graph. It is always useful to put the numerical value of p above the calculations and use the “$” 
(e.g.,$A$30) notation to denote p in calculations for the equation. This lets one experiment with different 
values of p.  Students should save a worksheet with the above calculations in order to have it for further 
reference when we consider other frequency distributions. 
 
1.16.3 Random sampling There will be a great deal of emphasis on random sampling in this course. A 
relatively new topic in statistical methodology called bootstrapping will be used extensively. It depends on 
random sampling with replacement. Courses and books on sampling methodology usually depend on 
sampling without replacement. Consider using a number of sample plots to make counts of plants in order to 
estimate overall density of some species of plant. Such plots should be located at random in order to assure 
an unbiased estimate of density, and secure a reliable estimate of variance. Ordinarily, an investigator would 
find some way to assign a number to all possible plots in the area to be studied, and locate the sample plots 
by consulting a table of random numbers. If the same plot is drawn twice, it would not be counted twice, as 
this usually makes no sense. Hence we describe this as sampling without replacement. Textbooks on 
sampling show that it usually doesn't make much difference whether we do in fact sample with replacement, 
inasmuch as as the sample usually is a small fraction of the total population. Bootstrapping, however, 
depends on sampling with replacement as a way to reflect the underlying frequency distribution. 
Consequently, most of our samples will be with replacement. We will be taking repeated random samples 
with replacement of a data set. The individual entries in the data set will be in a computer file, and we will 
randomly select individual entries from this file. It is convenient to number the data items from 1 to n, and 
we then need to generate random numbers. To illustrate the approach, enter “RANDBETWEEN(1,10)” in a 
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cell in EXCEL and copy down the column for 100 entries. Make a histogram of the data, as in Example 
1.16.2. This is a sample from a uniform distribution, i.e., a frequency distribution where the probabilities 
are all equal. It is the distribution underlying random sampling. It is easy to extend the process to, say, 
1,000 draws as in the frequency distribution plotted below. Note that it is still quite variable, even with 
1,000 draws. Make a graph of your data like the following using the Chart Wizard and post it on a 
spreadsheet with the calculations. 
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1.16.4 Simulating a discrete skewed distribution. In Exercise 1.16.2 students were asked to calculate 
expected values for a binomial frequency distribution [eq.(1.1)] with p=0.9. A skewed frequency 
distribution is not hard to simulate, requiring two changes to the methods used in Exercise 1.16.2. Instead of 
RANDBETWEEN(0,1) we use “=RAND()” (don’t put anything in the parenthes) which provides random 
numbers between 0 and 1. We also need an “IF” function which is the basis for a lot of computer work. It 
evaluates an expression and chooses between two output values, depending on whether the expression is 
true or false (there are a number of different expressions working along these lines, but we use the simplest 
here). Set up a spreadsheet with a column of 10 values of “=RAND()”, and copy it to the right 100 times. 
We again need a numerical value of p above this table for reference, which may be say 0.9. If the first entry 
in the first column is in position, say, D9, then in the column just below this first column the first entry 
should be “=If(D9>=$A$3,1,0)” where the value of p is in $A$3. Copy down 10 and across for 100 
columns and sum these entries. The IF function checks to see if the entry in D9 exceeds p and enters 1 if 
true and 0 if false. The sums then provide the basis for a histogram of a skewed discrete distribution. Make 
histograms with p=0.1, and p=0.5. Compare the histogram with p=0.5 with the one you made in Exercise 
1.16.2. Make a new calculation of eq.(1.1) with p=0.9 and compare it with the histogram with p=0.1 
(actually you should have made one in Exercise 16.1.2  and need only copy it over to this worksheet for 
comparison. Plot the data in Chart Wizard (expected and observed values). It should look like the following 
graph: 
1.16.5.  Do the algebra to calculate the expected value of eq.(1.1) as given in the right side of eq.(1.2). 
 
1.16.6 Simulating a continuous skewed distribution. A continuous random variable is one that has values in 
the real domain. For our purposes, this means values like those generated by RAND() -- any number within 
the range considered (i.e., from 0 to 1). We will consider one way to generate random variables from an 
exponential distribution here. Consider the function:  
                                                      F(x) = 1 - e-βx                                                       (1.34) 
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 This is an example of a cumulative distribution or cumulative distribution function. It takes values from 0 
to 1, and has one parameter, β, which controls the rate at which the function approaches unity. The graph 
below shows the function for β = 0.1 and β = 0.5. 
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Fig. 1.19 Plot of cumulative distribution function for the exponential distribution for values of β = 0.1 (solid 
line) and β = 0.5 (broken line). 
 
We use the cumulative distribution function here because it takes values from 0 to 1, and we can take a 
random sample from that range (using RAND()) and translate that to find the corresponding x value, by 
rearranging eq. (1.34) as  

Thus the procedure is to draw a random sample of values from RAND() and look up the corresponding 
values of x. Eq. (1.34) is the integral of an exponential distribution over the range 0 to x, hence the name 
"cumulative". To compare the outcomes of a simulation with the equation for the frequency distribution, 
one runs a simulation as described in Exercise 1.16.4, and plots the results. Differentiating the cumulative 
yields the frequency distribution: 

                                            f(x) = 
dF(x)

dx   = 
d[1− e−βx]

dx
= βe-βx                                   (1.36) 

Students whose calculus is a little rusty may want to look up the formula for finding a differential of an 
exponential; others may want to accept the statement without derivation. We need the right side of eq.(1.36) 
only to be able  to compare simulation outcomes with the theoretical model, given in the figure below. 
Produce a column of 1000 random variables [F(x)] from RAND() and convert them with eq.(1.35), make a 
histogram of the results (using 30 “bins”) and then calculate the expected values by multiplying eq.(1.36) 
times 1000.  Plot these as before and see how your result compares with the graph below.  

x =
1
β

log e(1 − F(x))                                           (1.35)
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Fig. 1.20. Simulated exponential data compared to theoretical curve.  
 
1.16.7 Simple linear regression. Data on counts of deer on a study area are given below. Fit the linear 
regression of Fig. 1.3 by using eqs. (1.9). This is readily done in EXCEL (in fact, EXCEL has a regression 
fitting routine which we will use for additional exercises, but students should do the calculations directly 
from the definitions in order to see how they “work” and then check by using the built-in fitting routine). 
Some graphics programs will also do the fitting automatically. 
 
Year  Number of deer 
xi           yI 
1 10 
2 21 
3 52 
4 71 
5 97 
6 146 
7 212 
 
1.16.8 Check the fact that a and b give minimum values of eq.(1.6), the sum of squares, for the deer data of 
Exercise 1.16.7. Copy the results of Exercise 1.16.7 into a new worksheet and compute eq. (1.6) for a and 
b, setting up the worksheet so that a and b are listed as separate entries on the worksheet as shown below. 
Then vary a and b by small amounts and write down the resulting sums of squares in the table. That is, make 
a table like the following and fill in the entries. It is easiest to first make  your entries in pencil as 
transferring them individually to a summary table in EXCEL calls for a lot of tedious use of “Paste Special” 
in the menu, and/or provides opportunities to forget which cell you were working with. You should find a 
minimum in this table. If you want to try to get closer to the values of a and b found in Exercise 1.16.6, 
make a new table with fractional values in the row and column headings (e.g.,31.1, 31.2, etc.) and fill in the 
new table. This approach provides a device that is sometimes useful to solve a pair of more complex 
equations without needing to use a non-linear least-squares fitting routine. It is tedious unless you can guess 
reliably in advance just which part of the “Sums-of-Squares” space the answer lies. But the purpose here is 
just to show how things work. 
Sums-of-Squares table(eq.1.6) 

     b  
  30 31 32 33 34 
 -39  2046    
 -40      
 -41     2520 

a -42   1987   
 -43      
 -44      
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 -45     2184 
 
1.16.9  Use EXCEL and eq. (1.11) to calculate ANOVA for a regression equation for the data of Exercise 
1.16.7 and compare your results with those given in Table 1.1.  Now use the EXCEL regression program 
(found in the same group of analysis tools as are the ANOVA programs) to see how it works, and add the 
results to your direct computations.  
 
1.16.10 Compute the correlation coefficient for the deer data from eq. (1.12). It can also be directly 
computed using a function CORREL found in the functions menu. 
 
1.16.11 Compute s2

b from eq. (1.15) for the deer data. Now compute it assuming that you have 3 
observations (9,10,11) from year 1 and 4 observations (207,210,212, 219) at year 7 (and no observations 
for years 2,3,4,5 and 6). You will need to recalculate everything for the new data. What do you conclude 
about the effect of this arrangement of the data on s2

b? Would you recommend this approach? Why? 
 
1.16.12  Compute confidence limits for b from eq.(1.16) using the following set of data. Show details of 
your computation (i.e., the components of the calculation on a spreadsheet). 
 
1 2.86 
2 0.90 
3 1.56 
4 3.85 
5 1.62 
6 4.39 
7 3.66 
8 3.95 
9 4.45 
10 4.50 
Note that the α in eq.(1.16) is not the same as α in the regression model. It is standard notation for the 
probability level. Use α= 0.05 here. You can obtain the needed t-value from the functions in EXCEL (fx on 
the Toolbar) which is TINV(α,d.f.) where α is the desired probability for a 2-tailed t-test. You can run the 
regression analysis in EXCEL to confirm your results.  
 
1.16.13 Multiple regression. Calculate a multiple regression equation on the following data, using 
eqs.(1.19) and check your results in EXCEL. The data were used in an early effort to construct an index of 
abundance for grizzly bears in Yellowstone National Park. Use the logarithm of the count as y and “Yr.” As 
x1 and “Freq. Sight” as x2. It is important not to use the actual 4 digit year as x1 because it can cause a loss 
of accuracy when larger data sets are involved.  
 Year      Count   ln count   Yr.  Freq. sight. 

1976 17 2.8332 1 1.64 
1977 13 2.5649 2 1.50 
1978 9 2.1972 3 1.28 
1979 13 2.5649 4 1.08 
1980 12 2.4849 5 1.40 
1981 14 2.6391 6 1.58 
1982 11 2.3979 7 1.62 
1983 13 2.5649 8 1.20 
1984 17 2.8332 9 2.29 
1985 9 2.1972 10 2.00 
1986 25 3.2189 11 3.12 
1987 13 2.5649 12 1.64 
1988 19 2.9444 13 2.12 
1989 16 2.7726 14 1.86 
1990 25 3.2189 15 1.95 
1991 24 3.1781 16 2.65 
1992 23 3.1355 17 1.65 
1993 20 2.9957 18 1.67 
1994 20 2.9957 19 1.47 

 



                     1.34 

 

1.16.14  Perform the test for curvilinearity described in the text (Sec. 1.7) and illustrated in Table 1.5 on the 
following sets of data. Make a spreadsheet containing the ANOVA tables (as in Table 1.5); note that the 
deer data are also included here so you have an example of the expected results at hand) and discuss the 
results as they apply to the notion that one should test for the assumptions before doing an analysis. Do the 
tests of the ANOVA tables provide convincing evidence of nonlinearity in the data? 
 

Year Horses Year Deer Year Elk 
1 340 1 10 1 3172 
2 423 2 21 2 4305 
3 482 3 52 3 5543 
4 611 4 71 4 7281 
5 762 5 97 5 8215 
6 879 6 146 6 9981 
  7 212 7 10529 
    8 12607 
      

Year Gray seals Year Muskox   
1 751 1 49   
2 854 2 57   
3 869 3 65   
4 898 4 61   
5 1019 5 76   

 
1.16.15  The following data are replicate monk seal beach counts from French Frigate Shoals. Conduct a 
test for significant deviations from regression using the “pure error” model of Section 1.6. There may be an 
advantage in using logarithms of the counts (to approximately “normalize” the data), as was done in Section 
1.6, but try the analysis without the log transform. Report your results in an analysis of variance on a 
spreadsheet, as in Table 1.3. 
 

1985 298 1990 264 1994 193 
 250  271  183 
 301  262  219 
 403  300  190 

1986 401  299  196 
 285  300  198 
 278 1991 176  202 

1987 351  191  232 
 285  216  222 
 316  217  249 
 301  197 1995 141 
 320  185  124 
 350  281  168 
 333  273  132 
 252 1992 204  140 
 362  202  144 

1988 292  226  174 
 303  227  156 
 288  234  164 
 286  271   
 315  231   
 327 1993 156   



                     1.35 

 

 327  195   
 354  186   

1989 331  182   
 337  189   
 322  221   
 313  161   
 279  184   
 292  187   
 319  208   
 354  194   
 375  219   
 363     

 
 
1.16.16 The following data are from three years of a survey of harbor porpoises in which there were replicate transects 
flown and the transect lengths were recorded.  
 
Year Km. Count  Km. Count  Km. Count 

1986 552 48 1987 326.6 1 1988 199.1 1 
 318 31  117.5 12  66.5 12 
 445 9  752 30  374.7 5 
 399 59  384.4 24  685.7 71 
 195 1  58.5 0  333.7 0 
 150 10  223.2 6  311.9 18 

 
 
 
 
1.16.17 Perform an analysis of covariance (Section 1.10) on the data of  Exercise 1.16.15, and report your results on a 
spreadsheet. Is this a legitimate analysis in view of the results of Exercise 1.16.15? Explain. 
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2.0 INTRODUCTION TO BOOTSTRAPPING 
 

2.1 Introduction 
 
 There are a lot of valuable statistical methods that are practially guaranteed to work well if the data 
are approximately normally distributed and we are mainly concerned with linear functions of random 
variables. As was remarked in Chapter 1, the mean or average of a data set is a linear combination of 
random variables, and the central limit theorem says that we can expect means to converge on normality as 
the sample size increases. However, ecologists often are forced to use small samples. Very often we want to 
consider ratios of random variables, which are definitely nonlinear combinations, and difficult to deal with 
in any consistent manner. Many models of importance in ecological studies contain products, ratios and 
exponents, and are simply not susceptible to a standard statistical analysis in terms of the available theory. 
 
 A relatively new development in statistical methodology offers a way out of this dilemma. The 
technique is called "bootstrapping", which, according to Efron and Tibishirani (1993) was named from the 
phrase "to pull oneself up by one's bootstraps", i.e., to accomplish a physical impossiblity. Efron and 
Tibishirani (1993:56) note that the bootstrap was introduced by Efron in 1979, making it quite a recent 
development in contrast to many other statistical techniques. It was preceded by "jackknifing" which was 
originated by Quenouille (1956) as a way to study bias in estimators, but named by John Tukey (1958) due 
to its all-purpose applicability, like one's handy jackknife. A related topic is the use of the "delta method" to 
estimate variances for estimates based on complicated models. We will touch on these latter two methods 
later, but will mainly depend on bootstrapping as the principal tool for handling difficult problems. 
 
 One of the nice things about bootstrapping is that it is simple to apply, so long as one has access to 
a computer. Detailed application requires access to a desk computer and some knowledge of a programming 
language. However, bootstrapping can be done in EXCEL, as used here. There are several programming 
languages that can be used for bootstrapping. The BASIC language is simple and easy to use, particularly 
because it is "interpreted", i.e., one can issue the RUN command at almost any stage and find out whether 
the code written up to that point works as expected. QUICK BASIC contains a built-in compiler, so a large 
number of runs can be made quite rapidly. QUICK BASIC runs using almost identical statements on both 
MS/DOS and Macintosh operating systems, and has been issued with the Microsoft operating systems, but 
unfortunately in the MS/DOS version which makes it awkward to use. Most of the examples given here 
were also done in EXCEL, which has a random number generator in the statement 
RANDBETWEEN(N1,N2) where N1 and N2 represent the range of the random numbers to be generated. 
Be sure the ANALYSIS TOOLPAK is loaded before attempting the EXCEL versions of bootstrapping. Pull 
down the Tools menu and use the add-ins element to find the Analysis Toolpak. Details of use vary with the 
version, so you may need to use the “help” function on occasion.  
 
 
 
 
 
2.2 The mechanics of bootstrapping 
 
  Bootstrapping is easy to apply. The process for approximating the standard error of a mean is 
illustrated in Fig. 2.1. An original data set containing n items (here n = 10) is randomly sampled with 
replacement B times. Four of these B samples are shown above the original data set in Fig. 2.1. Note that an 
individual value from the original data set, such as 106 may appear repeatedly in a bootstrap sample. Each 
of the B bootstrap samples is averaged, as shown above the individual samples. This is the bootstrap 
replication. We then use these B replicate values to compute the standard error of the mean. The equation is 

exactly the same as that for calculating a variance, namely s2 = 
Σ(xi - x

-)2
n-1   . However, Efron and Tibishirani 

use a different notation to distinguish bootstrap variables from the original data, using x*1,x*2, ..., x*B to 
denote the vectors containing the bootstrap samples of n observations (i.e., the four sets of bootstrap 
samples of 10 items each shown in Fig. 2.1). Thus the first bootstrap sample is  
                            x*1 =(203,203,106,106,106,160,106,8,301,160).  
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The original data is represented by the vector x = (x1,x2, ... ,xn).  
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1 2 3 B

BOOTSTRAP 

SAMPLES

BOOTSTRAP 

REPLICATIONS 

   

ORIGINAL DATA SET

13,106,203,131,160,8,67,61,11,301

203 

203 

106 

106 

106 

160 

106 

8 

301 

160

131 

 11 

   8 

 67 

106 

  8 

160 

  8 

 11 

 61

61 

203 

131 

8 

106 

11 

301 

160 

301 

160 

203 

11 

301 

160 

67 

11 

8 

301 

13 

8

145.9 57.1 144.2 108.3

...

MEAN 106.1

 
 
 
Fig. 2.1 The bootstrapping scheme for estimating a standard error. An original data set containing n items is 
randomly sampled B times with replacement using samples of size n. Each such bootstrap sample is 
averaged, and these means are used to estimate the standard error of the mean of the original data set.  
 
 The quantity s(x*1) denotes a statistic computed from the corresponding bootstrap sample. In this 
case s(x*1) is the average of the first bootstrap sample, 145.9. Using the bootstrap notation the standard 
error of the mean estimated by bootstrap sampling is written as: 
 

                                     sê boot = {Σ[s(x*b) - s(.)]2
B-1  }1/2                            

(2.1) 

where the summation runs from b = 1 to B, and s(.) represents the mean  of the bootstrap sample, i.e., 
Σx*b/B,  where again the summation runs from b = 1 to B. The important thing to remember here is that 
s(x*b) represents the mean of the bth bootstrap sample, so that s(.) is the average of B such averages. Note, 
too, that the standard error of a set of random variables is computed as s/n1/2, 
but here we are computing the standard deviation of a set of means and this is the standard error of the mean 
(i.e., don't make the mistake of dividing by the square root of B). 
 
 The first few columns of an EXCEL worksheet used to bootstrap the data of Fig 2.1 follow. The 
first row shows the assignment of a serial number to the original data items, while the original data appear 
in the second row. The next 10 rows list random numbers from 1 to 10 obtained from the statement 
RANDBETWEEN(1,10). The next set of numbers are random samples, with replacement, from the original 
data set. 
 
ITEM NUMBER 1 2 3 

 DATA 13 106 203 
 1 6 8 2 
 2 9 7 6 
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RANDOM 3 1 3 10 
NUMBERS 4 8 9 9 

 5 2 2 1 
 6 5 6 1 
 7 3 8 9 
 8 1 2 6 
 9 7 2 2 
 10 3 2 8 
     
 1 8 61 106 

BOOTSTRA
P 

2 11 67 8 

SAMPLES 3 13 203 301 
 4 61 11 11 
 5 106 106 13 
 6 160 8 13 
 7 203 61 11 
 8 13 106 8 
 9 67 106 106 
 10 203 106 61 
     

SUM  845 835 638 
MEAN  84.5 83.5 63.8 

     
 
 
These are obtained by using a "table lookup" function in EXCEL. It can be explained by referring to the 
following formulas for the first column. 
 
 
ITEM NUMBER 1 
 DATA 13 
 1 =RANDBETWEEN(1,10) 
 2 =RANDBETWEEN(1,10) 
RANDOM 3 =RANDBETWEEN(1,10) 
NUMBERS 4 =RANDBETWEEN(1,10) 
 5 =RANDBETWEEN(1,10) 
 6 =RANDBETWEEN(1,10) 
 7 =RANDBETWEEN(1,10) 
 8 =RANDBETWEEN(1,10) 
 9 =RANDBETWEEN(1,10) 
 10 =RANDBETWEEN(1,10) 
   
 1 =HLOOKUP(C3,$C$1:$L$2,2,FALSE) 
BOOTSTRAP 2 =HLOOKUP(C4,$C$1:$L$2,2,FALSE) 
SAMPLES 3 =HLOOKUP(C5,$C$1:$L$2,2,FALSE) 
 4 =HLOOKUP(C6,$C$1:$L$2,2,FALSE) 
 5 =HLOOKUP(C7,$C$1:$L$2,2,FALSE) 
 6 =HLOOKUP(C8,$C$1:$L$2,2,FALSE) 
 7 =HLOOKUP(C9,$C$1:$L$2,2,FALSE) 
 8 =HLOOKUP(C10,$C$1:$L$2,2,FALSE) 
 9 =HLOOKUP(C11,$C$1:$L$2,2,FALSE) 
 10 =HLOOKUP(C12,$C$1:$L$2,2,FALSE) 



  2.4 

 

   
SUM  =SUM(C14:C23) 
MEAN  =C25/10 
   
 
The statement HLOOKUP(C3,$C$1:$L$,2,FALSE) specifies a horizontal lookup table (VLOOKUP 
permits a vertical lookup table). The first entry is the column entry for the value to be looked up in the table, 
i.e., C3 denotes a random number entry, for which we need to find the corresponding entry in the original 
data row. The lookup table is specified by the array, $C$1:$L$1 in which the first row is the index value 
corresponding to a data entry in the next row. The subsequent value in HLOOKUP is the row containing the 
data to be returned by the HLOOKUP function, and the final entry ("FALSE") insures that the function 
returns the exact value required (using "TRUE" would permit returning the value nearest in numerical 
magnitude to a lookup entry). As with any of the more complex functions in EXCEL, a little practice will 
make the role of the individual entries clear. An important proviso with the HLOOKUP and VLOOKUP 
functions is that the lookup table must be in the first rows (or first columns for VLOOKUP) of the 
spreadsheet. The last entries above give the sums and means of the bootstrap samples. The means are used 
in eq.(2.1) to calculate the bootstrap standard error. Readers should understand that the example used here 
is mainly intended to demonstrate the approach. The best estimate of a standard error of a set of numbers is 
that calculated by the usual formula, i.e., from 

    S.E.2 = 
Σ(xi - x

-)2
n(n-1)   . 

Bootstrapping is used to calculate standard errors for more complex functions, for which a direct estimate of 
a variance is not available from statistical theory.  
 
Example 2.1. The original data of Fig. 2.1: 
13,106,203,131,160,8,67,61,11,301 represent data on survival times in 
days. They can be considered to come from an experiment on the effect of 
some treatment on survival of experimental animals (whereupon there 
should be a corresponding set of data from a control group) or the 
survival times of a set of radio-tagged wild animals. It is a small 
sample, but this is common, inasmuch as there is increasing public 
pressure to reduce experimental use of live animals, and collecting data 
from wild animals is expensive and can be quite difficult. We would thus 
like to extract as much information as possible from the data. The data 
in Table 2.1 are from an EXCEL worksheet that computes the bootstrap 
standard error. It shows the first 10 columns of a total of 50, which is 
likely the minimum size that should be used to demonstrate behavior of 
bootstrapping. In preparing such spreadsheets, one should change the 
calculation mode from automatic to manual (in the TOOLS menu, under 
OPTIONS or PREFERENCES depending on the version of EXCEL) while building 
the worksheet. The calculate command can then be used to see how the 
result varies from run to run.  
 
2.3 Empirical probability distributions 
 
  The probability distribution of a random variable, X, is any complete description of the 
probabilistic behavior of x. In coin-tossing with a "fair" coin, there are two possibilities, each occurring 
with probability 1/2. In rolling a die, there are 6 outcomes, each having Pr{x=k} = 1/6 for k = 1,2,3,4,5, or 
6. It is convenient to define the sample space, SX, as a list of possible outcomes. Thus for a fair die, Sx = 
{1,2,3,4,5,6} and we assign probability 1/6 to each event in the sample space. Consider the binomial 
distribution which assigns a probability to each sample point in the sample space {0,1,2,3, ... , k, ... , n} but 
these probabilities depend on the parameter, p, of the distribution. The binomial distribution is: 

                                    Prob{xi = k} = fk = (n
k )pk(1-p)n-k                                        (2.2) 

 

where (
n
k ) is evaluated as  

n!
(n-k)!k!  , in which, for example, 5! (read as "five factorial") is calculated as 

5x4x3x2x1 = 120.  
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Table 2.1 Sample from bootstrapping the data of Fig. 2.1. 
 
ITEM NUMBER 1 2 3 4 5 6 7 8 9 10 

 DATA 13 106 203 131 160 8 67 61 11 301 
 1 7 8 1 6 5 4 6 2 8 6 
 2 10 10 3 8 10 10 2 4 3 2 

RANDOM 3 2 7 4 10 7 4 3 5 10 10 
NUMBERS 4 4 1 4 4 5 6 8 10 3 7 

 5 8 6 1 6 7 8 5 3 1 4 
 6 9 7 9 4 4 9 1 7 6 6 
 7 1 5 6 9 10 3 5 3 9 7 
 8 1 8 3 2 10 10 10 1 1 7 
 9 5 2 6 6 9 10 1 10 10 6 
 10 2 6 3 8 7 3 2 2 2 6 
            
 1 67 61 13 8 160 131 8 106 61 8 

BOOTSTRA
P 

2 301 301 203 61 301 301 106 131 203 106 

SAMPLES 3 106 67 131 301 67 131 203 160 301 301 
 4 131 13 131 131 160 8 61 301 203 67 
 5 61 8 13 8 67 61 160 203 13 131 
 6 11 67 11 131 131 11 13 67 8 8 
 7 13 160 8 11 301 203 160 203 11 67 
 8 13 61 203 106 301 301 301 13 13 67 
 9 160 106 8 8 11 301 13 301 301 8 
 10 106 8 203 61 67 203 106 106 106 8 
            

SUM  969 852 924 826 1566 1651 1131 1591 1220 771 
MEAN  96.9 85.2 92.4 82.6 156.6 165.1 113.1 159.1 122 77.1 
 
 
 For convenience in discussing bootstrapping, we can describe a probability distribution as 
F{f1,f2,f3, ... ,fk ... ,fN} where fi is the limiting frequency of the ith event. For a single die, we infer that fi = 
1/6, and would expect to eventually come very close to that value, given enough rolls of the die. If we 
determine fi from observations, then it can be considered to be an empirical probability distribution. Instead 
of rolling dice, we can set up a spreadsheet using RANDBETWEEN(1,6), copy this down through, say, 
1,000 cells, and tabulate the outcomes by using the histogram function in the data analysis menu under 
TOOLS. This gave the following results: 
 
Bin Frequency Proportion F(x) 

1 181 0.1810 0.1810 
2 179 0.1790 0.3600 
3 162 0.1620 0.5220 
4 172 0.1720 0.6940 
5 152 0.1520 0.8460 
6 154 0.1540 1.0000 
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TOTAL 1000   
 
The column under proportion gives the empirical frequency distribution, with the corresponding cumulative 
frequency distribution being shown under F(x). 
 
 It is necessary to note that, in mathematical statistics, F(x) represents the cumulative probability 
distribution function, F(xo) = Pr{x <  xo}.The table above provides an example. We will use the description 

F̂ {f1,f2,f3, ... ,fk ... ,fN} for a finite number of events as a handy way to represent an empirical probability 
distribution in discussing bootstrapping. The "hat",^, over a symbol means that the quantity is an estimate of 
the true, but unknown, value, F. The cumulative, F(xo) = Pr{x <  xo}, will mainly be used here in 
simulations. It is important to remember that the sum of the frequencies in F{f1,f2,f3, ... ,fk ... ,fN} is always 

unity, described as Pr{xεS} = Σ fk = 1, where "ε" means "contained in". 
 
 
2.4 Sample sizes for bootstrapping 
 
  Bootstrapping is a resampling procedure, that is, we take repeated samples of the original data set, 
calculate values of some statistic s(x*) and use these to infer something about the true, but unknown), value 
of some parameter. In the example used thus far, the statistic was the standard error of the mean. How many 
bootstrap replications are needed? Efron and Tibishirani (1993: Eq.(6.9)) give a formula for examining the 
effect of varying sample size, but also indicate that, in their experience, B = 200 is usually adequate for 
estimating the standard error, while B = 50 may provide useful information. In the problems I have dealt 
with thus far by using bootstrapping, I tend to use B = 100 for exploring data and debugging programs, and 
B = 1,000 or 2,000 for the published result. With desktop computing so cheap, one might as well resort to 
"overkill" unless the statistic being bootstrapped is very complicated and requires a lot of computing time. 
However, this choice of B > 1,000 is also largely driven by the fact that larger samples are needed to 
compute confidence limits on a mean by bootstrapping, as we'll see in the next section. When making 
calculations using EXCEL one can only get about 250 bootstraps in the horizontal plane, so it is necessary 
to use VLOOKUP and set up the table in the vertical plane, whereupon it is possible to get 2,000 bootstraps 
for confidence limits. If more bootstraps are needed, one can copy off data to another sheet and recalculate, 
copy off those results, and recalculate again. Large samples can thus be obtained. However, as noted above, 
2,000 is usually adequate for confidence limits. 
 
 
2.5 Percentile confidence limits 
 
  Calculating confidence limits by bootstrapping can be extremely simple, if the percentile method 
is used. Follow the same process demonstrated in Fig. 2.1, generating at least 1,000 bootstraps (I tend to use 
2,000 if computing doesn't take too long), store the data in a file, arrange it in numerical order, and count in 
αB/2 observations from both ends, where α is the chosen "significance level". These are the percentile 
confidence limits. Although there is nothing in the underlying theory that dictates a choice, most biologists 
tend to use α = 0.05, for 95% confidence limits.  
 
 To accomplish this in EXCEL, use VLOOKUP and put the data in the first 2 columns, the same 
number of  random numbers in the third row as there are data points, and the corresponding lookup values 
in the fourth row. Calculate the function being bootstrapped in subsequent rows. You can then order the 
data and count in from both ends for confidence limits. In this case, the function being bootstrapped is 
simply the mean. Confidence limits are obtained by ordering this column (use SORT in the DATA menu of 
EXCEL) and counting in from the ends of the ordered data. To use α = 0.05 on 1,000 bootstraps, one would 
count in 25 observations from each end. In this example, the approximate 95% confidence limits were 55.4 
to 169 around the mean of 106.1 of the original data, based on 1,000 bootstraps. Using a BASIC program to 
do the bootstrapping is faster and requires less effort once the programming is done. Results of 2,000 
bootstraps from a BASIC program (Fig. 2.2) gave confidence limits of about 55-164. 
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 As noted previously, EXCEL will accomodate at least 2,000 bootstraps in the vertical 
arrangement. However, if an older (and thus slower) computer is used, it may be best to do only 200 
bootstraps at a time. That is, set up the operation as shown on the attached sheet, run 200 bootstraps, and 
copy the results to a second worksheet. Do this 5 times (or 10 if you want 2,000 bootstraps) and then order 
the data on the second worksheet to locate the confidence limits. 
 
 Students should review normal theory confidence limits in the statistics text of their choice at this 
point. Under normal theory, we would calculate a standard error of the mean of the original data of Fig. 2.1 
(mean = 106.1), getting s = 95.33, and S.E. = 95.33/(101/2) = 30.14, and calculate 95% confidence limits of 
+ 1.96 SE. I tend to use 2 rather than 1.96 for convenience, and a little extra margin. Using 2 S.E. gives 
approximate 95% limits of 46 to 166. Survival data generally follow a highly skewed distribution, and the 
sample variance tends to vary appreciably. In this case, the limits are so wide that the data don't give us a 
very good notion of average survival time.  
 
 Statistics books recommend transforming skewed data in order to approximate normality. One then 
produces normal-theory confidence limits as above, and transforms back to the original scale. It can, 
however, be a considerable chore to find a normalizing transformation suitable for the data at hand. Further, 
the small sample of Example 2.1 simply does not supply enough information to evaluate possible 
transformations. It is thus reassuring that Efron and Tibishirani (1993: Chap. 13) indicate that the percentile 
method automatically supplies limits that would be obtained under normal theory if we knew the proper 
transformation to normalize the data.  
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Fig. 2.2 Frequency plot of 2,000 bootstraps of the original data of Fig. 2.1, showing mean of the original 
data (heavy central vertical line), and 95% confidence limits (lighter lines to right and left) from the 
bootstrap percentile method for calculating confidence limits. These limits are at about 55 and 164 for the 
data shown 
 
2.6 Regression models and parametric bootstrapping 
 
 Regression models provide extremely valuable tools in ecological studies. Many investigators use  
regressions without giving much thought to the matter, and may thus report some erroneous results without 
realizing that this is possible. Regression models are classified as linear and nonlinear. Linear models are 
most commonly used, with the main example being y = α + βx, where α denotes the "intercept" and β the 
"slope". Ecologists also use multiple regression models with two or more x-values, e.g., y = α + β1x1 + 

β2x2, and may also use multiple regression models like y = α + β1x1 + β2x2
2. These are both linear 
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models, being "linear in the coefficients", but a version like y = α + β1x1 + β2x2
γ is nonlinear.  A 

frequently encountered nonlinear model is y =αe-βx. This model can, however, be transformed into a linear 
model by taking logarithms (usually to base e) giving logey = logα - βx. The model y = α + β1x1 + β2x2

γ is 
said to be intrinsically nonlinear, inasmuch as a simple transformation will not convert it to a linear version 
(unless, of course, we know or assume we know γ). Dealing with intrinsically nonlinear models can be 
difficult, and they are most often fitted with nonlinear least-squares. Programs are available for fitting by 
nonlinear least-squares. 
 
 Regression models may be bootstrapped in exactly the same way as shown in Fig. 2.1, except that 
now the original data will consist of x,y pairs, and the statistic computed from bootstrap replications 
consists of paired estimates of α and β, rather than the mean as used in the example of Fig. 2.1. How these 
sets of paired estimates are treated depends on the purpose of the study. Often the main interest is in 
estimates of β, but we may also want to set confidence limits on an estimate of some value of x computed 
from the estimates of α and β. Texts on regression analysis are available; one of the more widely used is 
that of Draper and Smith (1998), and most basic statistics texts give a good deal of attention to regression 
models. To set confidence limits on some regression estimate by bootstrapping, one simply needs to follow 
the procedure presented above, with the "statistic" being the estimate of interest in the study at hand.  
 
The chief problem for ecologists in this approach is the usual one -- small sample sizes. With smallish 
samples, bootstrapping pairs may give some strange and variable results. We will thus need to consider 
parametric bootstrapping. The procedure again is simple. One fits a regression model to the original data, 
calculates residuals about the fitted line, and bootstraps the residuals. Consider the result of fitting a simple 
linear regression to n original pairs of x,y observations. The outcome is a fitted regression line, denoted as  
yi
^   = a +bxi, where a and b represent the estimates of α and β, and there are n pairs of original data. The 
residuals about regression are calculated as: 
                                                       ei = ŷ i - yi           (i = 1,2,3, ...., n)                   (2.2) 

where  ŷ i is calculated from the fitted line, yi
^   = a +bxi. We now bootstrap the residuals, taking repeated 

random samples with replacement of n observations from the residuals, add these residuals to the fitted 
regression line to get a new set of n values of yi. Combined with the original set of x-values (unchanged 
throughout) these new pairs constitute the bootstrap samples of Fig. 2.1. We then calculate the bootstrap 
replication by fitting a new regression line to the bootstrap sample. Of course, if we are only interested in, 
say, the slopes, b, then only that calculation needs to be carried out. The only tricky part is to remember that 
the new values of yi are computed from the ith value of xi, so that the same residual (ei) may be associated 
with several values of xi, depending on the random selection. That is, the new set of yi values is computed 
from: 
                                            yi = a + bxi + ei     (i = 1,2,3, ..., n)                             (2.3) 
 
with a and b coming from the regression line fitted to the original data and the values of ei come from a 
random sample with replacement of the n data points generated by eq.(2.2). Students should repeat the 
calculations shown below to fix the scheme in mind. 
 

Example 2.2 Parametric regression bootstrapping. 
 
For simplicity, we will suppose that we want 95% confidence limits on the slope, β, of a 
regression line. The slope estimate is calculated as: 
 

                               b = β̂  = 
Σ(xi - x

_
)(yi - y

_
)

Σ(xi - x
_

)2
      (i = 1,2,3, ..., n)               (2.4)  

 

and the intercept estimate is a = â  = y
_
  - bx

_
 . 
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STEP 1 Compute a regression line from the original data: 

b = = 
Σ(xi - x

_
)(yi - y

_
)

Σ(xi - x
_

)2
   = 

325.181239
630.5   = 0.5157       

 a =  y
_

  - bx
_

  = 16.725 - (0.5157)(20.5) = 6.1525 
ŷ  = 6.1525 + 0.5157x     Regression line from original data 
STEP 2 Calculate the deviations  ei = ŷ i - yi  
              Original data 
      i         xi           yi              ŷ i      ei = ŷ i - yi  

1 10 12.672 11.31 1.362 
2 12 8.9391 12.3415 -3.402 
3 14 13.934 13.373 0.561 
4 15 16.377 13.8888 2.488 
5 17 13.252 14.9203 -1.668 
6 21 19.121 16.9833 2.137 
7 23 17.821 18.0148 -0.194 
8 28 18.879 20.5936 -1.715 
9 30 21.047 21.6251 -0.578 

10 35 25.213 24.2038 1.009 
STEP 3 Draw random samples of 10 with replacement from the ei: 
     i             ei               Random samples with replacement from the ei 

1 1.362 -0.1936 0.5607 -1.6681 -0.5776 -3.4024 1.0091 
2 -3.402 -0.5776 2.4879 -0.1936 -0.1936 1.3618 -3.4024 
3 0.561 -1.7150 -1.7150 1.0091 -3.4024 1.0091 0.5607 
4 2.488 0.5607 1.3618 2.4879 -0.1936 -3.4024 1.3618 
5 -1.668 1.3618 -0.1936 -1.7150 -0.1936 1.0091 2.1373 
6 2.137 -1.6681 -1.6681 1.3618 -0.5776 1.0091 1.3618 
7 -0.194 2.1373 -0.1936 0.5607 -1.6681 -3.4024 -3.4024 
8 -1.715 -0.1936 1.0091 2.4879 -1.7150 -3.4024 -3.4024 
9 -0.578 -1.7150 -0.5776 1.3618 1.3618 2.4879 0.5607 

10 1.009 1.3618 -1.6681 1.3618 1.0091 -1.7150 2.1373 
STEP 4 Add the random samples of ei to the predicted regression line to obtain new sets of yi: 

       i           xi              ŷ i      ŷ i  + random samples with replacement from the ei 
1 10 11.31 11.1164 11.8708 9.6419 10.7325 7.9076 12.3192 
2 12 12.342 11.7640 14.8294 12.1479 12.1479 13.7033 8.9391 
3 14 13.373 11.6580 11.6580 14.3822 9.9706 14.3822 13.9338 
4 15 13.889 14.4495 15.2506 16.3766 13.6952 10.4864 15.2506 
5 17 14.92 16.2821 14.7267 13.2053 14.7267 15.9294 17.0576 
6 21 16.983 15.3152 15.3152 18.3451 16.4057 17.9924 18.3451 
7 23 18.015 20.1521 17.8212 18.5755 16.3467 14.6124 14.6124 
8 28 20.594 20.3999 21.6027 23.0814 18.8786 17.1911 17.1911 
9 30 21.625 19.9101 21.0475 22.9868 22.9868 24.1129 22.1858 

10 35 24.204 25.5656 22.5357 25.5656 25.2130 22.4888 26.3411 
 
STEP 5 Calculate regression slopes for each of these new sets of "data", using the same 
set of xi. This gives the values, 0.542,0.443,0.608,0.582,0.513, and 0.520. In practice, of 
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course, one would calculate a large set of such estimates, 1,000 or more. The frequency 
distribution of these values then provides the basis for confidence limits, as calculated 
previously for means. 

 
A generalized summary of the steps in parametric bootstrapping is as follows: 
 
1) Compute estimates of the parameters of the model from the original data. In this case, the regression 
coefficients, a and b. 
2) Calculate deviations, ei = ŷ i - yi,  between the observed data (yi) and the fitted model (ŷ i). 
3) Draw B (at least 1,000 for confidence limits) random samples of n with replacement from this set of 
deviations. 
4) Add these deviations to the  ŷ i to create the bootstrap replications. 
5) Compute parameter estimates from each of these B sets of data. 
6) Arrange these B estimates in a frequency distribution and count in αB/2 observations from each end to 
obtain (1-α)% confidence limits. 
 
 Calculations can be carried out in EXCEL by using the same arrangement as used in Sec. 2.5 to get 
confidence limits on a mean. The data to be bootstrapped are now the deviations from regression, and the 
bootstrap operation proceeds in exactly the same manner. However, another stage has to be incorporated in 
which the bootstrapped deviations are added to the predicted regression. These new regression values are 
then used to estimate the parameters of the regression equation. In the present example, only the slope is 
calculated. This can be done by using the SLOPE function, which returns the slope of two arrays. The x-
values are the original values, while the y-values are those in the body of the table. The 1,000 slope values 
were then ordered, and approximate 95% confidence limits obtained by counting up and down 25 entries. 
The limits obtained from the EXCEL calculation (B = 1,000) were 0.375 and 0.648. A calculation using a 
program written in BASIC were 0.377 to 0.652. A plot of the results of 2,000 bootstraps computed by the 
BASIC program appears in Fig.2.3. 
 
 Students should review normal theory regression calculations in Chap. 1.0 or in a statistics 
textbook. The variance about regression is calculated as follows: 

                                    s2 = 
Σ(yi - yi

^ )2
n - 2    =   

An estimate of the variance of the regression coefficient is given by: 

  
 
 
and this variance has the t-distribution with n-2 degrees of freedom under normal theory. For 95% 
confidence limits in the present example, we look up the 0.025 (α/2) value of t with 8 degrees of freedom, 
finding it to be 2.306, and calculate: 
 
Upper 95% confidence limit = b + t(sb) = 0.516 + 2.306(3.952/630.5)1/2 = 0.698,  
 
and the analogous lower limit is 0.333. Note that these limits are somewhat  wider than the 95% limits 
obtained by bootstrapping. A small sample of quite variable data is involved. It is always important to look 
at a plot of the data. 
 

Σ(yi −(a + bxi))
2

n − 2
                                  (2.5)

sb
2 =

s2

Σ(xi −x )2                                         (2.6)
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Fig. 2.3. Frequency plot of 2,000 bootstraps created by a BASIC program. The heavy central line shows the 
position of the regression slope calculated from the original data, while the lighter solid lines show the 95% 
bootstrap confidence limits. Broken lines show normal 95% confidence limits calculated from the observed 
data.  
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Fig. 2.4. Regression plot of the original data used in Example 2.2. 
 
 Most "canned" statistical programs also give the correlation coefficient, which is defined as: 

                                     r =  = 
Σ(xi - x

_
)(yi - y

_
)

[Σ(xi - x
_

)2Σ(yi - y
_

)2]1/2
                    (2.7)  

 
In the present example, r = 0.917, and is reported by the graphics program that produced Fig. 2.3 as r2 = 
0.841. A very serious problem for ecologists is that much of the data they encounter is not normally 
distributed, and routine use of statistical packages without examining the assumptions or studying the data 
can lead to important errors in interpreting the data. Bootstrapping provides a way to examine the data 
without the normal theory assumptions, and thus helps to avoid blunders. The above set of regression data 
does conform to the normal theory model, so it is worthwhile to look at another example from a different 
source for contrast. The basis for claiming conformity to normal theory is that the data were constructed 
using normally distributed errors. 
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Example 2.3. A regression estimate of survival rate. As a further example, we consider a 
common use of regression methods. Many investigators are interested in estimating 
survival rates. Suppose we observe 100 marked animals over 10 years, and tally the 
number of survivors at the end of each year. If the probability of survival holds constant 
from year to year and animal to animal, then we can consider that the expected number 
surviving x years is just E(n) = Npx, where N is the number originally marked and p is the 
probability of surviving a year. We might then use a model, yi = Nsx, where yi is the 
number observed at the end of the xth year and s is the survival rate. Taking logarithms 
gives: 
 
                                          log yi = log N +x log s                                            (2.8) 
 
and an easy approach is just to fit a simple linear regression equation,  
y = a + bx, where b = log s, and use eb to estimate s. An example of such a data set 
follows: 

   Year Survivors Log survivors 
   1 89 4.48864 
   2 83 4.41884 
   3 74 4.30407 
   4 68 4.21951 
   5 65 4.17439 
   6 60 4.09435 
   7 55 4.00733 
   8 51 3.93183 
   9 48 3.87120 
   10 38 3.63759 

 
Plotting log survivors against year gives the following graph: 
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Fig. 2.5. Logarithms of the number of animals surviving at the end of each year regressed 
against time in years. 
 
 Using normal linear regression theory as in the previous example gives a slope of 
-0.08528 with 95% confidence limits of -0.0742 to -0.0963, and translating these back to a 
survival rate and confidence limits gives  
e-0.08528 = 0.918 with approximate 95% confidence limits of 0.908 to 0.928.  A run of 
2,000 bootstraps gave the following frequency distribution, and 95% confidence limits of -
0.09381 and -0.07717, which translate to an annual survival range of 0.910 to 0.926.  The 
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bootstrapping was done with a BASIC program, but could have been conducted in 
EXCEL, just as in the previous example. 
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Fig. 2.6. Results of 2,000 parametric regression bootstraps for survival data. Bold central 
line shows the regression survival estimate (0.928) and solid lines the bootstrap 95% 
confidence limits. Broken lines are the 95% confidence limits obtained from normal 
regression theory. 
 
 The bootstrap limits appear to be a little "tighter" than the normal theory limits. 
How can we determine which method is right? One approach is to use "Monte Carlo" 
methods, which in this case amount to running many stochastic simulations of survival 
data, and determing which of the two choices for calculating confidence limits gives the 
best "coverage", i.e., do the calculated confidence limits include the true survival rate in 
95% of simulated cases?  
 
Example 2.4. The correlation coefficient. The correlation coefficient (r) calculated as in 
eq.(2.7) is widely used, along with the assumption that a transformation to: 

    z = 0.5 loge
1+r
1-r                                                    (2.9)  

is normally distributed with expected value  

                                                       µ = 0.5 loge 
1+ρ
1-ρ  and variance 

1
n-3 .   

Approximate 95% confidence limits are obtained from z + 2{ 1
n-3 }1/2. Thus in Example 

2.2, we had r = 0.917 which is transformed to: 

 z = 0.5 loge{1.917
.083  } + 2[17 ]1/2 or z1 = 2.326 and z2 = 0.814. These confidence limits for 

the transformed variable are usually transformed back by iteritive solutions of eq. (2.9), 
i.e., we find r1 and r2 from:  

                               2.326 = 0.5 loge 1+r
1-r    and 0.814 = 0.5 loge 1+r

1-r   , 
which gives 95% confidence limits on r as 0.67 to 0.98. If we resort to bootstrapping, then 
the 2000 bootstraps used to produce Fig. 2.3 (values of r were computed at the same 
time that values of b were calculated) gave approximate 95% confidence limits of 0.86 to 
0.98, essentially the same upper limit, but an appreciably higher lower limit. A graph of the 
results follows: 
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Fig. 2.7. Results of 2,000 bootstraps for the correlation coefficient of the regression data 
of Example 2.2. Heavy line shows correlation coefficient calculated from the original data, 
while lighter lines are approximate 95% confidence limits. 
 
 Clearly, the bootstrapped values of the correlation coefficient are quite skewed, 
but this is the situation with respect to normal regression theory also; the correlation of 
two jointly normal distributions has a skewed distribution (unless ρ = 0).  
 

2.10 EXERCISES 
 
Where bootstraps of 1,000 or more are involved, students should do the work in individual spreadsheets 
unless their computer has a large memory. Otherwise you  are likely to get an “out of memory” notice when 
you try to copy from one workbook to another, etc. Make two worksheets for each such exercise, one 
summarizing results and the second containing the calculations. The practical approach is to save only the 
first 20 lines or so, when you have finished an exercise. You then can likely consolidate all results in one 
workbook to hand in. It is important to have your exercises in a workbook, as that makes it possible to try to 
find out where you went wrong if necessary. IF YOU WANT TO LEARN TO BOOTSTRAP IN 
EXCEL, IT IS ESSENTIAL TO DO THE EXERCISES! The exercises are more or less interlocking so 
you will need to do most of them. If you do, you should have a pretty fair notion of how to bootstrap. The 
bootstrapping technique will be used for examples and exercises in the rest of the book, so you need to 
know how to do it. If you know a programming language, you can certainly do the exercises that way, and 
provide summary tables and graphs to turn in. If you have not used the “graph wizard” function before, you 
may have trouble getting appropriate x-values on the graph. The trick is to first make an “xy (scatterplot)” 
graph, finish it and then open the CHART menu and select the bar chart. This changes the xy plot to a bar 
chart with the appropriate x-axis labels.  
 
2.10.1 Set up an EXCEL worksheet to carry out bootstrap calculations on the data of Fig. 2.1, following the 
approach outlined in Table 2.1. Use 200 bootstraps. Set up the worksheet to use manual calculation as 
indicated in Example 2.1 and make 30 runs, recording the mean of the 200 bootstrap means in a separate 
column (you need to either type in the observed values as you repeatedly run the bootstrapping or use the 
“PASTE SPECIAL” command). Also calculate the variance of each group of 10 bootstrap samples, listing 
it at the bottom of the set along with the sum and mean of each set of 10. Record your results on a 
spreadsheet and save it for the next exercise. Calculate s.e.(boot) of eq. (2.1). 
 
The explanation of using HLOOKUP in EXCEL manuals may not be very helpful. The sample below might 
help. This is part of a worksheet set up as indicated above and the HLOOKUP string displayed in the header 
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of the worksheet is as follows, referring to the bootstrap sample in the box in the body of the table. It 
commands EXCEL to lookup the random number in cell D3 (which is 3) in the table of the first two rows 
(designated in the command as the array $D1:$M$2 and shown in boldface type below) and find the 
corresponding item in the second row of the array table (which is 203). 
 
 
 
 
 
 
 
=HLOOKUP(D3,$D$1:$M$2,2,FALSE) 
A                     B                C           D       E        E      G    H       I      J        K     L     M 
EXERCISE       1 2 3 4 5 6 7 8 9 10    
2.10.1 ORIGINAL DATA 13 106 203 131 160 8 67 61 11 301    

  1 3 9 8 3 7 4 9 1 1 5 10 5 5 
  2 2 4 5 2 6 3 9 1 8 7 6 6 9 
  3 7 4 1 6 3 2 3 1 3 6 6 1 1 
  4 5 8 3 5 9 8 10 7 4 7 10 10 8 
 RANDOM NOS. 5 5 2 3 10 10 4 3 8 9 4 5 9 5 
  6 8 3 9 4 5 10 4 3 10 6 9 3 8 
  7 8 2 8 8 7 9 1 10 6 10 9 8 3 
  8 2 5 1 10 5 5 9 2 1 4 7 1 3 
  9 7 8 10 3 6 5 2 3 5 10 4 8 5 
  10 6 9 2 1 5 6 6 7 6 4 1 8 8 
                
  1 203 11 61 203 67 131 11 13 13 160 301 160 160 
  2 106 131 160 106 8 203 11 13 61 67 8 8 11 
  3 67 131 13 8 203 106 203 13 203 8 8 13 13 
 BOOTSTRAP 4 160 61 203 160 11 61 301 67 131 67 301 301 61 
 SAMPLES 5 160 106 203 301 301 131 203 61 11 131 160 11 160 
  6 61 203 11 131 160 301 131 203 301 8 11 203 61 
  7 61 106 61 61 67 11 13 301 8 301 11 61 203 
  8 106 160 13 301 160 160 11 106 13 131 67 13 203 
  9 67 61 301 203 8 160 106 203 160 301 131 61 160 
  10 8 11 106 13 160 8 8 67 8 131 13 61 61 
 BOOTSTRAP  1 2 3 4 5 6 7 8 9 10 11 12 13 
  SUM 999 981 1132 1487 1145 1272 998 1047 909 1305 1011 892 1093 
  MEA

N 
99.9 98.1 113 149 115 127 99.8 105 90.9 131 101 89.2 109 

 
 
The second item in the column of bootstrap samples (just below the item in a box) has the following 
command:     
=HLOOKUP(D4,$D$1:$M$2,2,FALSE) 
which instructs EXCEL to find the random number in the position D4 (remember that the first row of the 
table above, with letters A, B, C etc. is NOT part of a worksheet but merely gives locations in that 
worksheet). This random number is 2 and thus EXCEL picks out the second item in the array which is 106. 
The third command is as follows, and EXCEL uses the random number in D5 to pick out the 7th item in the 
array which is 67. 
=HLOOKUP(D5,$D$1:$M$2,2,FALSE) 
You may need to exert considerable patience and some trial and error efforts to get EXCEL to do the job if 
you have not worked much with it before, but once you have the hang of it, things should go along o.k. 
 
2.10.2  Copy the original data and the run of 30 means obtained above to another spreadsheet, and compute 
means and variances for the two sets of data (the original data, 10 observations and the 30 means) using the 
built-in functions, i.e., AVERAGE() and VAR().  Make  histograms of these means and variances from a 
run of the spreadsheet made in Exercise 2.10.1 (that is, make histograms of the 200 bootstrap means and 
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variances listed at the bottom of that sheet). Show how  seboot of eq.(2.1) compares with the variance of the 
original 10 observations and the variance of the 30 means. Is there any advantage to using bootstrapping in 
this example? 
 
2.10.3  Repeat the die-tossing example of Section 2.3. Calculate the expected values. Explain the difference 
between a p.d.f. and an empirical probability distribution. Which is which in this example? What is the 
difference between a cumulative distribution function and a distribution function? State the distribution 
function for this example (as an equation). 
 
 
2.10.4  Carry out the parametric bootstrap calculations for Example 2.3 using an EXCEL spreadsheet (the 
approach is given in Example 2.2). Use 2,000 bootstraps, and use VLOOKUP(). It is easier to use for larger 
numbers of bootstraps. Calculate confidence limits and prepare a graph of the frequency distribution to 
compare with Fig. 2.7. Use HISTOGRAM to obtain the frequency distribution. Be sure to “freeze” the 
appropriate cell references so that the x-values remain the same in calculating the bootstraps. You can 
obtain confidence limits simply by ordering the slopes using the SORT function. 
 
 
2.10.5   Bootstrap the data of  Example 2.2, using 1,000 bootstraps and computing the correlation 
coefficients rather than the slopes. You can start by copying the bootstrap calculation of Exercise 2.10.4 to 
a new spreadsheet and inserting the x and y values in this sheet. One can often convert a bootstrap operation 
to a new data set this way, so it is wise to keep examples on hand. Make a frequency distribution of z 
(eq.(2.9). Does this look like a normal distribution as assumed in calculating confidence limits under the 
usual theory? 
 
2.10.6  How would you obtain bootstrap confidence limits on α in Example 2.3? Calculate the 95% 
bootstrap confidence limits using 1000 bootstraps. Run the  EXCEL regression on the data and compare the 
confidence limits on α with those you obtained from bootstrapping.  
 
2.10. 7  The regression bootstrap of Example 2.3 used parametric bootstrapping in which deviations from a 
model fitted to the original data are bootstrapped. The first example of bootstrapping given (Example 2.1) 
might thus be called "nonparametric" bootstrapping. Try this approach on the data of Example 2.3. 
Remember that you need to bootstrap pairs of observations. This may require setting up the slope 
calculations in blocks of 10, but careful use of the $function will facilitate copying down in blocks of 10 
without too much trouble. Use B = 500, and make a frequency plot of the calculated slopes and compare it 
with the frequency diagram of Exercise 2.10.4. . This should illustrate why parametric bootstrapping is 
preferred for small samples in regression studies.  
 
2.10.8  Referring to the data of Example 2.3, calculate bootstrap 95% confidence limits on the variance 
about regression as shown in eq. (2.5).  Compare your results with the value you get from a regression 
calculation on the original data of Example 2.3. Report your results on  a worksheet (along the lines of those 
used thus far in the exercises above). You can use the results of Exercise 2.10.6 as a starting point adding 
on columns containing the sum-of-squares calculation and adding these up to get a variance estimate. 
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3.0 FURTHER TOPICS IN BOOTSTRAPPING 
 
3.1 Introduction 
 
 There is much more to bootstrapping than can be covered here. The book by 
Efron and Tibishirani (1993) provides a detailed reference. Some useful further features 
are given here, and additional examples appear in subsequent chapters. 

3.2 Estimates of bias 

  Bootstrapping provides a handy way to check for bias in an estimate. Suppose we 
calculate some statistic, such as the variance, from a set of data. We would like that 
statistic to provide an unbiased estimate of the true parameter, σ2. If we represent the 
statistic that we intend to calculate from the data as θ̂   = s(x), where x is the vector of 
observed data, x1, x2, ..., xn and s(x) is some function of that data, then we would like to 
have the expected value of that function to be E(θ̂ ) = E[s(x)] = θ = σ2. When the theoretical 
distribution of the estimator is known or assumed to be known, then an unbiased 
estimator can often by found by the methods of mathematical statistics, i.e., we can find 
the expected value of a trial statistic directly. Thus we know that the sample variance: 

         s2 =  
Σ(xi- x

_
)2

n-1     has expected value E(s2) = σ2 for the normal distribution of eq. (1.3). In 

this case, θ̂   = s(x) = s2 (the notation can be a little confusing, as we use the notation s(x) to 
represent any statistic calculated from a data set, x, whereas s is also commonly used to 
represent a specific quantity, the sample estimate of the standard deviation). 
 
 Very often we are not sure what theoretical distribution may be appropriate for  
an observed sample, and it is frequently true that there may not be any such distribution. 
Statisticians thus spend a lot of time trying to choose the "right" distribution or 
manipulating (transforming) the data to approximate some known distribution. 
Bootstrapping can avoid a lot of that trouble and uncertainty. In this section we consider 
how bootstrapping can be used to check for bias in an estimator. We define bias as: 
 
                                                              biasF = EF[s(x)] - t(F)                                                               (3.1) 
 
where the subscript F serves as a reminder that the bias and expectation are taken with 
respect to some probability distribution function F (quite likely an unknown distribution), 
and θ = t(F) denotes our statistic as calculated from the true probability distribution. The 
bootstrap estimate of bias is calculated as: 
 

                                                             biasB^   = θ̂ *(.) - t(F̂ )                                                                 (3.2) 

where  θ̂ *(.) is the mean of our estimator calculated from a large number of bootstrap 
samples, and t(F̂ ) is the same estimator calculated from the original data.    
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Example 3.1. A numerical example from a normal distribution may help fix 
ideas at this point. The following 10 "observations" are from a normal 
distribution with mean zero: 

 
1.6718,-3.061,0.9338,2.8766,-1.248,2.6206,0.3212,-1.121,0.0475,1.7129 

 
Consider estimating the variance of these observations from:  

                                                           s2 =  
2( )ix x

n
−∑                                                         (3.3) 

This is the equation for variance often used by engineers, and produced 
by some of the earlier pocket calculators. If we apply the formula to 

the 10 original observations it gives t(F̂ ) = 3.177. Now calculate the average 

of 2,000 bootstraps using this estimator. This gives  θ̂ *(.) = 2.799, and we 
get: 

                              biasB^   = θ̂ *(.) - t(F̂ )  = 2.799 - 3.177 = -0.378, 
 

a negative bias, suggesting that we have an underestimate. From theory, 
we know that an unbiased estimator comes from    

                           s2 = 
2( )

1
ix x
n
−
−∑  

which gives us s2 = 3.530 from the above data set. Our bias estimate is 
negative, meaning that we underestimate the true quantity. We could thus 
add this quantity, 0.378, to our underestimate from the original data,  
t(F̂ ) = 3.177, getting an improved estimate (3.555). It is perhaps 
better to define a bias-corrected estimator :  

                       θ~  =  θ̂  + [θ̂  - θ̂ *(.)] = 2 θ̂  - θ̂ *(.)  = 2(3.177) - 2.799 = 3.555                    (3.4) 
 

which gives the same result. This is close to the result (3.530) one 

would get by using the proper equation s2 = 
2( )

1
ix x
n
−
−∑  in the first 

place. The point here is that we often don't know what the proper 
equation is, and the bootstrap provides a way to check for bias in 
whatever equation we do have available to estimate some quantity. Eq. 
(3.4) came very close to the correct answer in this example, but in 
practice, if we have indications of an important bias, simply correcting 
by eq.(3.4) may not necessarily improve the situation. The estimator may 
be subject to a great deal of variability, so that the adjustment may 
not help. The essential conclusion here, is that if the bootstrap 
indicates small bias and small standard error, then we can be very 
comfortable indeed with our estimator, even if we don't have a 
theoretical model. Note that this result came out very close to the 
expected answer just by chance; repeating it gives a smaller bias, as 
will likely be evident in Exercise 3.11.1. 
 
3.3 An improved bias estimate 
 
  Efron and Tibishirani (1993:Ch. 10) recommend an improved bias estimate that 
converges on the asymptotic estimate with a smaller bootstrap sample, B. They define a 
resampling vector for each bootstrap sample that contains the proportions of that 
bootstrap sample calculated from the frequencies with which the individual entries are 
observed. Thus in Fig. 2.1, the original data set was: 
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1 2 3 4 5 6 7 8 9 10 
13 106 203 131 160 8 67 61 11 301 
 
and the resampling vector for the first bootstrap sample of Fig. 2.1 would be: 
 
0 0.4 0.2 0 0.2 0.1 0 0 0 0.1 
 
that is, 13 doesn't appear at all, but 106 appears 4 times, and so on. They then average 
these B resampling vectors, obtaining a final vector with the  proportions averaged over 

all B vectors, denoted as P
_

 * and use this instead of t(F̂ ) in eq.(3.2), obtaining, 

                                                                 
biasB
_____

 
 
=  θ̂ *(.) - T( P

_
 *)                                                          (3.5) 

 
Example 3.2 We can illustrate the improved bias correction by using the 

original data of Example 3.1, but using B = 500. The proportions of P
_

 * 

will add to unity and T( P
_

 *) is then calculated as a weighted variance, 

using the proportions of  P
_

 * as weights(wi). The weighted mean is  

 x
_

 w = Σwixi, and the variance is calculated as  s2 =  
Σwi(xi- xw

_
)2

n  . A run with B = 

500 gave
 
biasB
_____

 
 
=  θ̂ *(.) - T( P

_
 *)  = 2.910 - 3.223 = -0.313 and bias-corrected 

estimate of s2 is then 3.536, which is very close to the result (3.530) 
obtained by dividing by n-1, as should be done in practice.  I would be 
inclined to use this approach on complicated problems, where 
bootstrapping uses a fair bit of computer time. Otherwise, one can 
simply use a sizable number (say 2,000) of bootstraps as in Example 3.1, 
inasmuch as it is likely that percentile confidence limits will be also 
be calculated in a practical example--here we know the “right” answer 
(i.e., divide by n-1) from theory. 
                                       
3.4 Cross-validation 
 
 Models applied to ecological data may serve various purposes, but the more 
important uses may be to see how well we understand the data, and to make predictions. 
One of the earliest approaches to evaluating predictions from a model is very simple. One 
develops and fits the model on half of the available data, and then tests its predictions on 
the other half. Using all of the data for development and testing invariably results in 
underestimating the prediction errors. With the increased computing power now 
available, models can be fit to various subsets of the data and tested on the remainder. 
The logical outcome appears to be fitting the model to all but one of the observations, 
making a prediction for the remaining observation and repeating the process for all n 
observations, getting n predictions and deviations from predicted value. The variance is 
then calculated as: 
 

                                                                     CVE = 
1
n  Σ (yi - ŷ 

-i
 )2                                                         (3.6) 
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where  ŷ 
-i 

denotes a predicted value based on all of the observations except the ith value, 

and the summation runs from 1 to n. One thus deletes one observation, fits the model, and 
makes a prediction for the missing value, doing this n times to calculate the cross-
validation error, CVE. 
 
Example 3.3 Cross-validation error. To demonstrate the cross-validation 
idea, we use a larger set of regression data (n = 30). The data are as 
follows: 

 
No. x y No. x y 

1 14.48 18.30 16 10.00 17.60 

2 22.49 19.98 17 20.06 19.33 

3 19.71 18.51 18 9.70 17.89 

4 29.89 21.00 19 26.86 20.79 

5 30.01 21.00 20 34.23 20.36 

6 21.61 19.77 21 27.53 20.65 

7 16.71 18.77 22 19.88 18.82 

8 26.78 20.26 23 21.99 19.26 

9 17.85 18.70 24 21.09 20.02 

10 33.04 20.25 25 28.68 20.38 

11 18.92 18.66 26 21.91 19.61 

12 20.23 18.45 27 28.50 20.45 

13 28.24 20.60 28 20.01 18.93 

14 29.77 21.10 29 17.62 19.09 

15 22.92 19.24 30 22.90 19.87 

 
 

 Applying cross-validation is simple in this case, with the only 
difficulty being one of arranging to drop each observation in turn. We 
then can compute CVE from eq.(3.6), which turns out to be 0.201. Note 
that the values of  ŷ 

-i 
in eq. (3.6) are computed from individual 

regressions dropping the ith point, and yi is the y-value of the ith 
observation. For comparison the value of the variance about regression 
(eq.(2.5)) is 0.182. This is somewhat smaller, as might be expected 
because the deviations from regression are from a normal distribution in 
this example, and thus the normal-theory model gives the best estimate. 
Cross-validation would be used only in the absence of suitable 
theoretical estimators for the model parameters.  
 
3.5. Bootstrapping for predictions.  According to Efron and Tibishirani (1993:Chap. 17) 
bootstrapping offers an alternative to cross-validation. They focus on estimating the 
variance (in this example, variance about regression as given by eq. (2.5)).  There are two 
stages in the bootstrapping approach. The first is to obtain bootstrap samples from the 
data set (given in Example 3.3), calculate regression lines for each bootstrap sample, and 
calculate a variance about each such regression (eq.(2.5)) using the original data set as xI 
and yi values. The second stage is to calculate the variance about regression for the 
bootstrap sample now using only the bootstrap sample (the yi* and xi

* values). Thus, two 
variances about regression are calculated from the same regression equation, using the 
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following variances (the regression coefficients are those calculated on the bootstrap data 
in both cases): 

                                   s2 =  
Σ(yi − (a + bxi))

2

n − 2
    and    s2 =  

* * 2( ( ))
2

i iy a bx
n

Σ − +
−

 

 
 Often, the variance about regression obtained from the bootstrap sample will be 
appreciably smaller than that obtained from the original data; and it is the mean 
difference of these two variances that is sought here. A few values from bootstrapping 
follow: 
 
Bootstrap no. Variance about Variance about Difference 

 regression regression 
 using orig. using bootstrap 
 data for y  
and x 

values of y 
and x 

1 0.1786 0.1905 -0.0119 
2 0.1804 0.1863 -0.0059 
3 0.1820 0.1519 0.0301 
4 0.1724 0.1514 0.0210 
5 0.1814 0.1759 0.0055 
6 0.1948 0.1301 0.0647 
7 0.1863 0.1277 0.0586 
8 0.2023 0.1449 0.0574 
9 0.1731 0.1189 0.0542 

 
 The "inflation factor" (mean difference) is added to the variance of the original data set 
to give an improved estimate. In the present example, the mean difference in the two 
variances about regression is small (0.028) so adding it to the variance about regression 
calculated from the original data (0.184) makes only a minor change. However, adding 
the correction to 0.184 gives a value (0.212) closer to that obtained in example 3.3. 
Nonetheless the best estimate is that of the original regression calculation because the 
data of Example 3.3 were generated from a bivariate normal distribution. Note that the 
bootstrap operation is a sampling procedure so that there will be small differences in the 
mean differences in repeat runs. Two further runs with B=2000 gave mean differences of 
0.027 and 0.029. 
 
 It turns out that the correction indicated above is really a correction for  bias. 
Inasmuch as the data we used in this example were normally distributed, the variance 
estimate should be unbiased, and the bootstrap analysis consequently comes up with a 
minor change, as would be expected with an unbiased estimator. The data used were 
drawn from a bivariate normal distribution, which is the basis for the normal theory 
confidence limits on a correlation coefficient, so it is worthwhile to compare (Fig. 3.2) 
the confidence limits on r based on bootstrapping x,y pairs with the normal theory limits 
in this example. The two different calculations of confidence limits are now appreciably 
closer than they were in Example 2.4. However, regression data approximating the 
bivariate normal distribution are not often encountered in practice, because one usually 
somehow selects the x-values used, rather than obtaining them at random, as the bivariate 
normal regression theory assumes. 
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Fig. 3.1. Mean differences between variances about regression calculated from 2000 
bootstraps. The differences are between variances about regression calculated from a 
regression line based on an individual bootstrap sample, with the first variance calculated 
using the original data, and the second calculated from the data of the particular bootstrap 
sample.  
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Fig. 3.2. Distribution of 2,000 bootstrap samples for correlation coefficient obtained from 
the data of Example 3.3. Upper 95% confidence limits are essentially the same, while the 
lower limit from normal theory is substantially lower than that from bootstrapping.  
 
3.6 Improved confidence intervals 
 
  Efron and Tibishirani (1993:Chap. 14) recommend an improved bootstrap 
confidence interval which they call the BCa method ("bias-corrected and accelerated"). 
These intervals require more calculations than the simple percentile bootstrap confidence 
intervals. The data from Example 3.3 will be used to illustrate. Two proportions, α1 and 
α2 are calculated, and the total number of bootstraps, B, multiplied by these values. One 
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then orders the B bootstrap values and takes the α1B and α2B values as confidence limits. 
Thus if B = 2,000 and α2 turns out to be 0.0166 as in the example here, then we take the 
bootstrap value 0.0166(2000) = 33 as the ordered value of the bootstrap replications that 
gives the lower confidence limit.  
 

Two initial values are calculated. The first is a bias-correction: 
 

                                                          ẑ o = Φ−1(#{θ̂*(b)<θ̂}
B  )                                             (3.7) 

 
here, Φ−1( ) indicates the inverse of the cumulative normal distribution, which can be 
looked up in tables and is available in various computer programs (in Microsoft Excel it 
is "NORMSINV)". The quantity in parentheses has, as numerator, the number of 
bootstrap samples that are less than the parameter estimate. In the example given below, 
we consider the correlation coefficients of Section 3.5, for which the correlation 
coefficient calculated from the original data was r = 0.9043, so we tally the number of 
bootstrap results that were less than this value and divide by B = 2,000, and look up the 
inverse cumulative normal value. In this case (Fig. 3.2) there were 942 values less than r 
= 0.9043, so we look up 942/2000 = 0.471 in the inverse normal tables, getting –0.0728  
for  ẑ o.  
 
The second value is the "acceleration", â . This is calculated by jackknifing, (Section 3.7) 
using much the same procedure as in the cross-validation example above. We delete each 
observation in the original data set in turn, and calculate the correlation coefficient from 
the remaining observations. From the 30 observations tabulated in Example 3.3, we thus 
get 30 correlation coefficients, which are here designated as θ̂(i) , where the subscript (i) 
indicates that the parameter estimate θ̂  (here, r) has been calculated from the original 
data set with each observation deleted in turn, and  θ̂(.)  is used to indicate the average of 
these 30 values. The estimate of "acceleration" is then calculated as: 
 

                                                                 â  =                                   
}).({6

)ˆ.ˆ(
2/32

)((

3
( )()

i

i

θθ
θθ

-)Σ
−Σ

           (3.8) 

 
where the summations are from 1 to n = 30 in this example. These two parameters ( ẑ o, â ) 
are then used to calculate α1 and α2, but require two more values for the calculation. 
These are designated z(α) and z(1- α), and are the values that cut off a proportion, α, from 
each tail of the unit normal distribution.. For 95% confidence limits, we look up z(α) as 
0.975 in the inverse cumulative normal table, getting 1.95996, and use 0.025 for z(1- α), 
giving -1.95996. The calculations then are: 
 

                                                                  α1 = Φ[ ẑ o + 
 ẑo +  z(α)

1 -  â( ẑo + z(α))
  ]                                        (3.9) 

 
and 
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                                                              α2 = Φ[ ẑ o + 
ˆ z o+ z(1−α)

1−ˆ a (zo+z(1−α) ) ] 

 
where values of Φ( ) are to be looked up in tables of the cumulative normal distribution 
(in Excel, these are available as NORMSDIST). As noted in the introduction to this 
section, the lower limit is the 33d ordered value of the bootstrapped correlation 
coefficients (0.825), and the upper limit is α1B = 0.964(2000) giving the 1927th ordered 
value (0.957). 
 
 An example for the data of Example 3.3 is given below. The calculations are 
time-consuming and are best done with a computer program (see Section 3.10). 
 
 The improvement in bootstrap confidence limits in this example is not large, but 
suggests that the calculations do result in better bootstrap confidence limits. Data for 
Example 3.3 came from a bivariate normal distribution in which ρ = 0.90. From normal 
theory, 95% confidence limits were 0.803 to 0.954, while the percentile bootstrap limits 
in one run with B = 2,000 were 0.830 to 0.959. The improved confidence limits were 
0.825 to 0.957, giving a lower limit closer to the normal theory result. Percentile limits 
vary a little in successive runs, giving 0.837-0.958 and 0.833-0.960 in two additional runs 
with B = 2,000. 
 
 

  Correlations CUBE TERM SQ TERM 
 1 0.8978444 2.67703E-07 4.1537E-05 
 2 0.9075823 -3.57065E-08 1.08434E-05 
 3 0.9083542 -6.71633E-08 1.6523E-05 
 4 0.8996521 9.97194E-08 2.1504E-05 
 5 0.8993546 1.2017E-07 2.43518E-05 
 6 0.9066940 -1.39052E-08 5.78254E-06 
 7 0.9018049 1.53344E-08 6.17225E-06 
 8 0.9027515 3.63677E-09 2.36489E-06 
 9 0.9018945 1.37354E-08 5.73536E-06 
 10 0.9181345 -2.65399E-06 0.00019169 
 11 0.9038609 7.86151E-11 1.83515E-07 
 12 0.9118957 -4.40089E-07 5.78576E-05 
 13 0.9013883 2.4416E-08 8.41621E-06 
 14 0.9008332 4.12818E-08 1.19446E-05 
 15 0.9065879 -1.2145E-08 5.28363E-06 
 16 0.8874195 4.80101E-06 0.000284591 
 17 0.9044161 -2.03529E-12 1.60602E-08 
 18 0.8932690 1.3384E-06 0.000121448 
 19 0.9068001 -1.58286E-08 6.30419E-06 
 20 0.9205568 -4.30489E-06 0.000264632 
 21 0.9029564 2.36797E-09 1.77658E-06 
 22 0.9045651 -2.09626E-11 7.60263E-08 
 23 0.9048018 -1.34558E-10 2.62587E-07 
 24 0.9130072 -6.62566E-07 7.6001E-05 
 25 0.9019668 1.2528E-08 5.39412E-06 
 26 0.9047293 -8.51567E-11 1.93559E-07 
 27 0.9014553 2.27629E-08 8.03189E-06 
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 28 0.9040066 2.26062E-11 7.995E-08 
 29 0.9046723 -5.61539E-11 1.4664E-07 
 30 0.9054246 -1.46324E-09 1.28887E-06 
 AVERAGE 0.9042893 -1.44489E-06 0.00118043 SUMS 
   
  Z(0)-HAT -0.07276  
  ACCELERATION -0.0059377  
 Z(0)-HAT+Z-ALPHA 1.88716 1.95996 

1-ACCEL(Z(0)-HAT+Z-ALPHA) 1.0112055  
  RATIO 1.8662478  
  ALPHA1 0.9635494 1927.0988 
 Z(0)-HAT+Z(1-ALPHA) -2.03276 -1.95996 

1-ACCEL(Z(0)-HAT+Z(1-ALPHA) 0.987930  
  RATIO -2.057595  
  ALPHA2 0.016569 33.139 
   
   

3.7 The jackknife 
 
 The jackknife technique, as noted in the introduction to Chapter 2, pre-dates 
bootstrapping, and was originally derived (Quenouille(1956)) to evaluate biases in an 
estimator. The technique is very simple and easy to apply. Given an original data set, one 
simply leaves out each observation in turn and calculates the statistic of interest on the 
remaining observations, as was done in the calculations for improved confidence limits 
above, getting  θ̂(i)  = s(x(i)), where x(i) is the vector of observations with the ith observation 
removed, and s() denotes some statistic calculated from these observations. The bias 
estimate is calculated as: 
 

                                                                 bias^  jack = (n-1)( θ̂(.)  -  θ̂ )                                                  (3.10) 
 

where  θ̂(.)  denotes the mean of the  θ̂(i)  and  θ̂  is the statistic estimated from the original 
data. The jackknife estimate of standard error is: 
 

                                                              sê jack = [
n-1
n   Σ (  θ̂(i)  -  θ̂(.) )2]1/2.                                        (3.11) 

 
 We can illustrate the calculations with the data of Example 2.1. The following 
table shows the 10 original observations and the 10 jackknife samples created by 
dropping each observation in turn. If we consider the mean as the statistic to be 
jackknifed, then the bias estimate from eq.(3.10) turns out to be zero, inasmuch as the 
mean of the original observations necessarily equals the grand mean of the jackknife 
samples. 
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Orig.    Jackknife samples       
data 1 2 3 4 5 6 7 8 9 10 
13  13 13 13 13 13 13 13 13 13 
106 106  106 106 106 106 106 106 106 106 
203 203 203  203 203 203 203 203 203 203 
131 131 131 131  131 131 131 131 131 131 
160 160 160 160 160  160 160 160 160 160 
8 8 8 8 8 8  8 8 8 8 
67 67 67 67 67 67 67  67 67 67 
61 61 61 61 61 61 61 61  61 61 
11 11 11 11 11 11 11 11 11  11 
301 301 301 301 301 301 301 301 301 301  
Ave. 116.4 106.1 95.33 103.3 100.1 117 110.4 111.1 116.7 84.44 
 
Eq. (3.11) gives  sê jack = 30.15, while a bootstrap estimate of standard error [eq.(2.1)] is 
28.70, and the standard error of the original data is also 30.15, as it should be in this case, 
because the jackknife standard error formula gives the same result for the standard error 
of a mean. 
 
Example 3.4 Jackknifing a  regression equation 

 
 Grizzly bears are very difficult to census. Also, they range very 
widely, are difficult (and somewhat dangerous) to trap and are not 
numerous. Adult females with cubs-of-the-year may tend to spend more 
time in the open than other bears, and such family groups can be 
approximately identified by group size, age of cubs, location, etc. 
Consequently the only long-term index of abundance for bears in 
Yellowstone has been an annual "count" of such family groups. The index 
is quite variable, so it is essential to learn as much about the effect 
of variability as possible, and to look for ways to improve the index. 
For further study here, logarithms of the index count are used because a  
linear relationship would likely result if the counts are directly 
proportional to population abundance. A plot of the data (Fig. 3.3) 
shows the substantial variability. 

 
 The jackknife, the bootstrap, and cross-validation can be used to 
study the index. To use the jackknife approach, one proceeds as in the 
example shown in Section 3.7. There are 19 annual values of the index, 
so the original data are copied 19 times, and each of the paired items 
(year and ln count) is removed in turn and placed at the top of the 
table. The gaps in the main body of data are then closed. For each of 
the paired columns of data, one then estimates a slope (using the SLOPE 
function in EXCEL) and calculates the intercept from y and x means. This 
thus gives the basis for a regression line at the bottom of each set of 
data. This regression line is then used to compute an estimate for the 
missing point (using the x-value at the top of the table) and that 
prediction is placed below the value left out located at the top of the 
table. The resulting 19 data pairs then provide data for calculation of 
CVE by eq. (3.6). The first two columns of a calculation appear in a 
table below. 
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Fig. 3.3 Index of grizzly bear abundance in Yellowstone National 
Park.  
 

 The slope estimates at the bottom of the table are used to 
jackknife the data for calculating a standard error from eq. (3.11) 
which turns out to be 0.0104. This is perhaps most useful if divided by 
the jackknife mean, giving a coefficient of variation of 0.28, 
indicating the considerable variability in the data. The data can also 
be used to calculate the jackknife bias estimate of eq.(3.10), which 
appears to be very small. The operation can be described in steps as 
follows: 

 
(1) Duplicate the two columns of data (x and y variables) n times, 
where n is the number of observations available. 
 
(2) Remove each value in turn and put it above the table of 
values, leaving space for a predicted value. 
 
(3) Move up the data to close the gaps. 
 
(4) Calculate slopes and x and y means for each column. 
 
(5) Use this regression data to calculate a predicted value for 
the x-value of the item removed from that column and place the 
predicted value below the removed value. The squared difference is 
then summed and divided by n to calculate CVE.  
 
(6) Use the calculated slope values to produce jackknife estimates 
of standard error and bias. 
 

 All of the above provides some information on how an index 
behaves. It is, however, more useful in the situation where we have 
several possible candidates for an index, as the estimates of bias and 
CVE (and possibly other statistics calculated for the data) can be used 
to decide which of the candidates might give the best notion of trends 
in the bear population, which is of major importance in managing an 
important species. An improvement in the index is available by way 
auxiliary variables that provide a correction for the variation in 
visibility of bears, which presumably is at least partially responsible 
for fluctuations in the number seen from year to year. This improved 
index was described by Eberhardt et al.(1999).  
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Table of first few columns of data from Jackknifing bear index. 
 
LEDT OUT    2.8332 1 2.5649 2 
PREDICT    2.3140  2.4304  
DEV SQ    0.2696  0.0181  

ORIGINAL DATA      
  LN COUNT     
  Y X Y X Y X 

1976 17 2.8332 1 2.5649 2 2.8332 1 
1977 13 2.5649 2 2.1972 3 2.1972 3 
1978 9 2.1972 3 2.5649 4 2.5649 4 
1979 13 2.5649 4 2.4849 5 2.4849 5 
1980 12 2.4849 5 2.6391 6 2.6391 6 
1981 14 2.6391 6 2.3979 7 2.3979 7 
1982 11 2.3979 7 2.5649 8 2.5649 8 
1983 13 2.5649 8 2.8332 9 2.8332 9 
1984 17 2.8332 9 2.1972 10 2.1972 10 
1985 9 2.1972 10 3.2189 11 3.2189 11 
1986 25 3.2189 11 2.5649 12 2.5649 12 
1987 13 2.5649 12 2.9444 13 2.9444 13 
1988 19 2.9444 13 2.7726 14 2.7726 14 
1989 16 2.7726 14 3.2189 15 3.2189 15 
1990 25 3.2189 15 3.1781 16 3.1781 16 
1991 24 3.1781 16 3.1355 17 3.1355 17 
1992 23 3.1355 17 2.9957 18 2.9957 18 
1993 20 2.9957 18 2.9957 19 2.9957 19 
1994 20 2.9957 19     
MEANS  2.75 10.0 2.75 10.5 2.76 10.4 
SLOPES  0.0375  0.0457  0.0394  
INTERCEPTS 2.3776  2.2683  2.3516  

 S.S. of   SLOPES  0.0001  0.0000  
 
 
3.8 The Monte Carlo method 
 
  In many situations, it is desirable to seek a way to check on the validity of 
possible estimators. If the stochastic process leading to the data under study can be 
modelled in a realistic manner, then it is usually possible to test estimation and analysis 
methods by "Monte Carlo" simulations. Many detailed papers and a sizable number of 
books deal with such approaches, and all that will be attempted here is to provide a 
sketch of the method, and a simple example. Exercise 1.14.6 discusses simulation of a 
continuous frequency distribution, the exponential distribution. The underlying model for 
survival times is, in fact, the exponential, although survival may also need to be 
described by more complex models. Given a way to generate a sample from a plausible 
distribution, one can then use such data to test estimation or analysis schemes.  
 
 For a concrete example, we consider the percentile confidence limits discussed in 
Chapter 2, and demonstrated in Fig. 2.2, and ask whether these limits are valid. This 
question is usually discussed in terms of coverage. For convenience, consider 95% 
confidence limits. These are described as limits that should include the true but unknown 
mean in 95% of a very large series of repetitions of the same process from which a given 
observed sample is generated. Note that nothing is said about a particular case -- it is only 
the long-run average that we can depend on. If confidence limits are properly 
constructed, then they should "cover" the (unknown) true mean 95% of the time. If we 
assume that observed survival time data come from an exponential distribution, then we 
can generate a very large number of samples of n = 20 "observations", calculate bootstrap 
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confidence limits from these samples, and see how well they "cover" the true mean. In 
this case, we can know the true mean, inasmuch as it can be calculated for the 
exponential distribution, E(x) = 1/β. Using β = 0.01 results in an expected ("true") mean of 
1/β = 100.  
 

A BASIC program  was used to study the confidence limits. It turns out that 1,000 
simulation runs with 1,000 bootstraps for each sample of n = 20 yields 906 cases where 
the calculated percentile limits included the true mean of 100, whereas one would expect 
950 cases inside the limits for a true 95% level of significance. Note that this result (906 
of 1,000) is subject to sampling error; a binomial calculation gives v(p) = p(1-p)/1000 
where p = 0.95, so that two standard errors on p will be about 0.013. Consequently, it 
would appear that the bootstrap "coverage" is significantly short of the expected 95%. 
Nonetheless a nominal 91% isn't too bad for confidence limits. Fig. 3.4 provides an 
example of coverage from this study. 
 

The exponential distribution is sharply skewed and the standard deviation equals 
the mean so that the survival time thus generated is highly variable. For an alternative, 
we can run the Monte Carlo study using normally distributed variables with the same 
mean (100) and a smaller standard deviation (10). This can be done by using the Box-
Muller approximation (Bratley et al. 1983) to generate unit normal random variables, 
replacing the exponential in a BASIC program. This generates two approximately normal 
random variables with zero mean and variance of unity from two uniform random 
variables, and these are then transformed to have standard deviation of 10 and mean of 
100. Running 1,000 simulations each using 1,000 bootstraps on samples of n = 20 from 
the normal distribution gives coverage of 931, appreciably closer to the expected 95%.  
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Fig. 3.4. An example of "coverage" for the simulation to test bootstrap percentile limits 
on simulated data from an exponential distribution. The figure shows confidence limits 
for a sample of 20 observations out of the 1,000 simulations used to test confidence limits 
calculations (with 1,000 bootstraps per sample of 20 observations). The true mean is at 
100, while squares represent upper 95% confidence limits and circles the lower limits. 
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Lines connect the limits for the three cases where the limits did not include the true 
mean. In this small sample, coverage was 17/20 = 0.85. 
 
 Inasmuch as we are dealing with means, the usual approach to confidence limits 
would be to calculate a variance from the original data, and obtain confidence limits with 
a multiplier from the t-distribution. Such results can easily be simulated, using the same 
methods for generating exponential and normal random variables. A BASIC program was 
used to simulate samples and confidence limits from the normal distribution, and the 
same program was used with the exponential generator. Results using sample sizes of n = 
10, 20, and 30 appear in the following table. These results suggest that  constructing 
confidence limits in the usual manner from exponential data does a little better job than 
bootstrapping, and for data from a normal distribution the limits are within sampling 
error of the expected 95%, while bootstrapping falls a little short. One would not, of 
course, use bootstrapping to obtain confidence limits on means. It is best reserved for 
situations where there is no convenient theoretical approach. 
 
Sample Exponential simulation Normal simulation 
size Bootstrapping Usual limits Bootstrapping Usual limits 

10 837 900 904 944 
20 906 923 931 941 
30 927 921 933 953 

 
3.9 The delta method 
 
  The delta method is a useful adjunct to bootstrapping. It has been used for many 
years to approximate the variance of complex functions of random variables. It is 
obtained from a Taylor expansion of the function in which the second degree terms are 
retained, and rearranged to represent variances of the random variables. The expression is 
as follows: 
 

 
where V[g(x)] represents the variance of some function, g(x), where x is a vector of 
random variables, x1,x2, ... ,xn. V(xi) denotes the variance of the variable xi, which is 
multiplied by the square of the partial derivative of g(xi). Covariance terms are calculated 
for those cases where i<j. In many cases, it may be that the random variables are 
independent, so that the covariance terms can be assumed to be zero, and the right-hand 
portion of eq.(3.12) can then be dropped.  
 
 Bootstrapping can be used to calculate a variance for g(x) without any need to 
calculate variances and covariance of the individual random variables or to obtain partial 
derivatives. The delta method becomes a valuable adjunct, however, when it is possible 
to design the study in order to minimize V[g(x)]. In practice, V[g(x)] may be appreciably 
larger than is desirable, and we may wish to design a new study with larger samples (or 
to supplement the existing samples). In this case, it is essential to be able to determine the 

V[g(x)]= V(xi)i =1

n∑ ( ∂g
∂xi

)2 + 2 cov(xi
i < j
∑ xj )(

∂g
∂xi

)( ∂g
∂xj

)                     (3.12)
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effect of increasing the sample sizes for individual random variables. The delta method 
provides a way to calculate the effects of changing sample sizes on the overall variance.  
 
Example 3.5 Application of bootstrapping to a complex function. 
Obtaining a variance for the Lotka-Leslie model provides a good example 
of the utility of bootstrapping. The underlying equation for this model 
is: 

 
                                              1 = Σ λ-x  lx mx                                                (3.13) 
 

Here, λ represents the rate of change of an age-structured population 
having age-specific survivorship rates lx and age-specific reproductive 
rates mx.  The general model for the Lotka-Leslie function does not have 
a "closed-form" solution. That is, there is no way to write eq.(3.13) in 
a linear form, that is to provide an expression stated as λ = g(x). It is 
thus necessary to solve eq.(3.13) for λ by an iteritive procedure, i.e., 
by varying values of λ until one satisfies the equation. Because there is 
no linear expression for a solution for λ, developing an expression for 
the variance becomes very difficult. Bootstrapping then provides a 
convenient approach. One only needs to set up the data on lx and mx in 
tables, sample these tables of data with replacement, and calculate 
values of λ from the samples. The percentile method then provides 
convenient confidence limits. 

 
 In many instances, the samples available for calculations are too 
small to make calculations from eq.(3.13) feasible. An alternative may 
then be needed. A useful approximation (Eberhardt 1985) is: 

 

                                            λa -sλa-1 -lam [1 - (
s
λ) 

w-a-1
] = 0                                              (3.14) 

 
Here, a is the age at which full reproductive rate is achieved, la is 
survival from birth to age a, s is survival beyond that age, and w is an 
age at which calculations are truncated in order to compensate for the 
effects of senility. This equation again must be solved by iteration, 
and can readily be bootstrapped. The delta method can be used to study 
the components of variance and thus to determine the effect of 
increasing sample sizes for the several components on the variance 
estimate for λ. In several examples, the delta method gives very much 
the same variance estimate as bootstrapping. Another benefit of the 
delta method calculations is that the partial derivatives serve to 
indicate the relative importance of the several components, indicating, 
for example, that small changes in adult survival have the maximum 
effect on λ. Because there is no linear solution for λ, the delta method 
has to be applied by using implicit differentiation. Solutions 
appropriate for eq.(3.14) appear in the following references, which also 
give details and result of the application of bootstrapping to this 
complex function. Calculations for grizzly bears appear in Eberhardt et 
al. (1994), for sea otters in Eberhardt (1995), for monk seals in 
Gilmartin and Eberhardt (1995), and for manatees in Eberhardt and O'Shea 
(1995). Selected examples appear in Chapter 11. A program (APPLMB)to 
calculate confidence limits on data used in eq.(3.14)is available in 
Appendix A. 
 
3.10 Programs for data analysis 
 
 Some extensive calculations are involved in the preceding sections. Computations 
for cross-validation and jackknifing are not too burdensome and can be done from the 
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same setup as illustrated in Example 3.4. Programs that avoid most of the hand-
calculations are available in the Appendices. Appendix A does not require any 
knowledge of computer programming, while Appendix B requires some effort to gain 
minimal proficiency in the R-language. However, once one gains some experience with 
it, results are easily and quickly obtained. The following notes give cross-checks on 
several of the Sections of this Chapter.  
 
Cross-validation  
 As remarked above, cross-validation is not too difficult to do directly on a 
spreadsheet, and Example 3.3 was worked that way. If one loads the “boot” package in R 
(Appendix B), and brings in vectors x and y with the data of Example 3.3, then the 
following code produces data for the cross-validation error (CVE). Note that it may be 
necessary to use  statements, “x=as.matrix(x)” and “y=as.matrix(y)” to be sure that the x 
and y data are not treated as “lists” (this can be checked by statements like “length (x)”, 
which should give the number of items in the vector (30). If it comes up with the length 
as “1”, then make the indicated change to matrix form). 
 
{theta.fit=function(x,y){lsfit(x,y)} 
 theta.predict=function(fit,x){cbind(1,x)%*%fit$coef} 
results=crossval(x,y,theta.fit,theta.predict)} 
 
Typing “results” gives: 
 
 
$cv.fit 
 [1] 18.39368 19.52994 19.16999 20.58385 20.60205 19.40486 18.70319 20.16172 
 [9] 18.88301 21.19587 19.04597 19.24901 20.36361 20.55723 19.61994 17.76607 
[17] 19.18723 17.64574 20.14681 21.40597 20.25370 19.18175 19.48001 19.31688 
[25] 20.44596 19.45570 20.41327 19.19649 18.82414 19.59521 
$ngroup 
[1] 30 
$leave.out 
[1] 1 
$groups 
NULL 
$call 
crossval(x = x, y = y, theta.fit = theta.fit, theta.predict = theta.predict) 
 
The values under “$cv.fit” are the predicted values from regressions calculated with one 
observation left out. Set z=$cv.fit and calculate CVE from “sum((y-z)^2)/30” which 
gives 0.2009693, which is CVE, as obtained from the more tedious calculation with 
EXCEL.  
 
 
Bootstrapping for predictions 
 
 Section 3.5 points out that bootstrapping can provide an alternative to cross-
validation, and describes the methodology. One can get results for the data of Example 
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3.3 from “BOOT2” in Appendix A. Load in the 30 x,y pairs and compute slope and 
intercept below columns 4 and 5 (which contain the bootstrap samples) as well as below 
the first 2 columns (which contain the original data). On the right side of the sheet (away 
from the bootstrap calculations) set up two columns, one to calculate the regression sum 
of squares (eq.(2.5)) from the original x,y data but using the parameters (slope and 
intercept) from the bootstrap data and a second column to calculate regression sum of 
squares from the bootstrap samples also using parameters from the bootstrap 
“replication”. Sum these columns and divide by n-2 = 28 to get two estimates of 
regression sum of squares. Load the difference (calculation from original data minus 
calculation from bootstrap sample) into the “parameter input” box and run, say 2,000 
bootstraps. The mean of these gives the “inflation factor” to add to the variance of the 
original data set (about 0.028) to give the improved estimate of variance, as described in 
Sec. 3.5. The R-language program(Appendix B) is: 
 
{theta.fit=function(x,y){lsfit(x,y)} 
theta.predict=function(fit,x){cbind(1,x)%*%fit$coef} 
 sq.err=function(y,yhat){(y-yhat)^2} 
 results=bootpred(x,y,2000,theta.fit,theta.predict,err.meas=sq.err)} 
 
It gives: 
> results 
$app.err 
[1] 0.1702293 
$optim 
[1] 0.0283673 
$err.632 
[1] 0.1984177 
$call 
bootpred(x = x, y = y, nboot = 2000, theta.fit = theta.fit, theta.predict = theta.predict,  
    err.meas = sq.err) 
 
Where “$optim” gives the result obtained above (0.028). Add this to “$app.err” to get 
0.1985966 which compares to 0.2009693 obtained from cross-validation of the data in 
the section above. We thus have two methods for improved estimates of  variance about 
regression. One should not, of course, report all of the values beyond the decimal point 
given by this and similar programs! 
 
Improved confidence limits 
 
 The BCa method of Section 3.6 is time-consuming to calculate directly. Two lines 
in R give the results immediately (again using data of Example 3.3). One first combines 
the x and y vectors as “xdata” with the statement “xdata=cbind(x,y)”, and then uses: 
 
{theta=function(x,xdata){cor(xdata[x,1],xdata[x,2])} 
results=bcanon(1:30,2000,theta,xdata)} 
 
This gives: 
> results 
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$confpoints 
     alpha bca point 
[1,] 0.025 0.8286273 
[2,] 0.050 0.8384993 
[3,] 0.100 0.8542274 
[4,] 0.160 0.8662237 
[5,] 0.840 0.9275239 
[6,] 0.900 0.9355572 
[7,] 0.950 0.9448605 
[8,] 0.975 0.9524536 
$z0 
[1] -0.1218725 
$acc 
[1] -0.005937748 
$u 
 [1] 0.8978444 0.9075823 0.9083542 0.8996521 0.8993546 0.9066940 0.9018049 
 [8] 0.9027515 0.9018945 0.9181345 0.9038609 0.9118957 0.9013883 0.9008332 
[15] 0.9065879 0.8874195 0.9044161 0.8932690 0.9068001 0.9205568 0.9029564 
[22] 0.9045651 0.9048018 0.9130072 0.9019668 0.9047293 0.9014553 0.9040066 
[29] 0.9046723 0.9054246 
$call 
bcanon(x = 1:30, nboot = 2000, theta = theta, xdata) 
 
One can simply pick off the desired confidence limits (0.8286 to 0.9524 for 95% 
confidence interval), but the program also provides the key items from the calculations of 
Section 3.6, namely z0 and the “acceleration”, along with the 30 values of the 
correlations given in the first column of the table of Section 3.6. Equation (3.7) gives the 
calculation of the bias correction: 
 

                                                                    ẑ o = Φ−1(#{θ̂*(b)<θ̂}
B  ) 

 
which involves counting the number of bootstrap values below the correlation from the 
original data (r = 0.9043) and transforming by the inverse of the cumulative normal 
distribution. This can be somewhat variable, so the value from the R-program is a little 
larger than that calculated in Section 3.6 (another bootstrap run of 2,000 gave z0 of -
0.127). Note that the “acceleration” agrees closely with that obtained in Section 3.6.  
 
3.11 Exercises  
 
3.11.1  Inasmuch as bootstrapping is a sampling procedure, additional runs of B 
bootstraps will give slightly different results, even if B is large. Conduct a bootstrapping 
check on the data of Example 3.1 to see how your bias adjustment compares with the 
results given there. Use B=2000. Do 10 trials and record results on a summary sheet 
(don’t forget to use PASTE SPECIAL and VALUES or you may get a statement like 
“Circular References” or “Link to another spreadsheet”). This should show that the bias 
is consistent, and that the corrected value is a much better estimate of the true value. 
However, when there is an unbiased estimate based on theory (as in this case), one 
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obviously should use that value. The bias estimate is important only when you don’t have 
an estimate that is known to be unbiased (which is often the case with ecological data, 
even though it might not be a widely recognized fact). Also number the observations 
serially (1-10) and calculate the correlation coefficients. 
 
3.11.2 Bias corrections. 
Use the data of Example 2.3 (calculations in Exercise 2.10.4) to further explore bias 
corrections. In that example we used regressions of the natural logarithm of number of 
survivors (Fig. 2.5) on year to estimate a survival rate (slope of the regression line) and 
then transformed it back to an annual rate by calculating y=exp(b). Bootstrap confidence 
limits were obtained and also transformed back to annual rates. Use eq.(3.2) to examine 
the bias in transforming back. When there is an evident bias, one should examine the 
confidence interval on the estimate to see if the bias is large relative to the confidence 
interval. 
 

                                                                             biasB^   = θ̂ *(.) - t(F̂ )                                               (3.2) 
 
 
3.11.3  Make a frequency distribution of z (eq.(2.9)) using the correlation coefficients 
computed in exercise 3.11.1. Does this look like a normal distribution as assumed in 
calculating confidence limits under the usual theory? Compare your results with Exercise 
2.10.5. 
  
3.11.4  The regression bootstrap of Example 2.2 used bootstrapping rresiduals in which 
deviations from a model fitted to the original data are bootstrapped. In exercise 2.10.7 we 
tried bootstrapping the x,y pairs directly, and got some strange-looking results. However, 
larger samples (more x and y values) appear to give comparable results with both 
methods. Efron and Tibishirani warn that the approach using residuals is “model-
dependent”, i.e., if the model is wrong, the results may be doubtfully useful. Hence, its 
worthwhile to repeat the exercise using the data of Example 3.3. Doing this directly is 
cumbersome, so it is best to use the program furnished in Appendix A (BOOT2). 
Compare your results with the slope and confidence intervals given by the regression 
program in EXCEL. This exercise is worthwhile in that ecologists use regressions with 
smallish samples and the independent variables are not always known with certainty. 
There don’t seem to be any guidelines as to sample sizes in such cases, so its wise to use 
both approaches and to check for bias (Eq. (3.2)) if you want to be comfortable with your 
results. The frequency diagrams  of Exercise 2.10.7  were distinctly bimodal, making it 
clear that the nonparametric approach is not advisable with only 10 pairs of observations. 
 
3.11. 5    Example 3.4 gives the approach to jackknifing a regression line in which 
logarithms of data on an index of bear abundance are fitted by linear regression (Fig. 3.3) 
and the fit examined by cross-validation, with a check on bias from eq.3.10. Complete 
the analysis just as in Example 3.4. Compute the cross-validation error (CVE), jackknife 
standard error of the slopes, and Biasjack of the slopes. Compare the jackknife standard 
error with that of the slope computed with the usual EXCEL regression analysis. Also 
compare CVE with the residual mean square of the regression analysis. 
 



  3.20 

3.11. 6     Jackknifing was used in Example 3.4 because it is fairly easy to apply and we 
could compute CVE of eq. (3.6) in the same operation. However, bootstrapping has some 
advantages, and likely should be used to estimate bias and confidence limits whenever it 
is feasible. Use the data of Example 3.4 to conduct bootstrapping of the deviations to 
compute the bootstrap bias estimate of Eq. (3.2) and 95% confidence limits on the slope. 
Use 1,000 bootstraps (for convenience in calculations using EXCEL – with 19 
observations, I would be inclined to try both approaches). The regression bootstrap using 
x,y pairs can readily and quickly be computed from the program in Appendix A 
(BOOT2). 
 
3.11.7 The approach of Section 3.5 is most readily calculated by using a programming 
language. However, it is feasible to do the calculations in EXCEL if one is willing to 
devote enough time to the job. A program in Appendix A (BOOT2) will do the job in 
short order and should be used to repeat the results of Section 3.5. 
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4.0 SAMPLING METHODS

4.1 Introduction

One of the weaknesses in ecology today is that too many inves t iga to rs
fail to realize the importance of sampling. A logical reason for this difficulty i s
that studies are often centered on one or two study areas, so that t h e
investigator tends to forget that he is in fact studying a sample from some
larger population. This may not be seen as a handicap until it becomes
necessary to attempt to extend the results of the study to the larger area. T h e
perceptive observer may then suddenly realize that there really isn't m u c h
basis for such an extrapolation, unless he does in fact have data from a
number of subareas (i.e., a representative sample) on which to base t h e
extrapolation and to provide a basis for assessing its validity.

The intent here is to provide a brief overview of sampling methodology.
Most of the material follows the lines of survey sampling methods, as given i n
much more detail by Cochran (1977). Thompson (1992) includes methods o f
particular interest in ecology. The very basic features are those of a n
elementary statistics course. Most students will prefer to refer to f a mi l i a r
textbooks for these aspects. The essential material has to do with some
elementary statistical concepts and a few standard distributions, mainly t h e
binomial, hypergeometric, Poisson, and normal. Students not familiar w i t h
these distributions and the basic rules of probability should look them up i n
one of the elementary references. A brief sketch of the statistical b a c k g r o u n d
appears also in Chapter 1.

 4.2 Simple random sampling

The main complication in defining simple random sampling is one o f
defining the meaning of the word "random". Our approach is that o f
probability theory, in which it is assumed that every sampling unit (some s o r t
of explicitly defined entity) has the same probability (chance) of being d r a w n
into the sample. The mechanics of drawing a random sample then depend o n
giving each unit the same chance of inclusion in a sample while keeping t h e
choices independent of one another. The standard procedure is to assign a
number to each unit in the population, and to refer to a table of r a n d o m
numbers as a device for selecting the sample.

Once the sample has been drawn and measurements made on the samp le
units, various problems of analysis of the data must be dealt with. However ,
procedures for analysis of the data need to be considered well in advance o f
the sampling to be sure that the right kinds of data are collected. That is, t h e
investigator must first prepare a sampling plan, which designates exactly h o w
the sample will be obtained. Secondly, there should be a definite plan for t h e
analysis of the resulting data, specifying what statistical analyses will b e
carried out, and what will be done if a particular kind of result is obtained i n
the analysis. Many of the problems in field research are caused by the lack o f
such a study design. It may be objected that one cannot produce such a plan i f
it is not known in advance how the study will turn out. There are s e v e r a l
answers to this objection. One is that few studies are conducted in comple te ly
new situations. Usually there are previous investigations that can be used i n
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the design stages, and data that can be used to test both the sampling plan a n d
the analytical procedures.

4.3 The finite population correction

The estimated variance of a mean for sampling without r e p l a c e m e n t
from a finite population is:

                     s2(x
_
 ) = 

s2

n   [ 
N  -  n

N   ] =  
s2

n   [ 1 - 
n
N  ]                                                      (4.1)

 
 and the finite population correction is just the quantity in brackets, or o n e
minus the fraction of the population actually sampled (frequently des ignated
as f). Thus when nearly all of the population is taken into the sample, t h e
variance of the estimated mean becomes very small, as it logically should.

When the fraction of the population sampled is small, this equa t i on
implies that size of the population has little effect on the standard error a n d
thus on confidence limits. This is a result that comes as a surprise to m a n y
people, who intuitively suppose that bigger samples are required for v e r y
large populations. This is, however, simply not true. A large population may, o f
course, offer more logistic problems in sampling and thus be more expens i ve
to sample.

As a general rule of thumb, when the sampling fraction is less t h a n
about 5%, it is customary to neglect the finite population correction factor, a n d
treat the sample as though it had been obtained by sampling w i t h
replacement. Sampling with replacement refers to circumstances w h e r e
objects can be drawn from the population one at a time and replaced b e f o r e
the next object is drawn. With such a process, probabilities remain un c h a n g e d
as the drawing proceeds, making calculations much simpler than i f
replacement does not occur, when removal of one individual changes the odds
on selecting others in the next draw.

Students whose statistical training has come from courses in w h i c h
hypothesis testing was mainly emphasized may not have encountered t h e
notion of a finite population correction. This is because most tests o f
hypotheses are formulated on the basis of sampling from an infinitely l a r g e
population, or on the basis of sampling with replacement.

 4.4 Confidence intervals

Ideally, one would like to be able to know how far "off" a p a r t i c u l a r
estimate is from the true parameter value. Statistical methods offer no s u c h
utopian result, and the best that we can do is to make probability s ta tements
that apply to the long-run of future trials, or to some hypothetical popu la t ion
just like the one currently under study. These take the form of con f i dence
limits, which are a statement of the following kind:

                                           Pr{X L < µ <  XU} = 1 - α                                                       (4.2)  

 where XL denotes the lower confidence limit, XU the upper, and t h e
probability that the true, but unknown, value (µ ) of the random variable o f



                                                                                                                                         4.3

interest will fall between these limits is 1 - α . The proper interpretation of t h i s
statement is that a very large number of repetitions of the "experiment" a t
hand would yield confidence limits that include the true, but unknown, µ in a
fraction 1 - α  of the trials. It must be emphasized that the statement cannot b e
interpreted as pertaining to a single set of sampling results that are in h a n d .
Such a statement would be ridiculous because the confidence interval t h e n
either includes the true value or it does not, and no probability is i nvo l ved - -
it's just that we have no way of knowing where the true value lies. Hence w e
have to adopt some sort of long-run view of the "odds on being right."

One of the most common mistakes in reporting the results of a stat ist ical
analysis is to assert that "the probability is l - α  that the hypothesis is false".
Just as with the confidence limits statement above, a testable hypothesis i s
either true or false, but there is no need for statistical analysis if one k n o w s
the answer.  If the answer is not known, then the statistical approach a t tempts
to supply some quantitative assessment of the "odds" for and against t h e
hypothesis.  The problem that many people have with this is that they h a v e
been admonished from childhood to  "make up your mind". Such decis ions
should be stated as a belief based on the evidence, but announced sepa ra te l y
from the probability statements used to assess the evidence.

Most investigators tend to use confidence limits that are s y m me t r i c
about the estimate. No doubt this is a consequence of the common use of t h e
symmetric normal distribution, which leads one to tend to cut off about α /2 o f
the probability distribution on each side of the mean, and thus get s y m me t r i c
limits.  In point of fact there is nothing in theory or practice that says that t h e
limits should be symmetric--all that is required is that there be 1 - α  of t h e
distribution within the limits.   Also, setting limits for a distribution like t h e
Poisson is likely to result in asymmetric limits.  One reason is the difficulty o f
cutting off an exact fraction (α ) of the distribution when one must set t h e
limits in terms of integer values.  This difficulty can quickly be appreciated b y
trying some examples with tables of the Poisson distribution.

For ease in understanding and remembering the procedure f o r
obtaining confidence limits, we will use the standardized or unit normal c u r v e ,
and reverse the usual process of going from some other normal distribution t o
the standardized--that is we now look up a value (z) in tables of the u n i t
normal that cuts off the desired proportion, α , of the distribution.  If α  is to b e
0.05, then we find z = l.96, and

 where Xc represents upper or lower confidence limit respec t i ve l y
corresponding with the plus and minus signs on the right hand side of t h e

equation. Thus we have Xc = µ + 1.96 σ / n   and the probability s ta temen t  
previously given is satisfied by the corresponding choices of Xc (which are XL

and XU ).  In practice, it is necessary to substitute  x-   for µ .

X

n

c − = ±µ
σ 1 96.                                                                        (4.3)
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The above results assume that one knows σ, which is almost always n o t
the case.  If the sample size is about 30 or more, it really doesn't matter m u c h ,

in that s/ n   then provides an adequate estimate of the standard error

(σ / n ).  If sample size is small, then it is preferable to use tables of the "t"
distribution (instead of the unit normal distribution), which make a l lowance
for uncertainty about the variance. Values of the t-distribution are ava i lab le
in EXCEL.

One also needs to bear in mind that the estimate of σ (usually denoted b y
s) that is appropriate depends on what quantity one is setting limits on.  For a
mean, we proceed as above, but if limits on a single observation are to b e

secured, then we naturally use the standard deviation, s, in place of s/n   .

Example 4.1  Calculating confidence limits

For "95 percent confidence limits" (α = 0.05), many people round

1.96 to 2.0 so that the limits can be calculated from xc  = x
_ 

 + 2 s / n .  

Suppose s = 9, n = 16 and x
_ 

 =10.  Then we have xc = 10   +   2(9)/4, which
can be expressed as 5.5 < µ < 14.5.

 4.5 Determining sample size

Determining the sample size required to provide confidence limits o f
preassigned width on a mean is again a matter of using the z values. From t h e
results above we have:

                              +  
zs

n
  = Xc - µ   and we let D = | µ - Xc |   

where the vertical lines denote "absolute value of...", so that D amounts to t h e
half-width of the desired (symmetric) interval. Hence:

                                                          n = (zs/D)2                                                         (4.4)

Another way to approach sample size estimation is to express D relative to t h e
m e a n :

                                                          D/x
_
   = 

zs

n  x
_ 

 so that
                                                   n = [z(c.v.)/D(%)]2                                                   (4.5)

where c.v.= s/x
_ 

 is the coefficient of variation, and D(%) = D/x-   expresses D as a
proportion (note that D(%) is used as a proportion, NOT as a percentage).  T h e
utility of this approach is that we often have an idea of the coefficient o f
variation, but may not know what the mean is likely to be, so it is possible t o
set proportionate limits this way.  The advance specification can then be, f o r
example, that "I want 95% confidence limits no wider than + 20 percent of t h e  
mean" .
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When sampling without replacement is important (i.e., when the samp le
is likely to be a significant proportion of the population,say, 5% or more) t h e
above relationships serve to get an approximate value of the sample size
needed, which can be labelled no.  The final estimate of n is then ob ta ined
f rom:

                                                              n = 
no

1  +  
no
N

                                                     (4.6) 

 This estimate results from using a variance estimate that includes the f i n i t e
population coefficient as previously described (Equation 4.l).

Example 4.2 Determining sample size

Suppose we want smaller (narrower) confidence limits, say 8 < µ <
12, in Example 4.1. Using Eq.(4.4) D = 2, and n = [2(9)/2]2 = 81.  If an
appreciable fraction of the population is to be sampled, then the above
result needs to be corrected by using Eq. (4.6).  Assume N = 100, then
we have n =  = 81/(1 + 81/100) = 44.8, which may be rounded to n = 45.
Suppose it is required that D(%) = 0.1 for an approximate 95% confidence

interval of   +   20%. Then D(%)=0.1=2(9)/10 n , and n= 324, which exceeds
the supposed population size of N=100. But Eq.(4.6) gives n=76.

4.6 Stratified random sampling

Almost invariably, ecologists have some advance information abou t
populations that they wish to sample.  This prior knowledge may well be one o f
the reasons for rejecting random sampling and substituting some sort o f
purposive selection, wherein one chooses sampling units that "look" t obe
representative or typical.  There are, however, methods that take into a c c o u n t
advance knowledge and at the same time provide the protection against b i as
that is given by random selection.  One such method is to classify all of t h e
population units into one of several strata (groups), and to then take r a n d o m
and independent samples in each such stratum.  

The name, stratified sampling, comes from the close analogy to t h e
layering effect seen in various circumstances, since we normally attempt t o
have the strata represent gradations in value of the random variable o f
interest.  If one can do a fairly good job of segregating units by magnitude o f
the random variable under consideration, then it is apparent that t h e
variability to be encountered in sampling within a particular stratum may b e            
substantially reduced over that without stratification.  Hence greater ove ra l l
precision results for a particular total sample size.

Stratified sampling will require somewhat more advance effort t h a n
simple random sampling, but the usual result is that it turns out to be less e x t r a
effort than one might suppose.  The method provides some side benefits i n
terms of better understanding of the material being studied, and of the n a t u r e
of the problem dealt with.  In some circumstances it may be that a portion o f
the sampling units in the population are very difficult to reach, or o the rw i se
expensive to sample.  In this case, stratification can specifically t a k e
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differences in cost into account, and provide alternative sampling s c h e m e s
aimed at getting the most information for the effort expended.

The material here is devoted to an exposition of the basic technology i n
stratified sampling.  Many additional features will be found in texts like that o f
Cochran (l977) and Thompson (1992). Here we will deal with such things a s
how to go about stratifying a population, the estimation procedures, va r i ous
equations for obtaining variance estimates, and determining sample size.

 4.7 Mechanics of stratification

Undoubtedly the most common ecological appli cation of s t ra t i f ied
sampling has to do with locating sampling plots or other m e a s u r e m e n t
schemes on a map of a region of interest. The process of stratification is t h e n
intuitively obvious--one finds a way to break the map up into strata, each o f
which is composed of some large number of individual sampling units, usua l l y
plots of square or rectangular shape.  It might be noted that the units in o n e
particular stratum do not have to be contiguous--this is in fact one of t h e
primary advantages of stratification.  However, it is advantageous to keep u n i t s
in a stratum more or less contiguous if the survey is designed for ana ly t i ca l
purposes (e.g., to make comparisons between strata).

The basic process is just to assign units to strata according to t h e
available prior information, seeking to get the units in any one stratum a s
much alike as possible in terms of the random variable or variables b e i n g
studied.  The next step is to assign serial numbers to every unit in e a c h
stratum.  This does not, of course, require that someone write down all t h e
numbers--all that is required is a trustworthy scheme for assigning a n d
fi nding again any particular number.  Often it will turn out to be simplest t o
delineate stratum boundaries with colored pencil and to note the starting a n d
ending point of each row of units in a given section of one stratum by w r i t i n g
the corresponding numbers on the map.  Sometimes large blocks can b e
counted as the equivalent number of sampling units, that is sampling u n i t s
might be mil-acre (or meter-square) plots but the strata may be made up o f
larger units.  A little practice soon settles the details for any particular set o f
condi t ions.

We use the following notation, which follows that of Cochran (l977) f o r
convenience in referring to the much more complete description ava i lab le
t h e r e .

N h  (h = 1, 2,..., L)          The number of units in the stratum.  There are L strata
     in all, and N = N1 + N2 + ... + NL

nh                                    The number of units in the hth stratum that are   
        selected for enumeration (a random sample

    of nh units from the hth stratum).  In most 
     circumstances nh should be at least 4.
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yhi (i = 1, 2, ..., nh)      The observed value of the random variable (Y) on the       

     ith unit of the hth stratum.  There are nh such 

               observations taken from the hth stratum.

Wh =  
Nh
N                          The proportion of the total units present in the hth 

      stratum (N units in population; N1 + N2 + ... + NL  = N).

 y
-
 h = Σ  yhi/ nh            Average of the sample units from the hth s t ra tum.

 fh = 
nh
Nh

                          The sampling fraction in the hth stratum (i.e., the

                                      fraction of the units in the hth stratum that are actually
                                      examined.

 4.8 Estimates from a stratified sample

Since the Wh represent the proportion of the total population in the ht h

stratum, they are logical weighting factors for estimating the ove ra l l
population mean.  The equation is:

                              y-  st = w1y-  1 + w2y-  2 + ... wL y-  L                                                    (4.7)

 where y-  st refers to the mean of a stratified sample.

 By the rule for variance of a linear combination of independent r a n d o m
variables (independent because of the random sampling in separate strata), w e
have the variance of the estimate as:

                 V(y
-
 st) = w12V(y

-
 1) + w22V(y

-
 2) + ... + wL2V(y

-
 L )                                (4.8)

This result assumes that the sampling fraction ( fh) in each stratum is sma l l
enough to neglect the finite population correction.  If the fpc is included, t h e
equation for variance in the hth stratum is:

where S2h is obtained from:        

V y
S

n

N n

N

S

n
fh

h

h

h h

h

h

h
h( )

( )
[ ]= − = −

2 2

1                              (4.9)

S y y Nh hi
i

N

h

h
2

1

2 1= − −
=
∑( ) /( )                                   (4.10)



                                                                                                                                         4.8

            
These two equations can be combined to get the desired result:

                                                                

                 However,  Sh2 is not a quantity that can be determined f r o m

sampling, being the variance of the entire population in the ht h stratum.  A
logical procedure is to estimate it from:                     

which is the usual variance estimate for a simple random sample. The last t e r m

in the equation for V(y
-
 st) is the finite population correction so if all of the fh

are small (say, less than 5%) this term can be dropped

4.9 Confidence limits

When sample sizes in the several strata are all substantial, t h e
confidence interval takes on the same form as we have p rev ious l y
encountered it for simple random sampling, and can be written as:

                                                             y
-
 st + z s(y

-
 st)    

 where z is the value from the unit normal curve corresponding to t h e

confidence level wanted, for example z = 1.96 for α = 0.05.  We now use   s2( y
-
 st)

or, in this case its square root, to denote that this is an estimate of the t r u e
variance given by Equation (4.11).

When sample sizes for individual strata are small, as is not u n c o m m o n l y
the case, there is a difficulty brought in by the fact that use of z corresponds t o
virtually knowing the true variance.  As was noted earlier, samples of 30 or so
give close enough estimates that one does not need be too concerned about a n
effect on the confidence limits.  With only a few observations in one or m o r e

strata, however, the estimates of stratum variance ( sh
2) may not be so p rec ise ,

and this situation would usually be handled by substituting a "t" value for the z
value, that is, by making use of the t-distribution, which allows f o r
uncertainty about the variance estimate. The trouble here is that we need t o

combine the several stratum variances to estimate V ( y
-
 st), but it is not p r o p e r

to average the various "t" values corresponding to stratum sample sizes ( w e
would ordinarily look up a t-value with nh -1 degrees of freedom for e a c h
stratum). Cochran (l977:96) and Thompson (1992:106) give a rather compl icated
expression for calculating an "effective" number of degrees of freedom for u s e
in this case.

V y W S n W S Nst h
h

L

h h h
h

L

h( ) ( / ) /= −
= =

∑ ∑2

1

2

1

2                              (4.11)

s y y nh hi
i

n

h h

h
2

1

2 1= − −
=
∑( ) /( )                                 (4.12)
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Example 4.3 A caribou census

An example that incorporates nearly all of the basic elements in
stratified random sampling is furnished by an aerial census of Alaskan
caribou.  Details will be found in a paper by Siniff and Skoog (1964).
We here extract that part which is appropriate for illustration.  Six
strata were selected on the basis of preliminary observations of
relative caribou abundance, and delineated on detailed maps.  Sampling
units were four-square-mile blocks, and each such unit within each
stratum was assigned a number.  There were no advance estimates of
within-stratum variances available, so the stratum standard deviations
(Sh) were assumed proportional to the preliminary rough estimates of
population levels in the stratum.  This provided the following data for
allocation according to Equation (4.14):

Stratum        Nh          Wh         Sh       
Whsh

ΣWhsh
         nh(opt.)       nh (actual)

A                    400      .572   3000  .428              96      98
B     30      .043    2000      .022                5       10
C     61     .087   9000     .195              44     37
D                18     .026   2000     .013      3       6
E                70       .100    12000  .299    67    39
F               120      .172      1000      .043               10     21
            ____     ____      ____       _____           _____              _____
                     699      1.000    29000     1.000             225                   211

The "optimum" allocation was based on the total number of sample units
(225) that the investigators believed could be surveyed in the time
available.  The actual allocation amounted to "hedging" against
uncertainty about the likely values of Sh.  Thus there were several
strata (B, D and F) where the supposed optimum allocation called for
rather small samples, so these were increased at the expense of strata
(C and E) where the optimum plan called for censusing a substantial
fraction of the units in the stratum.  Survey results were as follows
(Nh, Wh were as used above, and nh as given in the last column above):

Stratum        y
_

 h                         sh
2           

W s

n
h h

h

2 2

             Whsh
2          y

_
 hWh               

A     24.1    5,575   18.613  3,189   13.79
B     25.6                 4,064   .751     175     1.10
C     267.6   347,556 71.098  30,237  23.28
D     179.0      22,798  2.569                   593        4.65
E     293.7   123,578 31.687  12,358    29.37
F     33.2                    9,795   13.800  1,685       5.71
        _______  ______  ______  ______  ______
        -            -       138.518 48,237  77.90

From Equation (4.7),  y
_
 st is the sum of the last column above, or 77.9

caribou per four-square-mile unit.  This is readily converted to a total
for the area surveyed by multiplying by the total number of units,
giving (77.9)(699) = 54,450 caribou.The variance estimate (Equation
(4.11) is:
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                    L                                  L

   v(y
-
 st) = Σ (W h2 Sh2)/nh  - Σ W hSh2/N = 138.518 - (48,237/699) = 69.51

                  h=1                              h=1

 Confidence limits on the mean may be obtained by assuming z to be equal
to 2 (or 1.96 to be exact, for α = 0.05), since rather substantial
samples are involved here, in most strata, giving:

 y
-
 st =   +   2(69.51)

1/2  or 77.9   +   16.7 caribou per four-square-mile unit.

For total caribou on the study area, we estimate the variance as:

v(ytot) = N2 v(y
-
 st) = (699)

2(69.51) = 33,962,655

 and limits are:

       54,540   +   2(33,962,655)1/2     or    42,885   <    xtot  <  66,195.

Notice that sh
2 increases with increasing yh in the table above.

The investigators plotted log10 (sh
2 ) against log10 y

-
 h (Siniff and

Skoog, 1964:398) and obtained a regression relationship:
                                y = 1.63 +1.42 x

where y = log10 (sh
2 )  and x = log10 y

-
 h.  This is equivalent to the

relationship:

                                 sh
2 = 42.66(y

-
 h)

1.42

which might be used to estimate variances in planning similar surveys.
However, it is important to remember that size of the sampling unit (4
sq. mi. in this case) will affect such a relationship.

Example 4.4 A mortality survey

A Michigan study of over-winter losses of whitetailed deer
(Whitlock and Eberhardt, 1956) provides an example where the finite
population correction is negligible.  In this case, nearly 19,000 square
miles (all of the northern lower peninsula of Michigan) were classified
into five strata on the basis of estimates made by field biologists.
The primary units were half-sections (one-half square mile), but these
were subsampled in the actual search by using a strip 88 yards wide laid
out as a rectangular course 1/2 mile long and 1/4 mile wide. Width of
the strip was based on use of four-man teams, with each individual
responsible for searching a 22 yard wide interval.  Various
complications were involved in the design inasmuch as it was necessary
to consider prospects for missing dead deer on the strip, the number of
men available in various locations (and transportation), the necessity
for one man to act as compass-man, need for a biologist in each crew,
and so on.

Advance data from a previous survey of an area of high mortality

suggested that the coefficient of variation (s/x
-
 )  might be about 1.30,

so estimates of Sh were obtained by multiplying 1.3 times an estimated
number of deer to be found on each plot (these guesses were made in the
process of setting up strata).
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It was decided that about 110 plots could be surveyed with available
manpower so the allocation was devised as follows:

Stratum    Expected   Expected losses  Square     Wh    Estimate    Preliminary               
                 losses per expressed as      miles in               of Sh         allocation
                 sq. mile    dead deer/plot                  stratum                                ___     ______      _________               

I        20+     3.75           408             .0220       4.88              23
II     10-20  1.88         1,048            .0566        2.44             29
III   5-10    .94        2,293.5         .1240        1.22             32
IV     1-5     .31         5,567.5         .3010         .40              25
V      0-1     .01         9,181.5         .4964         .01                1
                 ______   _______                    ______
                                                           18,498.5       1.0000                          110

The allocation again followed Equation (4.14) but four plots were
added to stratum V, giving 114 in all, of which 113 were actually
searched (one plot was completely flooded at the timeof the survey).
Survey results were:

Stratum       nh        sh            y
-
 h     Contribution to   Coefficient of    sh

2/ y
-
 h

_______       ___       ___        ____     to V(y
-

         s t  )                   variation                  _______                 

 I     23      2.146     1.826      .000097            1.18     2.52
II              29      1.082       .621       .000129            1.74     1.88
III              31      .724         .484       .000260            1.50     1.08
IV              25      .541         .280      .001062            1.93     1.04
V                 5       --             0.00      .00           --             --
              ______                              _________
                    113                                    .001548

In this instance, only very small fractions of each stratum were
searched so Equation (4.11) reduces (by dropping the right-hand term)
to:
                         5

        v(y
-
 st) = Σ (W h

2 Sh
2)/nh

                       h=1

and the individual terms are listed under the heading "Contribution to

v(y
-
 st)" so that one can see in which stratum most of the variability

turns up.  Comparing the expected losses and the  y
-
 h, it becomes

apparent that the over-estimates were largely in strata I and II, which
was not especially surprising since the winter turned out to be milder
than anticipated when the survey was planned, and starvation losses were
correspondingly lower (major starvation areas nearly all were in strata
I and II).

The coefficients of variation in the above table show the advance

estimate to be somewhat low.The last column of the table gives  sh
2/ y

-
 h



                                                                                                                                         4.12

 which is the "index of dispersion" and is unity (within sampling or
"chance" errors) for a Poisson distribution. This suggests that such a
distribution (i.e., wholly random dispersal of dead deer) may apply to
strata III and IV, in which case the Sh for allocation might simply have
been taken as equal to the square roots of the expected numbers of deer
per plot.

 4.10 Allocating the sample to strata

We have thus far gotten the cart before the horse, having cons idered
how to analyze sample results without considering how the total sample o u g h t
to be distributed over the strata.  Two kinds of allocation are in common use.
The first is perhaps what one would expect to do without any a d v a n c e
information about the variability in various strata, that is, distribute t h e
sample in proportion to the size of the strata ("proportional allocation").  Th is
is also known as a self-weighting sample, since fractions going into e a c h
stratum will be equal to Wh, so that a simple mean of all of the sample resu l t s
will be equal to the weighted mean previously given.  In this case we h a v e
nh/Nh = f = n/N so that the sampling fraction is the same in all strata.This leads
to a simpler expression for the variance:
                                                                L

                                  V(y
-
 st) = 

1  -  f
n    Σ WhSh

2                                                   (4.13)

                                                              h=1

 and we again have to substitute sample estimates for Sh
2  .

Proportional allocation is easy to accomplish and to analyze, but often i s
not a very efficient way to use sampling resources.  In most ecological work i t
turns out that the variance and mean tend to increase together, so that t h e
strata likely will have rather different variances, and proportional a l locat ion
will t hen undersample some strata and oversample others.  An a l locat ion
which allows for the effect of differences in stratum variances is the s c h e m e

called "optimal allocation". This method can be shown to minimize V ( y
-
 st) for a

fixed n. Optimum allocation is given by the following relationship:

                                                                        L
                                               nh = nWhSh / Σ W hSh                                               (4.14)
                                                                       h=1
 Of course use of the formula demands at least a guess at the Sh.  In m a n y
studies, there will be some preliminary information about the magnitude o f
variances to be encountered, quite often in the form of coefficients o f
variation, which may be applied to the expected stratum means to get a n
estimate of stratum standard deviations.  It also turns out that this kind o f
allocation is not too sensitive to errors in advance estimates of Sh so one c a n
usually expect to do a better job with this method so long as the s t r a t u m
variances do differ appreciably and the guessed values of Sh are in the r i g h t
"ballpark".In many natural populations the stratum with the lowest mean c a n
be expected to have roughly a Poisson distribution of individuals ( a s s u m i n g
the purpose of the survey is to estimate total individuals) so the i nves t i ga to r
can set that variance equal to the expected mean density, and go on from t h e r e
on the basis of any information about how variability increases with t h e
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means of the remaining strata.

One further feature of allocation worth considering here is t h e
circumstance where sampling costs differ among strata. Perhaps the s imples t
assumption is that total cost of thesampling can be written as:
                                                                       L
                                                  cost = co  +  Σ chnh                                                (4.15)   
                                                                     h=1
where ch represents the cost of measuring each sample unit in stratum h, t h e
ch are not all equal, and co is a fixed or "overhead" cost.  In this case, C o c h r a n
(l977:97) shows that the allocation should be:
                                                                          L

                                                 nh = 
nWhSh

ch
 /Σ W hSh/ ch                                      (4.16)  

                                                                        h=1
 so that the number of samples in a stratum depends on the stratum size, i t s
variability, and cost of sampling.  One takes more samples in large a n d
variable strata, but also increases sample size if sampling is cheap in t h e
stratum.This kind of allocation can be rather useful in dealing with s a m p l i n g
problems where either access or measurement may be quite difficult for p a r t
of the population.  It is worth noting that other kinds of cost functions m i g h t
be obtained from knowledge of the sampling problem, and special a l locat ions
then devised.  Cochran (l977) discusses "cost functions" for va r i ous
c i rcumstances .

Example 4.5 A deer population estimate

Counts of "pellet-groups" have been used to estimate deer
populations for many years.  Daily defecation rates are remarkably
constant (about 13 groups per day) and over-winter accumulations of
pellets can be identified by the underlying mat of leaves dropped the
previous fall.  There is thus a straightforward conversion from numbers
of pellet-groups to "deer-days" which in turn can be converted to
average population levels for the over-winter season.  Stratified random
sampling has been used to conduct such surveys in northern Michigan for
more than 25 years.  About 35,000 square miles are surveyed, requiring
on the order of 500 man-days of effort.  Some nine separate areas (Game
Management Districts) are surveyed independently.  An example for one
such are (District 7 in 1962; Ryel 1971:131) appears in the following
table:

Stratum    Area (               sq.mi.)     Prop                        .(Wh              )      nh       y
-
 h         

W h2sh2

n h       

I     190     .0541                9       65.22       1.7568
II    425     .1211               12      29.25       1.2649
III   1544    .4399               34      15.35       1.7803
IV   1144    .3259               10      10.70       1.7748
V     207                 .0590                 1       0.0            --
        _______ _______ _______ _______              ________
        3510    1.0000  66         -          6.5768.

The overall weighted mean number of groups per sampling unit was
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  y
-
 st =   17.31 with two standard errors being 29.6 percent of that

estimate. With the very large areas involved, an appreciable amount of
time is expended in traveling to the sampling units.  Since experience
shows that the individual plots should not be very large (to avoid
missing groups in the counts), a cluster sample is used at each site,
comprised of eight individual plots arranged along a half-mile line. For
convenience, square miles (sections) serve as the primary sampling unit,
with a random starting place and distance from the boundary used to
locate each systematically arranged cluster of plots.

To reduce the effort required to plan and execute these large-
scale surveys (150 to 200 people may be involved annually), the same
plots have been used for a number of years in succession. This makes it
possible for the field men to plan their work efficiently, since they
know the plot location well in advance and can anticipate just when the
plots will be accessible (and free of snow). Ryel (1971:222) calculated
the optimum allocation for a number of years. Results for the District
used as an illustration above are:
                  

                                 Calculated optimum allocation                                                                           
Stratum       Actual               
               allocation  1959                       1960            1961            1962             1963             1964                  

I     9       18        14         6          13         4         6
II    12      11        14        21         13        19       18
III   34      27        29       21          26        32       32
IV    10     9           9        18          14        11       10

It can thus be seen that the original allocation was, on the average,
quite satisfactory. Two kinds of factors may affect these results. One
is that the distribution of deer may change somewhat from year to year,
in consequence of winter weather conditions. Another is that variances
for each stratum are estimates, and thus will vary somewhat due to
chance alone.

4.11 Further remarks on stratified sampling

Cochran (1977), Thompson (1992), and other texts on survey s a m p l i n g
supply a good deal of auxiliary information on methods and techniques f o r
various special cases.  A few points that are examined in more detail in t h o s e
references are summarized here:

 (1) Gains in stratified sampling for the estimation of a proportion are usua l l y
not sizable unless the proportion (P) varies sharply from stratum to s t ra tum,
and in most cases, proportional allocation is preferable.

(2) Many surveys are designed to measure more than one random va r iab le ,
whereupon the question of allocation gets complicated. An initial approach i s
to calculate allocation for the variables of main interest separately a n d
determine whether the several allocations differ appreciably.  If so, then i t
may be possible to devise some sort of cost function to help in a decision.  I f
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there are two variables of main interest, then there are some handy s c h e m e s
for handling the two in a single allocation.

 (3) We have not considered how to determine either the number of strata n o r
stratum boundaries.  Most studies of natural populations will involve t h e
location of strata on maps, and the quantity of advance information on t h e
population will usually be such that the number of strata probably will not b e
less than three nor more than six.  A few trial efforts at laying out strata w i l l
usually resolve most questions of boundaries. Probably the major d i f f i cu l ty
comes up if large areas are to be covered, so that there are a number of peop le
involved, each having rather good local knowledge.  Then the principal j o b
turns out to be in getting individuals to agree on what constitute de f in i t e
strata, and how they should match at the junction of two districts w h e r e
different people are locally "expert" on the subject matter.  Some one p e r s o n
usually has to umpire the decisions, and this can perhaps be done a f t e r
individuals have made up maps reflecting their knowledge.

 (4) Sometimes it is possible to make use of stratification after a simple r a n d o m
sample has been taken.  It must be emphasized that stratification c a n n o t
legitimately be undertaken on the basis of examining the sample results, but i t
may turn out that it is not possible to assign individual units to strata u n t i l
after they have been surveyed, that is, the total number of units in e a c h
stratum may be known in advance, but the stratum to which a p a r t i c u l a r
sample unit belongs cannot be determined until the measurement is made.

 (5) Most experience with natural populations shows that variability i n c r e a s e s
with the mean.  This is fairly sound grounds for recommending t h a t
"optimum" allocation always be carefully  considered before selecting one o f
the other possibilities.

4.12 Ratio Estimation

The main results for ratio estimation require that the population total o f
an auxiliary variate (X) be known, and the correlation between X and t h e
variable of main interest (Y) is used along with the known total to obtain a n
estimate of either the mean of Y or its total with greater precision than may b e
obtained from simple random sampling of Y alone. So far, ratio and r e g r e s s i o n
methods have been little used in ecology and resource management su rveys ,
partially perhaps because of a lack of suitable correlated variables w i t h
known totals, but also because many investigators are not familiar with t h e s e
methods.

In the usual notation, X is used to represent the known population total.
Since we have been using X to represent a random variable, XT will denote t h e
population total here. The ratio estimate is:

                                          Y
^

 R  = 
Σyi
Σxi

  XT =    
y
_

x
_  XT

 as an estimator of the population total for Y.  The mean value of Y is est imated
by replacing the population total (XT ) by the mean above.
The population ratio is estimated by:
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                                            R^   = 
Σyi
Σxi

 

If interest is principally in the population ratio, then it is not necessary t o
know XT.

An important application of ratio methods is worth mentioning here i n
order to provide an illustration of the nature of the above relationships.  Th is
is the use of "strip transects" (discussed in more detail in Chap.5) o n
irregularly-shaped areas.  A strip transect is just a long, narrow p lo t
extending completely across a study area.  For present purposes, we assume
that all of the objects of interest are counted on each of a number of s t r ips .
Each such transect then constitutes a sample plot.  If the region under study i s
rectangular in shape, then each sample plot will have the same area, and n o
adjustment is for transect length is needed.  However, in most p rac t i ca l
situations, study areas will be irregular in shape.  Strip transects across such a
site will thus have different individual areas, presenting a problem in t h e
analysis of the data, since plot size is now also a random variable.

It is true that a simple random sample of strips will provide an unb iased
estimate of the total number of objects on the study area. The a p p r o p r i a t e
random variable is the total number on each strip, and the ca lcu la t ions
proceed as previously described for simple random sampling of a f i n i t e
population (the total number of possible sample strips).  However, such a
theoretically correct result is of almost no practical interest in dealing w i t h
natural populations, just because such populations exhibit high va r i ab i l i t y
even with efficient methods of sampling. We thus cannot afford to bring i n
any further variability. Ratio methods can conveniently be used to resolve t h e
problem simply by regarding the area of each sample strip as Xi, so that XT i s
the total area of the study region, and letting Yi represent the total number o f

objects on each sample plot.  We then have that  R̂  estimates  the a ve r a g e

density (number per unit area) observed in the sample, and  Y
^

 R is an es t imate
of the total number of objects on the entire study area.

The ratio estimate is biased, but the bias is considered unimportant f o r
large samples.  In this case, a rule of thumb is n of at least 30, and t h e
coefficients of variation of the means of X and Y should both be less than 0.10
(Cochran, 1977:153). Stratification and ratio estimation may serve roughly t h e
same purposes, and it is likely that an effective stratification could be ob ta ined
through the use of the auxiliary variable X.  Thus in the example given above,
one could stratify the study area into blocks such that the length of po ten t ia l
sample transect strips is about constant in each stratum. However, the r a t i o
method provides a "natural" approach in this instance, and is thus t h e
appropriate choice.

The ratio estimate effectively assumes the relationship between Y and X
to be Y = RX + e, where e represents an "error" component and R is a n
unknown constant.  In some instances it may not be reasonable to assume t h a t
the relationship goes through the origin, so that a regression estimate i s
appropriate.  This method is also biased, so that large samples are g e n e r a l l y
recommended. Details are available in Cochran (1977) , Thompson (1992), a n d
many other texts on sampling. Before undertaking to use the ratio o r
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regression techniques, an investigator should have some p r e l i m i n a r y
observations (or good general knowledge) that indicate a relationship b e t w e e n
the variable of primary interest (y) and an auxiliary variable (x). A first s t ep
it plot the data and to note whether the regression line clearly does not g o
through the origin. If this is the case, then it is advisable to look i n t o
regression estimation, rather than using ratio methods. Occasionally t h e r e
may be more than one useful auxiliary variable and it is then possible to u s e
multiple regression.

4.13 Variance of ratio estimates

An estimate of the variance of a ratio is given by:
                                                 N

                       V(R^  ) =
.
 
1  -  f

nX
_2

  [Σ (Yi -  R̂ Xi)2/(N-1)]                                              (4.17)  

                                                i=1
 Here f again represents the finite population correction, and may b e
neglected if n/N is less than about 5 to 10 percent.  N is the total number o f

units in the population, n, the number in the sample, and X
_
  the popu la t ion

mean of the auxiliary variate.  Note that the summation runs over the e n t i r e
population, so that this is an approximation to the "true" variance, and it w i l l
in turn have to be estimated by a quantity that can be calculated from a
sample; that is, we replace the quantity in the right-hand brackets by samp le
data, getting:
                                                           n

                              s2( R̂ ) =
.
 
1  -  f

nX
_2

  [ Σ  (yi  -  R̂ xi )2/(n-1)]                                     (4.18)

                                                         i=1

When interest is in the mean or total of Y, the estimates are as given before:
and variances can be calculated from Equation (4.17) by recalling the rule t h a t

V(aR) = a2V(R), where the constant a is now either X
_
   or NX

_
  , since both o f

these quantities are assumed known, and thus play the part of cons tan ts .
Calculation of an estimate of V(YT ) is easier in the following equivalent form:

                               s2( Y
^

 R ) =
.
 
N(N-n)
n ( n - 1 )   [Σyi2 + R̂ Σxi2 -2 R̂ Σyixi]                        (4.19)

Note that this is the variance for estimating a total.

Since it is advisable to check that the coefficients of variation of t h e
means of Y and X are less than 0.10, another form for calculation of va r i ab i l i t y
is:

                               [c.v.(Y
^

 R)]2 = 
s2(Y

^
R)

Y
^

R 2 
   = 

1-f
n   [cyy + cxx -2cyx]                      (4.20)  

 where cxx, cyy , and cyx are the coefficients of variation of y, x and t h e
analogously defined cross-product term:
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                                                cyx = 
Σyx - ny

_
x
_

( n - 1 ) y
_

x
_  

Readers who refer to Cochran (1977) should note that he used the coe f f i c ien t
of variation of the mean, e.g., cyy / n .                      

The squared coefficient of variation of YR is often termed the re l a t i ve
variance, and can be used to calculate variances of any of the three est imates
of interest (the coefficient of variation, being a relative quantity, has t h e

same value for Y
^

 R, R̂ , or R̂ T).
Confidence limits can be obtained as before:

                                       Y
^

 T + zs(Y
^

 T)     or   R̂  +    zs(R̂ )  

Example 4.6 Ratio corrections for variable plot size

A numerical example of corrections for different lengths of a
strip-transect is given by Norton-Griffiths (1975).  The data are those
from an aerial survey for several species of African "game".  Only
wildebeest are considered here.  The data are as follows:

                                                   xi                          yi
Transect                           Area (km                 2)            No.                     coun ted                      

        1       8.2                 58
        2       13.7                44
        3       25.8    175
        4        25.2  141
        5       21.9    151
        6        20.9               144
        7        23.0    131
        8        19.2    135
        9       21.4    104
       10      17.5                111
       11      19.2                130
       12      20.8                136
                                               _______               ________
       Totals                               236.8             1460

The total area of the study region was 2829 km2, so the population
estimate is:

             Y
^

 R =   
Σyi
Σxi

  XT   = 
1460
236.8  2,829 = 17,440 wildebeest.

There were 126 possible strips in the area, so that N = 126, n = 12, and
calculations from Eq (4.19) are:

  s2( Y
^

 R ) =
.
 
N(N-n)
n ( n - 1 )   [Σyi2 + R̂ Σxi2 -2 R̂ Σyixi ]
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                = [126(114)/12(11)][193,262 +(6.16)2 4,935 - 2(6.16)30,561]
                = 436,580.
The standard error is (436,580)1/2 = 66l, which is quite small compared
to the estimate.

It may be noted that the sample size (12) is a good deal less than
the 30 recommended as a rule of thumb for using ratio estimation.
However, this very likely is an instance where the ratio estimate is
nearly optimal, i.e., the relationship goes through the origin, and the
variance of the counts likely increases with the area of the transects.
Hence, it seems quite reasonable to neglect the n = 30 rule.  Density
per unit area is estimated by:

R
^
 = 1460/236.8 = 6.16 wildebeest per km2.

4.14 Double sampling

The major problem with ratio estimation in ecological studies is just t h a t
there are various situations where the method is potentially useful, but a to ta l
for the auxiliary variable is not known exactly.  Many of these situations do
not seem to fit neatly into the present methodology of survey sampling, but i t
does seem that double sampling comes close enough to provide a use fu l
framework for examining the problems and a useful starting place for m u c h -
needed research.  The basic idea is just that of the ratio estimation scheme.  We
have a random variable of primary interest (Y) and an auxiliary variable (X)
known to be well-correlated with Y.  The missing item is a known total for t h i s
auxiliary variable (XT ) .

In the instances of interest here, measurements of the aux i l i a r y
variable (X) are either very inexpensive to obtain, or are readily available f o r
a large sample taken over the study region.  A convenient example is that used
to describe ratio estimation; the use of strip transects.  We now suppose that t h e
total area of the region under study is not known.  If the area is mapped, t h e n
it is obviously an inexpensive process to make a large number o f
measurements of the lengths of potential transect lines from the map.  One c a n
thus come very close to estimating the total area (XT) by working with t h e
map.  If we denote this estimated total as X'T, then double sampling proceeds i n
just the same manner as ratio estimation, i.e.,

                                          Y
^

 R  = 
Σyi
Σxi

  X'T   

but it is now necessary to make some allowance in variance estimation for t h e
fact that the total(X'T) of the auxiliary variable is not known exact ly .
Eberhardt and Simmons (1987)  conducted some monte carlo studies to sugges t
when double sampling might still be useful under this limitation.

If the study region is mapped, there are usually better ways to m e a s u r e
the total area (e.g., by planimetry).  However, various nontrivial examples c a n
be considered.  The survey may be concerned only with a particular c o v e r
type, which is not mapped.  If the work on the actual sample transect is q u i t e
time-consuming, then it may be well worthwhile to measure only the width o f
the cover-type on a large number of "auxiliary" transects. These widths t h e n
provide an estimate of XT.
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Another situation where double-sampling may be useful is w h e r e
detailed measurements need to be made on individual plots by some t i m e -
consuming process. One example is in estimating total oven-dry biomass of ,
say, nonwoody vegetation.  The time required for clipping, drying, a n d
weighing vegetation severely limits the number of plots that can be so deal t
with.  Double-sampling might well be utilized by using stem counts as a n
auxiliary variable, since this can be done on a rather large sample of plots a t
low cost.  A similar prospect exists when chemical analyses are to be done o n
vegetation, but in this case it may be desirable to use weights on a large samp le
of plots as the auxiliary variable.

An essential feature of these examples is that accurate measurements o f
the auxiliary variable can be made in each instance.  This appears to be t h e
basis for the present theory of double sampling as given, for example, b y
Cochran (1977: Ch.12).  Unfortunately, there are a great many very use fu l
potential applications in ecological studies that do not seem to quite "fit" t h e
existing theory.  These are situations where the auxiliary variable is a n
estimate of some kind, and is subject to either sampling error, bias, or bo th .
The biomass of vegetation example provides a convenient case.  Rather t h a n
stem counts, the investigator may choose to use an ocular estimate of b iomass
on a large sample of plots as an auxiliary variable.  With some experience (bes t
gained by guessing weights on a sample of plots and then clipping a n d
weighing), he may become very proficient at visual estimation.  The p r o b l e m
now is that the auxiliary variable is subject both to the "chance" e r r o r s
inherent in visual estimation and to any persistent tendency to cons is ten t l y
overestimate or underestimate.

Another illustration may be taken from aerial censusing of an ima ls .
Practically all of the available experience shows that aerial observers tend t o
miss a substantial fraction of the animals on a sample unit (very often a s t r i p
transect).  Nonetheless, since aerial surveys can be relatively i nexpens ive ,
efforts may be made to "calibrate" the surveys by using some accurate me thod
to enumerate the number of animals actually on a subsample of the p lo ts
surveyed from the air.  If it can be supposed that these "ground-truth" c o u n t s
are truly without error, then it can be argued that the requirements of doub le-
sampling are met.  The aerial survey now provides the auxiliary variable (X),
while the ground count provides the accurate census (Y) that is wanted .
However, the auxiliary variable (aerial count) is clearly going to be subject t o
sampling errors, due to a large variety of causes.  Hence we no longer h a v e
quite the same situation as when the auxiliary variable can be measu red
without error.  It may be feasible to completely survey the study area from t h e
air.  However, this is still not a known total, as a repeat survey flown u n d e r
identical conditions will without much question yield a different total count.

Many readers will have recognized another problem that was passed b y
above.  This is that the "accurate" measurement (Y) is seldom achievable i n
census work.  Usually the best that can be managed is an estimate that i s
believed to be unbiased, but is clearly subject to sampling error.  We thus h a v e
both Y and X subject to sampling errors.  This circumstance may bring in some
major problems in statistical analysis.  These problems are p a r t i c u l a r l y
difficult in regression analysis, and remain unresolved for a number o f
circumstances of importance to ecologists and biologists.  Ricker (1973)
reviewed the situation for problems in fisheries research and management.
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There is thus a need to exercise some caution in applying doub le
sampling in situations where the auxiliary variable is subject to s a m p l i n g
errors, particularly when regression equations are used.  In many p rac t i ca l
applications in ecology it seems that the ratio approach may be q u i t e
satisfactory so we will usually rely on it here.

If it is clear that the relationship does not pass through the origin a n d
if the variance appears relatively constant around a regression line, then it i s
likely that the regression method should be used.  However, in the many cases
where it is necessary to assume sampling errors in the auxiliary variable, t h e
usual elementary textbook test for significance of the intercept cannot b e
trusted.  Hence it may be best to depend on judgements as to the nature of t h e
relationship and the pattern of variability in choosing between ratio a n d
regression methods.

4.15 Cluster sampling and subsampling

Cluster samples are likely to be useful in field studies whenever the i t e m
of interest is primarily associated with some natural sampling unit.  A n
example might be some species of insect found only on a particular species o f
plant.  Any interest in enumerating the insects, or in studying some o t h e r
measurement, such as the percent of insects parasitized, requires attention t o
the fact that they come in clusters.  In point of fact, this distinction is o f t e n
ignored in practice, and it can be safely said that measures of va r i ab i l i t y
obtained without considering the clustering effect will usually be v e r y
seriously underestimated. Of course, in the example here described one m i g h t
reasonably use a ratio estimate, counting the number of plants and s a m p l i n g
some part of them for insect abundance.

In some cases it is possible to deal with clusters that are all comprised o f
the same number of individual sampling units.  This is a natural way t o
approach large-scale area samples, where the "primary sampling unit" may b e
taken to be a square mile (section).  One may want to use much smaller p lo ts
(square-meter or 0.01 ha, perhaps) for the actual measurements, but t o
enumerate the variable of interest on several such plots in each square m i l e
in the sample.  One approach is then to draw a random sample of n s q u a r e
miles from the overall area, and to locate m plots (the subsample) in each o f
the selected primary units.  This is usually termed two-stage sampling. A n
important consideration in such schemes is determining how m a n y
subsamples (m) and the total number (n) of primary units to take to m in im ize
the overall variance (or maximize precision) for a fixed over-all cost.

We will not attempt to detail the procedures for optimum use o f
subsampling methods, but it is worth mentioning one scheme for ca l cu la t i ng
the overall variance of an estimate, and thus confidence limits.  This is just t o
use the subsample results for each primary sampling unit to estimate a tota l
for that unit.  That is, if there are m plots in each unit, one just obtains t h e
total for those m plots and multiplies it by the reciprocal of the s a m p l i n g
fraction to get an estimate for the primary unit. The primary unit totals c a n
then be used directly as random variables to compute a variance for t h e
survey total.  This variance will reflect both components of variability -- t h a t
for subsampling (within primary units) and that for differences a m o n g
primary sampling units.  What one loses, of course, is any information on t h e
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optimum subsampling rate.  The same scheme can be used when the c lus te rs
(primary units) are of different sizes (i.e., contain different numbers o f
sampling units, as, for example trees in woodlots).  The shortcoming here i s
that if the clusters vary considerably in size, that difference will c o n t r i b u t e
greatly to the overall variance. This point is most important if there i s
additional information on the cluster sizes in the population, but as w a s
mentioned above, one might then be able to use ratio methods.

Subsampling schemes are often conveniently used to c o m b i n e
systematic and random sampling.  In the example above of randomly selected
sections (square miles) which are then subsampled, it is often possible t o
reduce the labor involved if the primary units (sections) are selected a t
random (usually in a stratified sampling plan) and a series of plots located
systematically along a transect within each section as subsamples.  It is h i g h l y
desirable that the transect starting points be randomly selected to avoid a n y
bias due to edge effects or such things as old fencelines in the sections.

Subsampling schemes can involve several stages, and va r i ous
complexities of estimation.  One might for example, use a stratified r a n d o m
sample of square miles, locate subsampling plots in each randomly d r a w n
section, and then elect to examine only a random sample of individual p l a n t s
on each plot for the variable of interest, which might in turn in v o l v e
measurements subject to error.  Obviously, the statistical analysis of such da ta
can be quite complicated.  One way to simplify matters a great deal is to r e s o r t
to jackknifing or bootstrapping.

Sampling in two (or more) stages is also worth considering when t h e r e
is uncertainty about the accuracy of the method for making measurements, a s
is so often the case in estimating the abundance of animal populations.  It i s
usually the case that population density will vary considerably over l a r g e
areas, and the investigator may have a reasonably good notion of how dens i t y
varies with habitat and so on (or this may be a major item of interest).  It i s
then logical to use a stratified random sampling scheme to locate p r i m a r y
sampling units on which the actual measurements of density will be at tempted.
This does not, of course, reduce any uncertainty in the actual m e a s u r e m e n t
method, but it does keep the area differences from compounding matters.

Example 4.7 A cluster sampling example

One simple example of cluster sampling was mentioned in Example
4.5 (stratified sampling).  The "primary sampling units" (square miles)
were selected at random, and then subsampled with a cluster of eight
small plots.  All  that is needed for analysis of the resulting data is
just to multiply the total for the eight subsamples by a "raising
factor" or "blow-up factor", which is simply the reciprocal of the
sampling rate.  In the example used, the individual plots were each 1/50
of an acre, hence the necessary adjustment factor is:  640/(8/50) =
4000. Once this is done, the remaining analysis proceeds as though no
subsampling had taken place.  Skeptics may need to do a little algebraic
manipulation at this point.  When subsampling rates are not constant,
things become somewhat more complicated, and a sample survey text should
be consulted for details. However, if the subsampling rate does not vary
greatly, the same procedures can be used without elaboration.  All that
happens is that one overestimates the variance, in most situations.  But
if the subsampling rate varies considerably and/or is related to size of



                                                                                                                                         4.23

the primary sampling unit, then by all means consult a textbook on
sampling or a statistician.

Supposing constant size of the primary sampling unit, and a
constant subsampling unit (the case most likely in ordinary
applications) the main question to be settled is "What is the best
subsampling rate?".  As usual, answers depend on relative costs.  That
is, a particular effort (hence cost) is required to survey an individual
sampling unit (i.e., one plot in the example), while a separate cost is
engendered by the time and travel going from one primary sampling unit
to the next.  For a given total expenditure for the entire survey, the
optimum subsampling rate is that which minimizes the overall variance
given the above two costs

Since natural populations exhibit a somewhat frustrating tendency
for variances to change nonlinearly with size of the sampling unit (plot
size), a simple equation for subsampling rate is not available. What's
really needed is a "variance law", i.e., a relationship between plot
size and variance.  To obtain such a relationship, one has to run a
special study using several plot sizes.  Then it becomes possible to
incorporate costs and get on with the business at hand by consulting
Cochran (1977, Ch. 9).  As we noted earlier, the kind of measurement
(weights, counts, etc.) and the organism under study influence the
"variance law" substantially.  Hence there are two choices open at this
point.  One is to run a fairly expensive preliminary field study, and
thus to manufacture your own "variance law".  The second choice is to
resort to the literature in the appropriate field, seeking papers in
which several different plot sizes have been used.  A number of
references along these lines appear in Eberhardt (1978a).  However, it
is clear that this is an area needing rather more research attention in
ecology.

Example 4.8 Cluster sampling involving proportions

One of the commonest errors in the ecological literature is an
uncritical acceptance of the binomial distribution as an appropriate
model for analysis of proportions in data collected in clusters.  It is
the appropriate model if, and only if, a simple random sample of
individuals can be obtained.  In practical problems one almost always
collects observations as clusters.  When this is the case, the
clustering effect must be taken into account in order to obtain a
meaningful variance.  Very rarely do we encounter a population so well
mixed that clusters are indeed equivalent to simple random samples, so
that such an example is likelyto be more of a curiosity than anything
else.

The simplest way to deal with cluster sampling for proportions is
to treat the individual observations as random variables.  In this
instance, the appropriate form of the ratio estimator is:
                                                     n

                                         p
_

  = 
1
n    Σ  

yi
xi

 

                                                    i=1
 where yi denotes the number of individuals in the ith cluster
possessing the attribute of interest, and xi is the total number of

individuals in the ith cluster, while n is the number of clusters.
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The appropriate variance estimate here is (Cochran 1977:65):

                                    V(p
_

 ) = 
Σ(pi - p

_
)2

n ( n - 1 )  

 where pi = yi/xi, i.e., the observed proportion in the ith cluster.
(We here neglect the finite population correction which can be inserted
as a multiplier (1-f) if needed).

An interesting set of data to illustrate behavior of proportions
in clusters comes from a paper by Johnson and Chapman (l968).  This was
a study to estimate the number of fur seal pups on a "rookery" on the
Pribilof Islands, off Alaska. A large sample (4,965) of pups were marked
(in groups) and then clusters of100 were examined (for the proportion
marked) at randomly selected sampling stations.  The estimate of the
total number of pups on the rookery was obtained from

                                       N
^
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M
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_

)
 

where N is the population estimate, M is the number marked (4,965) and p
_
  

is the mean proportion marked, calculated as in the above example.

Two ways of estimating the variance were used.  One is based on
the "delta method", and is:
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 where  v(p
_
 )  is obtained as in the above example.  The second method

is that of "interpenetrating" sampling, in which the sample is
subdivided randomly into a number of subsamples. A separate estimate of

the population size N̂ i is made from each subsample and these are then
averaged for the final estimate, i.e.:
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It should be noted that the two estimates of the total population will
not necessarily be identical, nor will the variance estimates be the
same for the two methods.
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The observed numbers of marked pups in clusters of 100 (recorded
on two sampling dates) were:

 August 26, 1961              2, 0, 1, 6, 4, 33, 62, 49, 55, 38, 52, 77,               
(25 samples)                   85, 54, 27, 17, 3, 3, 3, 2, 2, 1, 0, 0, 4.

August 28, 1961               0, 0, 0, 4, 0, 0, 0, 12, 4, 8, 60, 48, 72,  72, 76, 80, 56, 44,
(58 samples)                    50, 56, 56, 28, 60, 36,44, 44, 28, 52, 72, 28, 72, 60, 60, 84, 

                   76, 52, 84, 48, 52, 60, 40, 12, 8, 12, 4, 8, 44, 16, 0, 8, 0, 0, 
                   4, 12, 8, 0, 0, 0.

 The interpenetrating or replicated samples were defined as
follows:

Subsamples 1, 2, 3:  Every third observation of August 26,
beginning with observations 1, 2, 3, respectively.

Subsamples 4-10:     Every seventh observation beginning with
observations 1, 2, 3, 4, 5, 6, 7, respectively.

Since there were 25 observations on 26 August, this procedure yields
subsamples of size 9, 8, and 8, respectively, while the 58 observations
on 28 August yield two sets of size 9 and 5 of size 8.  These data lead
to the following estimates for the interpenetrating sampling:

Subsample      Ni                    

        1       20,497
        2       24,219
        3       20,060
        4       17,455
        5       16,674
        6       17,732
        7       14,391
        8       12,490
        9       13,066
        10      14,821
                 __________
Total        171,405

 Averaging gives N
^
 2 = 17,140  with v(N

^
 2) = 1,353,000, while N

^
 1 =

16,550 with v(N
^
 1) = 2,950,000.

4.16. Some additional sampling techniques

There are a number of additional techniques students should know
about. Multistage sampling was used in Examples 4.4 and 4.5 where subsamples
of the primary sampling units were actually enumerated. As pointed out there,
it isn’t necessary to consider the subsampling in obtaining a variance
estimate. All that is needed is to use the subsample data to make estimates for
the primary sampling units and treat those values exactly as one would if the
entire unit had been tallied. However, it may be desirable to consider the
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“within sampling unit” variability in order to do a more efficient job of
designing the survey. This requires more complex equations which are given
in many books on sampling [e.g., Cochran (1977), Thompson (1992)].

Another useful technique uses unequal probabilities in selecting
samples. This approach is exemplified by the line intercept technique
described in Chapter 5, and may be useful in any circumstance where the
probability of selection may vary from unit to unit, either naturally or for
convenience or improved efficiency. Texts or references to sampling
techniques may refer to the Hansen-Hurwitz estimator. This is a method for
using unequal sampling probabilities (see any of the sampling texts for
detai ls).

A relatively recent development is known as adaptive sampling. This
may be a very useful approach when items of interest tend to be clustered, but
in such a manner that there is no readily defined unit that contains all of the
elements of a cluster. The technique provides a means for expanding the
sampled area around primary units where a concentration of the items of
interest is encountered, without biasing the results (which occurs with
certainty if one simply expands the area to include more individuals). Details
appear in Part IV of Thompson (1992) and a more extensive (and more
theoretical) treatment appears in Thompson and Seber (1996).

Another potentially valuable approach is generally known as “kriging”
after the South African mining engineer, Krige, who developed the initial
approach in searching for profitable sites for mining for gold or other
minerals. The approach is now used in petroleum exploration. In both of these
examples drilling exploratory holes can be very expensive and time-
consuming. The methodology thus utilizes spatial correlations among the
available samples to estimate abundance or density on an area. A natural
descriptive phrase thus is “spatial sampling”, and there are many instances
where this may be useful in ecology. Thompson (1992:Part V) gives a useful
summary and references to the extensive literature.

4.17 Exercises

4.17.1 Using a table of random numbers

Drawing a sample with the aid of a table of random numbers is not v e r y
complicated, but the student should try drawing a sample of 10 ind iv idua ls
from a population of 20, and another sample of 10 from a population of 1000
(the "populations" can be just the numbers 1-20, and 1-1000).  Two a p p r o a c h e s
to starting points in the table may be considered.  One is to somehow make a
"random" start, (e.g., by closing one's eyes and touching a point on a page t o
select random coordinates in the table for a starting point) the other is to m a r k
off sets of digits as they are used, going on through the table as d i f f e r e n t
occasions for its use come up.  The latter course is preferable for r epea ted
surveys of the same areas.  Note that samples of 10 out of a small popu la t ion
(like 20) may yield one or more repetitions of random numbers. Notice, too,
that one has to use a two digit column of numbers, and many must be re jec ted
with a population of 20. This seems to be even more of a problem with t h e
population of 1000, since one should use 4 digits in order to permit the n u m b e r
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1000 to have a chance to be drawn.  However, it is simple to arbitrarily as s i g n
the number 1000 to the 3 digit sequence 000 and thus use three columns (001 t o
999, plus 000 for 1000). When working with EXCEL it is convenient to use t h e
RANDBETWEEN() function, as that avoids the need to use a table of r a n d o m
n u m b e r s .

4.17.2  Determining sample size

Suppose that we want 95% confidence limits of about + 15% for the data i n  
Example 4.1. What sample size is required if N =1000? Calculate sample size f o r
+10% for N = 1000.   

4.17.3 An exercise in allocation

As an exercise in allocation, use the values of  sh2  actually obtained i n
the caribou survey in Example 4.5 to calculate a new allocation and compare i t
with that actually used.  

Another way to guess at the Sh to use for allocation is to assume t h e

coefficient of variation (s/x
-
 )  is constant.  Calculate the c.v.'s for each s t ra tum,

and try a "typical" values for allocations.  Are there substantial d i f f e rences
between the various schemes? Comment on the results.

4.17.4 Computations for mortality survey

Compute y
-
 st and the total mortality estimate for Example 4.4 along w i t h

95% confidence limits.  It is often convenient to use  2[V(y
-
 s t) ] 1 / 2/ y

-
 st a s

"percentage limits"on survey results.  Compute that value and compare it w i t h
the same result for example 4.3.

4.17.5 Stratified sampling in a vegetation study

A survey designed to estimate biomass of non-woody vegetation in a
sagebrush stand (Eberhardt and Rickard 1963) provides an example of a
different approach to stratification and illustrates some of the po ten t ia l
flexibility of sampling methods.  In this example, proportional allocation w a s
used in order to avoid advance preparations other than marking out the a r e a
well enough to avoid recounting individual plants.  Two investigators wo rked
together, one classifying and tallying each sagebrush plant into one of f i v e
strata, while the other checked off each plant on graph paper on w h i c h
certain squares had previously been randomly selected as representing a
plant to be sampled (it was thought that about 1/30 of the bushes should b e
sampled, so three numbers from 1-90 were designated as meaning"sample" a n d
a table of random numbers was used to produce the sampling chart).  When a
"winner" turned up, the bush was subdivided into from two to five parts, a n d
one of the parts was randomly selected.  If that part was too large f o r
weighing, it was subdivided and a random selection again made.  The selected
portion was than clipped, oven-dried and weighed.
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Data from the survey are tabulated below.  The "subsampling f rac t ions "
show approximately how much of an individual plant was actually removed.
In the first record in the table, about 1/4 was removed, while in the second
case there were two sub-divisions, and roughly 1/10 [(1/5) times (1/2)] w a s
actually removed. Thus to estimate total weight for a given plant one would
multiply by 4 or 10.  Stratum IV contained the largest plants and the two p l a n t s
actually sampled were sampled at rates of 1/56 and 1/28, respectively.  Of
course the divisions were not exact but any errors in subdividing will e n t e r
into overall variance of the survey estimates.  There was actually a f i f t h
stratum, but only one plant was sampled, so it has been left out of t h e
tabu la t ion .

As an exercise, the student should work out an estimate of mean o v e n -
dry material and its variance for the entire sagebrush stand using the data i n
Table 3.l.  Calculate an optimum allocation for a sample of the size used h e r e
(25), and compare with the proportional allocation (neglect the fpc). Calculate
coefficients of variation. Comment on the results.

 Results of stratified sampling of a sagebrush stand.
 Stratum    Number of bushes        Subsampling           Oven-dry               
                    in stratum                    fractions for           weight of                     
                                                           sampled bushes      sample (g)                                                 
 I     169     1/4     0.60
               1/5,1/2  1.90
               1/2,1/2  2.05
                         1/2,1/2  1.05
               1/2      1.20

 II    309                  1/4,1/2 1.60
                1/5,1/4 3.20
                1/5,1/5    1.45
                          1/3,1/3 4.05
               1/3   2.05
               1/3,1/2 1.45
                1/4,1/4 2.40
               1/3,1/2 1.65
                1/3,1/4 0.60

 III   301                 1/5,1/4 1.85
                1/5,1/2  2.85
                1/5,1/4  7.15
               1/5,1/3  2.15
                1/3,1/4  4.10
                1/4,1/5  3.50
                1/4,1/3  5.25
                1/5,1/3  5.60
                1/3,1/3  1.55

IV     57                   1/8,1/7 6.05
                1/7,1/4 3.60
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4.17.6 Try jackknifing to calculate a standard error for Example 4.6. Compare
your result with that given in the Example (661). Also, calculate bias estimates

for R̂  using jackknifing and bootstrapping. Use 200 bootstraps. There is only
one jackknife estimate of bias available, but you can run the bootstrap
repeatedly and see how the bias changes. Comment on your results. Don’t
forget to consider the magnitude of the bias relative to the estimate.

4.17.7  Bootstrap the data for August 26 (n=25) from Example 4.8 and compare
your results with the ratio estimators N-hat(2) and V(N-hat(2)) given in the
example, and with the binomial variance estimate given below. Do 200
bootstraps and calculate Bias(boot) from eq.(3.2). Run repeatedly and see how
Bias(boot) varies. Is there an indication of appreciable bias? Recall that when
simple random sampling of individuals is assumed:
                                 v(p) = pq/(n-1)

 where n here is 2500.  The difference in the two estimates reveals why the
binomial formula should never be used with cluster samples.

4.17.8  Try jackknifing the "interpenetrating sampling" results of Example 4.8,
and compare the variance you get with that given in the example. Explain the
resu l ts .
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5.0 TRANSECT METHODS

5.1 Introduction

One of the main handicaps faced by the practicing population ecologist
is that there really is no wholly reliable census method for most wild a n i m a l
populations.  In spite of the intensive theoretical work done on c a p t u r e -
recapture methods, there yet remain various unresolved issues. Hence, a s
frequently remarked here, it is essential to use more than one method, and t o
do as much cross-checking and testing of assumptions as possible.  It is, o f
course, easy to recommend such a course, but very difficult to follow it.  Fo r
census methods, the only sure test of the underlying assumptions may in f a c t
be to secure an absolute population count.  Even then we are left with t h e
question of sampling errors--an observed discrepancy may simply be due t o
chance alone.

Since the capture-recapture methods require at least one o u t r i g h t
capture of a sample of animals, followed by one or more repeat observa t ions
(which may be visual only), they are necessarily expensive to use in p rac t i ce .
Catch- effort and change-in-ratio methods can only be used effectively on a
harvested population.  These limitations lead to a need for a method based
solely on visual observation since it is often relatively inexpensive and r a r e l y
poses any threat to the population.  For these reasons, and no doubt because o f
wider recognition of the difficulties with other methods, there has r e c e n t l y
been a considerable interest in transect methods.

One of the brighter prospects for the future of transect methods is t h a t
it may be possible to avoid the pitfall posed by the "equal probability o f
selection" assumption required to apply elementary probability models.
Unfortunately, some of the early work on transect methods included a n
equally untenable assumption, that individual animals are randomly a n d
independently distributed over the study area.  I prefer to adopt the w o r k i n g
axiom that this is never the case, even when tests for departure from a Poisson
distribution are "not significant."  I will cheerfully abandon that v i ewpo in t
whenever the power of a test of randomness can be shown to be suitably l a r g e .
Presently, a random distribution of individuals may have to be assumed f o r
various features of secondary importance, such as obtaining an approx imate
notion (really a lower limit) of a variance for an estimate. However ,
bootstrapping offers promise for better variance estimates, with less
di f f icu l ty .

Avoiding the assumption of a random spatial pattern of ind iv idua ls
requires that we substitute random location of transect lines.  Systemat ical ly
spaced lines are much easier to use and have other practical advantages.  Not
the least of these is the fact that randomly located lines may fall very c lose
together so that running one such line can influence animals on a n e a r b y
line. Some ways to avoid this problem are discussed below.  Although we w i l l
not try to go very deeply into the issue here, it should be remarked that t h e
choice between random and systematic sampling for transect methods is not a s
simple a matter as for, say, plot sampling.  For plot sampling, two features a r e
of paramount importance.  One is to avoid a systematic pattern that i s
correlated with a similar pattern in the material being sampled.  The other i s
that variances obtained from systematic samples usually overestimate the t r u e
variance. 
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Some of the transect estimators depend on a probability model that ho lds
strictly true if and only if the transect lines are indeed randomly located. Th is
may place a considerable premium on adhering to random sampling.  Possib ly
the effect of departing from that model may eventually turn out to be of m i n o r
importance.  Until more work has been done of the "robustness" of t h e
estimators, we will adhere to the requirement of random sampling, when t h i s
is at all feasible.  If very large areas are to be covered, it may not b e
practicable to use anything but a systematic arrangement of transect l i nes .
However, the most apparent problems with systematic samples apply t o
situations of a much smaller scale, not when lines are very widely spaced.

5.2 A classification of transect methods

Terminology for transect methods is not well-established.  We w i l l
adhere to a usage that includes three main classes.  The strip-transect i s
essentially a long narrow plot, on which it is basically assumed that all of t h e
individuals present can be seen and tallied.  As such, there is no i m p o r t a n t
difference from plot sampling.  Some modifications tend to make it m o r e
interesting and worth special attention.  These include censusing ma r i n e
mammals at sea, when individuals may submerge for varying periods of t ime,
and thus escape enumeration.  In many transect applications the mobility o f
individual animals is neglected.  This is not feasible for those species that a r e
observed when in motion, such as small birds.  Thus another kind o f
modification needs to be considered.

In most census methods individual objects are regarded as po in t s
scattered around the map.  Sometimes this abstraction either is not p rac t i cab le
or is inefficient.  The investigator may be directly concerned with s u c h
quantities as the canopy coverage of shrubs or the volume of logs left lying i n
a cutover area.  There is then an advantage in measuring the size of the ob jec t
intercepted by the line; hence the descriptive term of line-intercept method.

The third class is perhaps best known, and includes the methods i n
which decreasing visibility of objects with distance away from the t r a n s e c t
line has to be taken into account.  We include all such methods under t h e
general heading of line-transects.  Some writers use the same term to apply t o  
both strip- transects and line-intercepts.  The terminology adopted here h a s
the advantage of being reasonably explicit in descriptive terms.

Where mobile animals are concerned, one important distinction lies i n
whether or not the animal responds conspicuously to the observer's a p p r o a c h .
One can then measure the flushing- distance, i.e., the straight-line d is tance
between observer and animal at the time the animal "jumps" or "flushes," i.e.,
leaves cover.  This is also designated in the literature as the radial distance o r
as the sighting distance. It is essential, however, to also measure the angle o r
the right-angle distance (i.e., the distance between the track line and t h e
an ima l .

When detection depends mainly on the observer locating the animal o r
other object without the help of a flushing-response, there is reason to be l i eve
(cf. Robinette et al., 1974) that the flushing-distance models may not hold, a n d
may lead to biased estimates.  As alternate approach in such cases is based o n
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use of right-angle distances.  It is thus useful to consider a d ichotomous
approach (Fig. 5.1) to the several classes of methods.  It should help r e a d e r s
keep the various circumstances and conditions leading to the several classes o f
methods in mind. A recent development in which the observer remains at a
point and estimates distances to surrounding objects has been known as t h e
variable circular plot, and is largely treated by methods used for r i g h t - a n g l e
t ransec ts .

Strip transect
methods

Detection
depends
on

Searching
by observer

Conspicuous
response by
animal

Numerous 
readily
visible 
individuals

Individuals
not readily
visible

Flushing  probability 
depends on distance frm
observer

Fixed flushing
radius

Flushing distance
line transects

 Mobility 
not
important

Mobility
important

Large
individuals Line intercept

methods

Individuals
idealized to
a point

Visible
intermittently

Modified 
strip transect
methods

Always visible
at short range

Right angle
line transects

(flushing)

Fig. 5.1. A classification of transect methods.
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5.3 The line-intercept method

The line-intercept technique has been used by plant ecologists f o r
many years as a means of estimating "canopy-coverage."  In that instance, t h e
basis is simple and direct.  All that is necessary is to measure the fraction o f
the total length of a given transect line that actually intercepts s h r u b
canopies.  The arrangement can be depicted as in Fig 5.2, which represents a
rectangular study area having dimensions W and L, with a single transect ( o f
length, L) intercepting two shrubs, for one of which the appropriate c a n o p y -
coverage measurement ( li ) is indicated.  The technique can also be used f o r
tree canopies by sighting upwards to find the margins of the canopy.

W

 li

 Wi  Transect
  line

L

FIG. 5.2 Dimensions used in the line-intercept method. The shaded areas
represent shrub canopies.

An unbiased estimate of canopy coverage is just the sum of the li
observed on all of the transect lines divided by the total length of t r ansec t s
used. Unless there is some sort of regular pattern in the arrangement of t h e
shrubs, very likely a systematic spacing of lines should not cause trouble i n
this situation.  We repeat, however, that the basis of the results given in t h i s
chapter lies in randomized location of transect lines.
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Two minor points may cause some trouble in actual practice.  One is t h a t
the boundaries of the study area may intersect some shrubs.  A useful r u l e ,
that should be decided on before the area is laid out, is to include such plants i f
they occur on, say, the northern and eastern boundary and exclude them o n
the other two boundaries.  The second common problem is that many use fu l
natural study areas (e.g., habitat types) are very irregular in shape. An e a s y
way to deal with this kind of situation is to proceed as in Fig. 5.3. All that i s
needed is a baseline W that runs the full length of the area, and to ut i l ize
transects of variable length (Li ) with this length measured only within t h e
study area.  The calculations are illustrated in Example 5.1.

L

Lj

i

Fig. 5.3. Line-intercepts on an irregularly shaped area.

Estimates of the numbers or density (number per unit area) o f
individual plants have usually not been made by the plant ecologists in t h e i r
use of the method.  However, there is a simple way to obtain an unb iased
estimate of density, although it "costs" an additional measurement.  A b iased
estimate can be obtained without an extra measurement, and will be descr ibed
first. McIntyre (1953) investigated the use of the measurement li  for dens i t y
estimation, and proposed several possible procedures.  In using the length o f
the transect interception (li ), he considered that the shrubs could b e
represented by a population of circles of varying diameter.  Given r a n d o m
interceptions, it is then easy to derive a theoretical expression for length o f
intercepts which leads to the equation for density:

in which n stands for the number of transects of length L and m for t h e
number of shrubs actually intercepted (for each of which li is measured).  As
already noted, the transects do not have to be of the same length.  The o n l y
change is to replace nL by Σ L i in the denominator above.

√D
nL lii

m

=
=
∑2 1

1Π
                                                    (5.1)
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 Some trials with an artificial population led McIntyre (1953) to sugges t
that his method might well be useful for objects other than circles.  V e r y
likely the best results will be obtained for objects with smooth boundaries a n d
few indentations or "scalloped" edges.  This is because Eq. (5.1) uses rec ip roca l s
of the li,  so that a few very short measurements will have a d ispropor t iona te ly
large effect on the estimate.  To avoid this problem, McIntyre recommended
using the longest chord parallel to the transect line (and another equa t ion ) .
However, some better procedures are given below. Eq. (5.1) should mainly b e
used for an approximate notion of density when canopy coverage is the m a i n
purpose of the survey and an extra measurement is not justified.  

An interesting alternative to McIntyre's approach can be described a s
"needle sampling" (DeVries 1974).  It was originally developed f o r
inventorying logs lying on the ground in cut-over areas.  Instead of a c i r c le ,
the object now is defined as a "needle" (which can be inscribed in a variety o f
only roughly elongate objects) and the famous results of "Buffon's n ee d l e
problem" used to obtain a density estimate.  The chief drawback is that t h e
needles need to be oriented randomly, an assumption that may well b e
questioned in practice.  More details appear in Example 5.2.

Example 5.1 Censusing prairie-dog dens

Line-intercepts were used to estimate the number of dens in a
prairie- dog (  Cynomys   ludovicianus  ) colony by Eberhardt (1978b).  The
colony was elliptical in shape, with a long dimension of about 700 m and
a maximum width of about 500 m.  A systematic sample was used, with 9
transects spaced 66 m apart, and running across the narrower dimension
of the area.  The earth mounds at each den served in the same manner as
shrub canopies in the usual application of the line-intercept method.
For each mound intercepted by the transect line, measurements of the
length of the interception (li) and the mound width (wi), as shown in
Figure 5.2.  It should be noted that wi is taken so as to measure the
probability of interception for the mound, i.e., it is the distance
between transects that just touch the right- and left-hand extremities
of the mound.

The individual observations appear in Table 5.1, which also
includes the distance between mound centers, or, at the ends of
transects, the distance to the edge of the area grazed by the prairie
dogs.  This was regarded as the boundary of the study area.
Calculations of density are thus for the grazed area immediately
surrounding the mounds.  Calculations on the basic data are summarized
in Table 5.2.  Proportion of the area covered by mounds is easily
estimated, being just the total length of intercepts divided by the
total length of transect lines.  Thus for the first transect, it is:
                                 pi = 6.12/228.69= 0.027.
For the entire area, the proportion covered is just the sum of all
intercepts divided by the sum of transect lengths:

                                  p^  = 
ΣTi
ΣLi

   = 115.36/3578.9= 0.0322.

This is a ratio estimate, for which a variance estimate is given in
Chapter 4. Here Ti represents the total length of intercepts on the ith
transect, i.e., T1 = 6.12 m.  The numerator could just as well be
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written  ΣiΣj lij, where j denotes observations on a transect and i
denotes the transect, but using the transect totals makes it easy to see
that this expression has the same form as the ratio estimators of
Chapter 4.

The finite population correction is neglected here since a small
fraction of the population of mounds was actually tallied.  Letting y =
total interceptions (Ti) and x = transect length (Li), the calculations
are:

     [CV( p̂ )]2  = 
1
n   [cyy + cxx - 2cyx] = 

1
9  [ 0.1426 + 0.1507 -2(0.1176)] = 0.00644

The estimated standard error for  p
^
   is then just (0.00644)1/2 (0.0322)

= 0.0032. The coefficients of variation are appreciably larger than
recommended (in Chapter 4) for use of the ratio method. We thus propose
that a simple approach might be used here, i.e., compute a variance
directly from the proportions covered of the individual transects. This
gives p = 0.0329 (averaging the transect values), with a standard error
of 0.0028, so there is little difference from the ratio estimate.

Since widths (wi) of the mounds were tallied, McIntyre's method
for estimating density, Eq. (5.1), should not be used here.  Apart from
the factor of 2/π in the equation, calculations would proceed in exactly
the same way as those utilizing widths, given next.

Although I recommend random sampling because most of the
estimation procedures in transect work are based on random transect
locations, the present example is one in which a systematic sample was
taken.  This was done mainly to study the pattern of spatial
distribution of dens.  With a systematic layout and distances between
dens (Table 5.1), one can study the spatial arrangement of the dens.
This is much harder to do with random transect locations, since random
samples, especially relatively small ones, frequently leave sizeable
gaps in spatial coverage.

In the present example, we can proceed in essentially the same
manner for either random or systematic transect locations.  The
rationale differs somewhat, and needs to be mentioned for each case.  It
may be noted, too, that neither Eq. (5.2) or (5.3) is usable here since
the transect lines are of variable length and the total area is not
known.  When the transects are randomly located, each individual
transect yields an independent estimate of density, which can be
calculated from Eq. (5.2), with n = 1.  Using data from transect No. 1
(Table 5.1), we get (calculations in meters):

                                     = 
1

228.7 [
1

3.81  + 
1

3.12  + 
1

0.86  + 
1

0.81  + 
1

1.12 ] = 0.0169 dens/m2 

The same procedure can be used for each of the other transects,
and the remaining question is one of how to combine 9 independent
estimates (assuming, for illustration, that the transects had been
randomly located along a baseline, as in Fig. 5.3).  Averaging, and

√D
L wi ii

m

=
=
∑1 1

1

1
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computing a variance from the individual transect values, is both
straightforward and legitimate.

The above procedure is often not very efficient, since it does not
take into account the variation in transect lengths.  A logical way to
do this is just to weight the individual density estimates by the
transect lengths, i.e., to calculate:

                                       D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 L i     

which is a ratio estimate just as in Chapter 4.

For a systematic sample, a somewhat different rationale might be
used. This is because the uniform spacing of the transects permits
viewing the area as being broken down into a number of strips of equal
width.  We then calculate an estimate of the number of dens in each
strip, sum these, and divide by the total area (obtained by summing up
the area of the individual strips).  The procedure turns out to give
exactly the same result as above, since a constant strip width is
introduced in both numerator and denominator, and thus cancels out.

Using the data of Table 5.2 gives the following density estimate.

                                              D^ overall = 70.013/3578.9= 0.0196
The coefficient of variation is again estimated as in Chapter 4, without
the finite population correction (for the reasons discussed above):

     [CV( p̂ )]2  = 
1
n   [cyy + cxx - 2cyx] = 1/9[0.1698+0.1507-2(-.042)]=0.0042

The standard error of the estimate is (0.0449)1/2 (0.0196) =
0.0042.  These results are very similar to those for intercept length.
The above example might be converted into a prairie-dog census method if
the number of prairie-dogs inhabiting a representative sample of dens
could be estimated.

Table 5.1. Spacing (di), intercept lengths (li) and mound widths (wi)
for 9 line-intercepts in a prairie-dog "town". Transect no. 1 was the
westernmost transect. Spacing (di) in meters, other measurements in cm.
The first di is distance to first mound from margin of the area and the
last di is distance from last mound to the other margin of the study
area.

# 1 # 2 # 3
di w i l i di w i l i di w i l i

2.84 381 127 16.06 130 7 4 138.0 124 107
46.3 312 114 6.62 290 236 39.69 117 104

39.69 8 6 152 27.4 132 9 6 67.1 218 124
5.67 8 1 8 4 6.62 109 7 4 9.45 168 5 8

20.79 112 135       35.91 401 224 1.89 160 7 4
113.4          612 124.74 282 160 34.02 368 157

228.69 41.58 274 213       27.4 198 3 8     
28.35         1077 9.45        662

287.28 326.97
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# 4 # 5 # 6
di w i l i di w i l i di w i l i

189.00 112 74.00 68.98 7 6 5 8 5.67 9 4 8 1
4.72 274 170.00 24.57 350 244 11.34 175 170

66.15 8 9 66.00 37.8 127 7 4 2.84 7 1 8 4
29.30 256 185.00 34.02 196 7 6 27.40 102 7 9
22.68 7 9 41.00 23.62 140 107 65.20 183 7 4
10.40 376 208.00 17.01 6 1 5 8 60.48 158 132
15.12 406 109.00 5.67 117 112 20.79 7 4 4 8

9.45 340 203.00 31.18 8 6 8 9 12.28 117 112
34.02 249 310.00 20.79 175 168 17.96 9 1 4 8
69.93 9 6 81.00 7.56 229 203 26.46 216 119

8.50 389 338.00 20.79 163 163 9.45 175 122
25.52 4 6 46.00 12.28 274 193 10.40 114 8 1

5.67 8 9 81.00          72.76 201 160 128.52 163 5 3
75.60          1912.0            15.12 198 109       3.78 5 6 112       

566.06 22.68         1814 20.79          1315
414.83 423.36

# 7 # 8 # 9
di w i l i di w i l i di w i l i
12.28 292 158 28.35 109 9 9 19.84 183 137
10.40 132 7 9 83.16 163 163 26.46 102 104

7.56 117 4 1 77.49 8 4 5 1 7.56 8 4 137
49.14 142 135 10.40 142 9 9 15.12 300 114
33.08 239 198 11.34 330 9 1 5.67 277 127
37.80 9 1 9 1 89.78 249 135 46.3 112 8 4

6.62 127 183 43.47 325 183 39.69 5 6 5 1
32.13 9 1 4 6 7.56 198 122 40.64 6 6 8 4
51.98 221 142 2.84 7 4 7 9 11.34 8 6 147
17.96 196 140 11.34 147 132       1.89 244 185       
29.30 117 6 6 9.45       1154 37.8        1170

108.68 292 163 375.18 252.31
274.00 287 274

14.18 140 104       
18.90          1820

704.01
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Table 5.2. Summary of line intercept data for a prairie-dog "town"

Transect         Length of Proportion of   Number of      Sum of        Density
n u m b e r of transect area covered     mounds   intercepts   estimates

      Li by mounds     intercepted          T i           Di
________        __________    __________        ___________   _________   ________
1 228.7 0.027 5 6.12 0.0169
2 287.3 0.037 7 10.77 0.0131
3 327.0 0.020 7 6.62 0.0126
4 566.1 0.034 13 19.12 0.0174
5 414.8 0.044 14 18.14 0.0247
6 423.4 0.031 14 13.15 0.0303
7 704.1 0.026                   14                     18.20 0.0132
8 375.2 0.031 10 11.54 0.0186
9 252.3 0.046 10 11.70 0.0364
                          ______                                         _____                 ______

3578.9                       94                     115.36

Example 5.2 "Needle" sampling

As with most similar sampling problems, this one is most readily
conceptualized in reverse of what happens in practice.  That is, we lay
out the sampling scheme and then introduce, at random, the objects to be
sampled. Here we suppose a systematic sampling pattern of parallel
transect is laid out, and long, narrow objects of length li ("needles")
are randomly distributed over the area.  Let the spacing between the
objects be W, and assume for simplicity, that li   <   W, i.e., that none of
the "needles" is longer than the interval between transects.  The
relevant measurements appear in the figure below. A "needle" of length
li is thrown randomly onto a field of parallel transect. The probability
that it intercepts a transect depends on wi, which in turn depends on
the angle (θ) that the needle happens to assume.

θ
w

i
l

i

W
TRANSECTS

 Dimensions used in "needle" sampling.

We can write the probability of interception for a needle of given
length (li) as:

                                 P = Pr{interception} = 
wi
W   = 

l i  cos θ
W  
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Since the angle (θ) is assumed to be randomly determined, it has a

uniform distribution between 0 and 90o, or between 0 and π/2 in radians.
Hence the frequency distribution of θ is:

                                             f(θ) =  
2
θ   dθ

The expected value of p is then:

                                        E(P) = 
2l i
πW  ⌡⌠

0

π/ 2
 cos θ  dθ = 

2li
πW 

If n needles are observed to intercept the transects, a simple estimate
of the total number (N) of needles in the sampled population is:

                                       N
^

  = n/p
_

  = 
nπW

2    ∑
i=1

n
 

1
l i

 

and the estimated density of needles is:

The main problem with the method is that it is seldom safe to assume
that the needles are randomly distributed.  We thus recommend measuring
wi directly, and utilizing the equations given in the text for density
estimation based on wi.  Students who want a demonstration of the method
can readily construct one with a handful of kitchen matches scattered on
a hardwood or tiled floor.

5.4 Length-biased sampling

The main issue in estimating shrub density from canopy m e a s u r e m e n t
is one that is common to a very much wider class of sampling problems.  Cox
(1962, 1969) has used the highly descriptive term "length-biased sampling" t o
characterize procedures in which the probability of sampling a p a r t i c u l a r
element in the population is proportional to some dimension of that e lemen t .
Such a sample is by no means representative of the population, being v e r y
much biased towards individuals having the greater "lengths."  In the p r e s e n t
case, it is readily evident (Fig. 5.2) that the probability that a given shrub w i l l
be included in a sample taken by the intercept method depends on how "wide"
it is with respect to the baseline (W) of the study area.  The r e l e v a n t
measurement on the shrub is thus wi (Fig. 5.2).  It should be noted that wi i s
the distance between tangent lines drawn parallel to the transect at the r i g h t -
and left-hand extremities of the canopy.

The probability that a given shrub will be intercepted by the t r a n s e c t
line is just wi /W, on either Fig. 5.2 or 5.3.  By measuring wi  accurately, one c a n
thus determine the exact probability that a given shrub intercepted by t h e
transect would be observed, before the transect line was selected. Given t h e
probability of interception for each element observed in the sample, a
straightforward argument can be constructed to derive a density es t imate
(Eberhardt 1978b).  The principal equation is:

√D
n

L lii

n

=
=
∑Π

2
1

1

√D
nL wii

m

=
=
∑1 1

1

                                         (5.2)
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As in Eq. 5.1, m is the number of objects intercepted (and measured) o n
n transect lines randomly placed in a rectangular area of dimensions W and L.

When the study area is not rectangular, a baseline W can be cons t ruc ted
as indicated in connection with Fig. 5.3, and density estimated from:

 where A represents the area of the study plot expressed in the same units
(e.g., square meters) as the linear measurements (wi and W).  A useful
approach when the area is not known is given in Example 5.1, which also
illustrates variance calculations.  Estimates of N, the total population are, of
course, readily obtained from Eqs. 5.1 to 5.3 by multiplying by the area.

Lucas and Seber (1977) have derived equations comparable to t h o s e
above, but use a different transect layout.  They require that the transects b e
of short length, and both randomly located and randomly oriented w i t h
respect to the baseline.  They obtain theoretical variance formulas for some
circumstances. However, in the present state of theoretical and p rac t i ca l
knowledge, it seems advisable to use variances estimated from replicated o r
interpenetrat ing sampling, as in Section 5.12 (below), or by the ratio me thod
of Example 5.1.

The above method can be extended to deal with objects other than s h r u b
canopies, and to aggregations of animals or patches of vegetation, so long a s
the identity and boundaries of each such "object" can be uniquely defined. It i s
also possible to substantially enlarge the area for interception of a g i v e n
object.  A method for doing this is well-known to foresters as B i t te r l i ch 's
method.  An "angle-gauge" is used to determine whether or not the a p p a r e n t
diameter of a tree is greater than a fixed angle, and thus whether or not t h e
tree should be included in a sample.  Readers not familiar with the method c a n
simulate the field operation by extending an arm with the thumb in a n
upright position.  If portions of an object (tree, rock, sign, etc.) protrude o n
both sides of one's thumb, then that object is "in" the sample. If the o b s e r v e r
now moves away from the object until its margins just barely protrude b e y o n d
the sides of the "gauge" (thumb), then that position delineates the boundary o f
the interception area (Fig. 5.4).  Circular objects like trees will have a c i r c u l a r
boundary, but irregular objects will have an asymmetric boundary.  

√D
W

nA wii

m

=
=
∑ 1

1

                                       (5.3)
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ANGLE GAUGE

a

b

Fig. 5.4. Use of an "angle-gauge". Objects are "in" the sample when, as in (a ) ,
the sides protrude beyond the gauge. When the gauge blocks the object f r o m
view, as in (b), then it is not included in the sample.

Although Bitterlich's method is normally used only at fixed s a m p l i n g
points, it can be utilized as a transect method, as was proposed by Strand (1958).
However, this will usually only be practicable for relatively rare objects, s i n c e
"intersection" has to be determined by use of an angle- gauge as each ob jec t
comes into a right-angle position on the transect line. The method might t h u s
be most useful for something like a survey of den-trees in wi ld l i fe
m a n a g e m e n t .

Density may not be the main objective in some studies.  When t h e
volume, weight, or some other measurement is to be estimated, a simple r a t i o
method can be used, and illustrated in Example 5.3.
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Example 5.3 Auxiliary measurements

Often the primary objective of a study will be to estimate some
attribute other than density, or in addition to density.  Thus foresters
are usually also concerned with basal area and volume of timber, while
ecologists often want to estimate the biomass (total Weight) of
vegetation.  Methods for securing such estimates by ratio estimation
were given in Chapter 4.  A related method based on line-intercepts can
readily be derived.  Let Xi be the "auxiliary" measurement, such as

weight or volume of the ith object intercepted.  A well-known way to
estimate the average value of a sample of such objects is simply to
"weight" each object inversely as the probability that it is included in
the sample.  Since this probability is proportional to wi, we get the

simple result:

If the above estimate is regarded as the estimated average on the

jth transect, then variable transect lengths can be adjusted for just as
was done in Example 5.1, i.e.,:

and the same approach can be taken to obtaining a variance estimate
(ratio method).

5.5 Flushing-distance line transects

In the line-transect method, the objects being censused are cons idered
to be dimensionless points, and the probability of detection is assumed to b e
measured by use of distances between observer and object.  Some t r i g o n o m e t r y
is involved, based on the distances and angle illustrated in Fig. 5.5.  Just w h i c h
measurements are taken will depend considerably on the particular f ie ld
situation.  The essential measurements for most purposes are r, the s i g h t i n g -
distance (also called radial distance or flushing-distance), and x, the r i g h t -
angle distance.  From simple trigonometry, any pair of the poss ib le
measurements can be used to calculate the others.  However, precautions n e e d
to be taken to avoid measurement errors.  I strongly recommend against v i sua l
estimation of either distances or the included angle (θ) .
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X

r

TRANSECT LINE

OBSERVER

OBJECT

Fig. 5.5. Relevant measurements for the line-transect method. The vertical
arrow shows the observer's path along a transect line.

In the flushing-distance model, the distance (r) between observer a n d
animal at the time the animal flushes is the essential measurement.  Since a
test of the validity of the model is based on x/r (which is the sine of θ), t h e s e
distances need to be measured as accurately as possible.  When the right- a n g l e
distance method (described below) is used, only the distance x is utilized.  A
model for evaluating relative errors in measurements is described in Example
5.4.

Two basic flushing-distance line transect models have been proposed
(Eberhardt  1968b).  In one model it is assumed that the flushing-distance i s
fixed, i.e., that the individual animal flushes as soon as the observer c rosses
the boundary of a circle with radius equal to this fixed distance.  This model i s
due to Hayne (1949), who noted that the fixed distance does not need to b e
assumed to be a permanent characteristic of the individual animal.  T h e
necessary assumption is that each animal on a census area has a f ixed
flushing- distance during the time when a given randomly located transect i s
run.  In many circumstances it seems quite likely that the f l ush ing -d i s tance
will depend very much on characteristics of the particular location in w h i c h
an animal is resting.

The fixed-distance model permits a simple and direct ana lys is ,
proceeding in the same manner as for the line intercept method.  The s h r u b
canopy is now replaced by a circle of radius r, and it is assumed that t h e
flushing distance (r) is measured accurately for each animal seen.  It is a lso
assumed that animals flush independently, i.e., that startli ng one animal does
not change the behavior of the others.  Analysis of the fixed f l ush ing -d i s tance
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model then requires only noting that wi  = 2ri,  that is, wi is the diameter of a
circle of radius ri.   In analogy with Eq. (5.2), we now have:

with n the number of transects and m the number of observations as before.
Irregular-shaped census areas can also be dealt with in the same manner as
with line intercepts.

In some cases, groups of animals may flush together, as with broods o f
grouse, or flocks of small birds.  If it can be shown, from field data, t h a t
flushing radius and group size are independent, it may be possible to use Eq.
(5.4) to estimate the density of groups and multiply that estimate by a ve r a g e
group size.  If group size and flushing radius are correlated, one can st i l l
estimate the number of groups, but the average of group sizes is a b iased
estimator of the population mean.  

As Hayne (1949) indicated, the expected flushing angle is 32.7o.  A
variety of field studies have yielded average angles that are close to this v a l u e
for animals that "flush."  Robinette et al. (1974), working mostly with a n i m a l s
that do not flush and inanimate objects, obtained wider mean angles.  T h e
underlying theory (cf. Eberhardt 1978b) shows that the f r e q u e n c y
distribution of the ratio (x/r) of right-angle distances (x) to f l u s h i n g -
distances (r) should be that of the uniform distribution.  Hence a simple c h i -
square test (Example 5.5) can be used to check on the validity of the model.  I f
the test shows significant deviations from the hypothesis of a u n i f o r m
distribution of x/r, then the best advice presently available is to utilize r i g h t -
angle distances, as described below.

In the second model it is assumed that the instantaneous probability o f
flushing is a function of the current distance between observer and animal. I t
seems quite reasonable to assume flushing probability to increase steadily a s
the observer approaches, being nearly zero at a long distance a n d
approaching unity in the immediate neighborhood of the animal.  One m i g h t
expect that an animal registers a variety of auditory and visual cues from a n
observer's approach, and that the cumulative effect of those cues results in a n
increased probability of flushing.  Such a model is conveniently labelled t h e
variable- distance model.

It does not seem likely that the two models can be distinguished on t h e
basis of field observations.  Either will lead to a frequency distribution o f
flushing distances, being based on a population distribution of flushing r a d i i
in the fixed-distance model, and on realizations of the probability model in t h e
variable-distance case.  Details of the theory appear in Eberhardt (1978a), a n d
lead to the conclusion that Eq. (5.4) should be used for animals that flush.  T h e
theory also shows that f lushing-distance (r) and flushing-angle (θ) should b e
independently distributed.  Hence a useful further check of conformity to t h e
flushing-distance model is to plot r and θ to see if there is any suggestion o f
association.  Spearman's rank correlation coefficient might be used to test f o r
correlation between r and θ (see, for example, Snedecor and Cochran 1967).
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The fixed-distance model can be used to show that there appears to be a
loss of efficiency (i.e., a larger variance results) if right-angle distances a r e
used when the flushing-distance model holds. It should be noted that t h e
current authoritative reference on “distance sampling” (Buckland et al. 1993)
has dropped the idea of using sighting distances. They remarked that “Hayne ’s
(1949) method is poor if θ  is not approximately 32.7o and may not perform we l l
even if  θ  falls close to this value, i.e., is not a robust method.” Consequent ly
they use only right-angle distances.

Example 5.4 Errors of measurement in line transects

Wherever possible, the relevant measurement for line transect
estimation should be measured directly and as accurately as possible.
However, it may at times be necessary to calculate the appropriate
measurement by trigonometry on the pairs of the measurements of Fig.
5.5.  Anyone doing this should be aware that the effect of incremental
errors may vary considerably, depending on the particular pairs used.
Suppose θ and x (Fig. 5.5) are measured and r is calculated as r = x sin
θ.  Then we note that dr = x cos θ dθ, so that an incremental error (dθ)
in measuring θ results in a corresponding incremental error (dr) in the
estimate of r.  The absolute relative error in r is:

                         |
d r
r  | = 

cos θ
s in  θ    dθ

when θ = 5o,  
cos θ

s in  θ   = 11.43, while for θ = 45o,  
cos θ

s in  θ   = 1, and for θ = 60o,

 
cos θ
s in  θ   = 0.58. Consequently, errors at small angles can have rather serious

effects.

The above approach can be used to evaluate other arrangements, and
a logical extension would be to explore the effects of errors on the
final estimate by incorporating the theoretical frequency distribution.
Doing so in detail calls for a knowledge of likely incremental errors
(dθ) at various angles, but this has not been investigated yet, to my
knowledge.  However, since the theoretical frequency distribution of
angles is proportional to cos θ (Eberhardt 1978b), it is obvious that
errors at small angles ought to be avoided.

Too often, field data show evidence of gross errors.  These appear
in histogram plots of angles and distances as a tendency for

measurements to pile up at angle like 0o, 30o, 45o and 90o, and for
distances to be similarly grouped.  "Trial runs" or pilot surveys are
useful devices for catching such tendencies and training observers.

5.6 Right-angle distance line transects

 When detection depends on the observer, it is unlikely that t h e
flushing-distance (now sighting-distance) models can be expected to hold.  T h e
major summary of field experience is that of Robinette et al. (1974) a n d
suggests that these models do not hold for animals that do not flush and f o r
some inanimate objects.  One prospect that needs study is that the manner i n
which observers scan ahead as they move along the transect may we l l
influence the data.  For the present, the safest course in circumstances w h e r e
detection depends on the observer is to resort to use of right-angle d is tances,
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and, as noted above, only the use of right-angle distances is recommended i n
the recent literature (Buckland et al. 1993).  This may well require l a r g e r
samples because of an added component of variability in using r i g h t - a n g l e
distances.  Hence the need for research to determine whether s i g h t i n g -
distance models might be used, if suitable precautions are taken (in pa r t i cu la r ,
advance surveys should show that the mean sighting angle is very close to 32.7
degrees). As noted above, only the use of right-angle distances i s
recommended in the recent literature (Buckland et al. 1993).

Supposing that the conservative course is chosen, i.e., that the r i g h t -
angle distances are to be used, there then is the question of how to es t imate
density from such data.  

A convenient frame of reference is that of Eberhardt (1968b).  We a g a i n
suppose that the study area is rectangular in shape as in Fig. 5.6 with a
baseline of length W.  It is assumed that virtually all of the observations made
from a given transect line (represented by the solid line in Fig. 5.6) fall w i t h i n
a distance Z on either side of the transect line, and thus within the shaded a r e a
of Fig. 5.6.  Hence if Z is small relative to W we can neglect most b o u n d a r y
problems.  As suggested before, one can adopt the convention t h a t
observations made outside the study area on two boundaries will be inc luded,
and those outside of the other two boundaries will be neglected. So long as Z i s
quite small relative to W this approach should serve to deal with i r r e g u l a r
shaped areas.  To simplify the presentation, we now "fold" the left-hand side o f
the shaded area over onto the right-hand side and depict the ac tua l
observations of positions of observed individuals as in Fig. 5.7.  If we t h e n
project these positions down onto a baseline, as shown by lines in Fig 5.7, w e
can analyze the data in terms of right-angle distances alone.  T h e
mathematical results then used (Eberhardt 1968b) are those of Parzen (1972).
However, instead of an "intensity function," we use a "visibility curve," g (x ) ,
as in Fig. 5.8.  The essential features are that the probability of sighting a n
animal directly on the transect line shall be unity (g(o) = 1.0), and that t h e
curve decrease smoothly away from the transect line.  Further theo re t i ca l
details appear in Burnham and Anderson (1976) , Eberhardt (1968, 1978b) a n d
in Buckland et al. (1993).
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Z

W

Fig. 5.6. Restricted area (shaded) used in many right-angle line transect
methods.

0                             Z             X
BASELINE

OBJECT

PROJECTED POSITION
Fig. 5.7. Projection of observed positions on to a baseline.
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1 . 0

0                              Z                 X

g (x )

Fig. 5.8. A "visibility curve", g(x), showing truncation imposed by n e g l e c t i n g
observations beyond z.

The visibility curve of Fig. 5.8 is then the underlying model t h a t
generates the actual right-angle distances associated with a p a r t i c u l a r
transect, represented by projecting to the baseline of Fig. 5.7.  The position of Z
in Figures 5.6 to 5.8 is arbitrary.  It needs to be such that most, but not all, o f
the actual observations fall to the left of Z, when the entire set of data from a
given study are considered.  The actual selection of Z will be discussed below.

The visibility curve is not itself a frequency distribution, but it can b e
converted to such a distribution if it is divided by a constant that is t h e
integral of g(x), as shown by Burnham and Anderson (1976) and E b e r h a r d t
(1978b).  Thus we have:

                                              f(x) = 
g(x)
µ                             (0 <  x  <    ∞)                      (5.5)    

where                                µ =  ⌡⌠

x=0

∞
 g(x) dx .

A simple example of a visibility curve is the negative exponential a s
used by Gates et al. (1968) and Gates (1969).  They found that it fitted data o n
flushing of ruffed grouse (Bonasa umbellus) quite satisfactorily, and g a v e                                
estimating equations for both flushing-distance and right-angle distance data.
An objection to this curve, however, is that it drops off at a constant rate. As
suggested by Eberhardt (1968b), a more logical curve would be one that i s
nearly flat near the transect line, dropping off sharply some distance f r o m
the line, and then "tailing off" more gradually.  Such a curve accommodates
both the realistic assumption that a narrow strip census is feasible (i.e., t h a t
nearly all animals will be seen on a narrow strip centered on the t r a n s e c t
li ne) and the observational fact that a few animals are seen at some
considerable distances from the transect line.  One curve fitting t h i s
requirement is the "reversed logistic" proposed by Eberhardt (1968) a n d
described in more detail by Eberhardt (1978b).
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The negative exponential curve has one parameter while the r e v e r s e d
logistic has two.  If one parameter of the latter curve is very small, it becomes
virtually indistinguishable from the negative exponential.  This property w a s
used by Eberhardt (1978b) to explore the effect of small deviation from t h e
negative exponential on the resulting density estimates. The s imula t ions
conducted by Eberhardt (1978b) yielded biases (overestimates) of 17 p e r c e n t
and 50 percent if the true model were one of the two reversed logistics but t h e
negative exponential were assumed to be the appropriate model.  Consequent ly
we do not recommend assumption of the negative exponential model.

A variety of other models have been proposed in the literature.  T h e
half-normal (Hemingway 1971) is a one-parameter model having the s h a p e
suggested above as appropriate.  Anderson et al. (1978) have proposed a l og -
linear model, while Pollack (1978) presents an exponential power series model.
Both of these "families" of models include the negative exponential and h a l f -
normal and provide considerable flexibility.  The immediate problem is a l a c k
of published experience covering a variety of field data.  We will thus not t r y
to make any specific recommendations about the use of particular f r e q u e n c y
dis t r ibut ions.

One of the several recent developments in frequency dis t r ibu t ion
models is the "Fourier Series" estimator of Crain et al. (1978).  It provides a
highly flexible model that may be expected to give very good fits to field data.
Both theoretical and simulation studies were employed by Crain et al. (1978) t o
show that the method has relatively small bias and high efficiency. That w o r k
has been followed up in detail, with several new models, and the resu l t s
published in “Distance Sampling” by S. T. Buckland, D. R. Anderson, K. P.
Burnham, and J. L. Laake (1993).  Computations are available in the p r o g r a m
DISTANCE  which is available on the worldwide web along with a
comprehensive manual and the full text of the book by Buckland et al.

Example 5.5 Testing flushing-angles

A simple test is available to check whether observed angles are in
conformity with the underlying theory.  The test is actually based on
the distribution of sinθ, and holds for either the fixed or variable
flushing- distance model (Eberhardt 1978b).  It is, however, most
readily derived for the fixed flushing distance model. From Fig. 5.5,
sin θ = x/r. Consider a fixed flushing radius of r.  Given that the
animal is flushed (i.e., that the transect passes through a circle of
radius r about the animal), and that transects are randomly located, it
is evident that x will take on any distance between o and r with equal
probability.  Hence the distribution of x/r is uniform over the interval
0 to 1.  A simple test is then a chi-square test. Divide the interval
from 0 to 1 into equal sub-intervals, with the number selected so that
the smallest expected number is about 5, and tally the observations of
x/r by intervals.  An example (from Eberhardt 1978b), appears in Table
5.3.

There are 84 observations, and 10 subintervals were used, so that
the expected number in each interval is 8.4.  The chi-square test is
then:
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It is worthwhile to tabulate individual deviations and chi-square
calculations (as in Table 5.3), so that any aberrant observations can be
identified if the test shows statistical significance.  In the present
example, the chi-square value (10.73) is well below the 95 percent
significance level (18.31) for 10 degrees of freedom.  Students should
note that 10 degrees of freedom are used here, because the expected
value is obtained independently from the data.

Table 5.3 Chi-square test for uniformity of sin θ  data for a census of
the side-blotched lizard.

I n t e r v a l Number of Deviations from Chi -square
( s i n  θ           = x/r) observa t ions              expected number                        v a l u e                                           

0.00-0.10 10 +1.6 0.30
0.10-0.20 7 -1.4 0.23
0.20-0.30 8 -0.4 0.02
0.30-0.40 15 +6.6 5.18
0.40-0.50 10 +1.6 0.30
0.50-0.60 10 +1.6 0.30
0.60-0.70 6 -2.4 0.68
0.70-0.80 4 -4.4 2.30
0.80-0.90 9 +0.6 0.04
0.90-1.00 5 -3.4 1.38
                           _____                 ______                   ______

                    84          0.0               10.73

5.7 Density Estimation

The generally accepted estimator for right-angle line transect models is
(Seber 1982), Buckland et al. (1993):

                                                             D^  = 
m
2L  (

1̂
µ)                                                       (5.6)   

where m is the number of objects observed, and L is the (total) length o f
transect on which the m objects are observed.  The estimate of the r ec i p roca l
of µ is calculated from the observed distances.  This is done by noting that, i n
Eq. (5.5), f (0) = 1/µ  .  Thus the main objective of the various methods is t o
obtain an estimate of the frequency of observations "on" the transect line, o r
f(0).  Consequently, an equivalent form of Eq. (5.6) is just:

                                                                 D^  = 
m
2L  f(0)^                                                   (5.7) 

Looking back to Eq. (5.4), it may be observed the Hayne's (1949) estimator is o f
this form, except that f(0) or the reciprocal of µ is estimated from the a ve r a g e
reciprocal of flushing distances, i.e.:

Chi square
observed number

i

− = −
=
∑ [ . ]

.
 8 4
8 4

2

1

10
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and that n transects, each of fixed length L, were used.

Since, as we have already remarked, the "state of the art" and the t h e o r y
of line transect are now described in detail by Buckland et al. (1993), we w i l l
not attempt to review all of the currently used methods.  Some examples a p p e a r
in Example 5.6 and I recommend consulting the current literature for r e c e n t
improvements. I suggest use of the "distribution-free" methods of the n e x t
section as a check on any other method used.

Example 5.6  Density estimation for line transects

Calculations for two of the methods will be illustrated on the set
of data in Table 5.4.  These data come from actual observations made in
a line transect study (Eberhardt 1978b) of the side-blotched lizard (  Uta
stansburiana  ).  An artificial grouping of the data into 8 transects has
been used here as a device to illustrate variance calculations.  Since
these data appear to conform to the theoretical model for animals that
flush, it may be possible to use  Hayne's method, Eq. (5.4).  It may be
remarked here that the "flush" exhibited by these animals is a dart for
cover, and that nearly all sightings result from this cue, as basking
animals are not readily seen before they move.

Using Eq. (5.4) gives the results of the summary table (Table
5.5).  The equation is used with n = 1 for individual transects, i.e.,:

                                         D^  = 
1

2Li
   

∑

i=1
m  

1
r i

  

The individual transect results can be combined with the ratio estimate
of Example 5.1:

                                D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 L i     

Variance calculations proceed in the same manner as for line intercepts
(Example 5.1

√ [ ]D
m

nL m r nL rii

m

ii

m

= =
= =
∑ ∑2

1 1 1
2

1

1 1
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Table 5.4. Line transect data from a lizard study. Flushing (r) and
right-angle distances (x) for individual transects.

     #1                #2                      #3                 #4                    #5                    #6
_______        _______            _______ _______ _______ _______
r x r x r x r x r x r x
46 46 91 51 137 29 60 43 51 23 91 16
82 26 42 25 21 17 67 34 42 14 74 58
59 10 36 32 84 25 51 18 109 57 57 10
42 36 126 88 62 25 68 37 120 43 101 40
40 35 43 15 79 37 55 13 60 32 74 72

100 96 80 0 55 33 39 32 46 13
70 0 168 90 81 32 46 15
95 35 90 73 67 18 99 37
95 32 78 25 55 0 87 0
61 41 165 75 58 11
58 42 269 33
24 13 269 25

85 35
168 98
50 0
83 4
42 27
75 10

     104 0
     #7                 #8
_______ _______
r x r x
153 48 85 79
112 45 112 55
126 34 94 0
61 45 78 15
53 43 158 68
78 0 153 72
53 17 153 74
59 49 42 27
78 64 42 27
150 146
128 34
114 38
90 54
93 24

To illustrate the use of right-angle distances, we use the half-
normal distribution.  This requires the assumption that right-angle
distances from the transect line have the relative frequency given by:

                                   f(x) = 
2

2π
   exp(

-x2

2σ2 )

This is just the familiar normal distribution, but with µ = 0, i.e.,
centered on the transect line.  Also, the distribution is multiplied by
a factor of 2 in order to permit "folding-over" half of the
distribution, and thus considering observed distances as though they a l l
fell on one side of the transect line.  Recalling that the general form
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of the density estimator for line transects calls for an estimate of
f(0), we get:

                                                          f(θ) = 
2

2π σ
 

The parameter (σ) is estimated just as it is for the normal
distribution, i.e.,:

With the exception that the divisor is m, rather than m-1, since in this
case the mean is known (i.e., is zero).  Inserting the above expression
for f(0) in Eq. (5.7) gives:

                                                       D^ i = 
m

L i 2π σ̂ i
 

The individual transect estimates appear in Table 5.4, and are combined
just as with Hayne's method above:

                    D^ overall =  ∑
i=1

n

 L i D̂ i     /  ∑
i=1

n
 Li    = 

0.822
500   = 0.0016.

Table 5.5. Summary of line transect data for a lizard study.

Transec t L e n g t h Number of LiD
^

 i LiD
^

 i
n u m b e r  L               i            observa t ions        (                       Hayne)         (half-normal)                                           
1 30 5 0.050 0.061
2 50 6 0.052 0.040
3 60 12 0.109 0.169
4 80 9 0.066 0.076
5 100 19 0.129 0.197
6 80 10 0.074 0.113
7 60 14 0.083 0.100
8 40 9 0.056 0.066
                           _______          _____                         ______          _______

   500                   84                              0.619    0.822
Density estimates                                                         0.00124          0.00165

5.8 A "distribution-free" method

The terms, "parametric models" and "non-parametric models" have b e e n
used in the literature to classify line transect methods.  We prefer to avoid t h a t
classification because the procedures thus far used mostly do in v o l v e
parameter estimation.  Hence we prefer to label the method presented here a s
"distribution-free," since it does not require the specification of a p a r t i c u l a r
frequency distribution or "visibility curve."  Burnham and Anderson (1976)
suggest some other approaches that do not depend on a specific f r e q u e n c y
d is t r ibu t ion .

The method presented here is one originally devised by Cox (1962, 1969)
and adopted for right-angle line transects by Eberhardt (1978b, 1979).  A
physical analogy, "length-biased sampling" was described in Section 5.4, i n

√ ( ) /σ i
j

j

m x

m
=

=
∑

2

1

1 2
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reference to l ine-intercept methods.  In that situation the physical s ize
(length) of an object determines the probability that it will be intercepted by a
randomly located transect line.  However, a much larger class of s i tua t ions
may be included if one considers what Patil and Rao (1978) have described a s
"weighted distributions."  They derive an equation of the form of Eq. (5.5) b y
supposing that the true frequency distribution cannot be observed d i rec t ly ,
and that the observed frequency distribution is somehow "weighted" in t h e
observation process.

In li ne transect work, the weighting function is what we have called a
visibility curve above (cf. Fig. 5.8).  Given random location of transect l i nes ,
the probability that an object will actually exist at a right-angle distance, x,
from the transect lines is given by a uniform distribution. That is,
theoretically, any distance is equally likely.  However, the distances w e
actually observe depend on the visibility curve.  Hence objects directly on t h e
transect line are seen with certainty (g(0) = 1.0), while those at a cons iderab le
distances are seen very infrequently.  Hence, formally, Eq. (5.5) should b e
written as:

                                                          f(x) = 
g(x)dx

µ                                                       (5.8)  

so that dx represents the uniform probability that an object exists at a n y
distance x from the transect line, and g(x) is the "weighting function."

The main value of all of this is theoretical, in that it lets us extend t h e
rather concrete notion of a line intercepting an object to the more abs t rac t
notion of a visibility curve.  Further details and applications to a wide range o f
problems can be found in Patil and Rao (1978) and in the references cited i n
that paper.

Cox's method depends on tallying observed distances within f ixed
intervals away from the transect line.  Thus all of the observations within a
distance,∆ , on either side of the line are added up and used to estimate the t r u e
proportion of all observations, denoted p(0,∆ ), that fall in that interval. H e n c e
if there are k1 observations within the distance ∆ , we estimate p(0,∆ ) = k1/m   .
Similar estimates are constructed for p(∆ ,b∆ ), the next pair of parallel be l t s
(Fig. 5.9) and p(b∆ ,d∆ ).  Cox's original method used only two intervals, but a n
extension to three or more intervals is readily obtained (Eberhardt 1979).
However, it appears that the variance of the resulting density es t imate
increases as the number of intervals is increased (Eberhardt 1979), so we w i l l
limit the present discussion to two intervals.

An estimator for two intervals is (Eberhardt 1979):

                                               (
1̂
µ)  = 

(b2 -  1 ) p̂( 0 ,∆ )  -  p̂(∆,k∆ )
b(b-1)∆                                  (5.9) 

where ∆  is the width of the inner interval and b∆  is the width of the inner two

intervals (Fig. 5.9).  The quantities p̂(0,∆ )  and p̂(∆ ,b∆ )  are estimated a s
described above, i.e.,

                                  p^(0,∆)  = 
k1
m             and       p^(∆ ,b∆)  = 

k2
m                               (5.10) 
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where there are k1 objects observed within the belts of the width ∆ on e i t h e r
side of the transect line, k2 are seen within the two intervals (right- and l e f t -
hand sides of the transect line, Fig. 5.9) demarcated by ∆ and b∆ , and m is t h e
total number of objects observed regardless of distance from the transect line.

∆ ∆∆∆                 b            dbd ∆∆0

k
1

k
2

Fig. 5.9. Intervals or "belts" used in Cox method.

Having estimated the reciprocal of µ, all one needs to do is insert t h a t
estimate in Eq. (5.6) to estimate density per unit area, where the units are t h o s e
in which right-angle distances (xi)  and length of transect (L) are recorded.
Cox (1969) used b = 2, so that the inner and outer intervals are equal (i.e., t h e y
are both of width ∆ ).  Since m appears in the numerator (Eq. 5.6) and in t h e
denominators of p(0,∆ ) and p(∆ ,b∆ ), it effectively cancels out in t h e
calculations.  Hence, if one combines Eqs. (5.6), (5.9) and (5.10), the result is:

                                                     D^  = 
(b+1)k1 - k2

2Lb∆                                                 (5.11)  

where we have used the result that (b2 - 1) = (b + 1)(b - 1).  One a p p a r e n t
consequence of this simplification is that m (the total number of objects) is n o t
required for density estimation.  However, that quantity is essential i n
studying variability of the estimates, and thus should be recorded, except i n
special circumstances.  One such situation may be in cases w h e r e
identification of objects beyond a distance of b∆   is uncertain.  Calculations a r e
discussed in Example 5.7.

An interesting variant of Cox's method is the case where only o n e
interval, of width ∆  (on each side of the transect line), is used.  This reduces Eq.
(5.11) to:

                                                                 D^  =  
k1
2L∆                                                      (5.12)  

We then have simply a strip transect, or "Kelker's method," in which it i s
assumed that all of the objects are observed within a strip of width 2∆ .  It m a y
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be noted that if the number of objects observed in the two belts is equal, i.e., i f
k1 = k2 = k, then Eq. (5.11) becomes:

                                                  D^  = 
(b+1)k  -  k

2Lb∆   =  
k

2L∆ 

so that we again have a strip transect.

Another variant, of interest to ornithologists, is Emlen's (1971) method.
It turns out (Eberhardt 1978b:15) that Emlen's method essentially reduces t o
use of Kelker's method, or a strip transect.  Details appear in Example 5.8. S ince
the assumption that all animals (or objects) are seen in the inner strip is a n
important and uncertain item, we recommend that two intervals be used i n
p rac t i ce .

Variance estimation for the Cox method is a subject that needs m o r e
research, particularly research supported by field data.  The weak point i n
present theoretical approaches is that they assume that the number o f
individuals observed (m) is Poisson-distributed, which essentially amounts t o
assuming random distribution of individuals.  Since this is not likely to o c c u r
in practice, the present variance estimates are likely to be too low, i.e.,
underestimates.  For the Cox method with two intervals, a c o n v e n i e n t
expression of the variance is obtained as (Eberhardt 1979):

                                               [C.V.(D̂ )]2 =
.
  

(b+1)2k1+k2

[(b+1)k1-k2]2
                                       (5.13) 

where b, k1, and k2 are as defined above, and C.V.(D^ ) stands for the coe f f i c ien t

of variation of the density estimate.  For practical purposes, if C.V.(D̂ ) equa ls ,
say 0.25, one can propose approximate confidence limits on an estimate a s
being the estimate + 50 percent (i.e., we round the usual 95 percent n o r m a l   
curve "Z-value" of 1.96 to 2.0).

An alternative procedure for variance estimation is to employ t h e
"replicate sampling" idea, i.e., to break the total sample down into r a n d o m
subsets, calculate a density estimate from each such subset, and obtain t h e
variance estimate from the resulting set of independent density estimates.

For planning purposes, a rough approximation (Eberhardt 1978b) is:

                                                        C.V.(D̂ ) =
.
 (

4
m) 1/2                                               (5.14)

Two examples on actual data (Eberhardt 1979) suggest this equa t i on
underestimates the results of Eq. (5.13) by roughly 10 percent.  Seber (1973)
and Eberhardt (1978b), using different approaches, suggest a comparab le
result for flushing-distances (sighting-distances, radial distances) to be:

                                                        C.V.(D̂ ) =
.
 (

2
m) 1/2                                               (5.15)



                                                                                                                                         5.29

We thus have an indication that the variance using right-angle distances a n d
the Cox method may be much as twice that obtained for flushing distances.

Example 5.7 The "Cox" method

The right-angle distances of Table 5.4 can be used to illustrate
the Cox method, as given by Eq. (5.11).  The main problem lies in
selection of the two intervals ∆, and b∆.  My recommendation (cf.
Eberhardt 1979) is to include about 80 to 90 percent of the observations
inside b∆.  If we let b = 2 and ∆= 35, then b∆ = 70. Although density
can be calculated directly from Eq. (5.11), in this case it would be
desirable to make the intermediate calculation represented by Eq. (5.9),
for use in comparison with the results of Example 5.6 above.  This is
because the transect lengths used in the example are artificial, so the
best comparison is to estimate (1/µ) or f(0).  Hence the entries under
sums of LiDi from Table 5.5, are best compared with the estimate
obtained from the Cox method.  Note, however, that these quantities need
to be doubled for comparison.  Calculations with the Cox method can be
carried out transect by transect, and it is probably worth doing so on
Table 5.4 just to see how the estimates behave.  With small samples,
however, it is preferable to make a single estimate for the entire area
(i.e., combine all of the observations in Table 5.4).

Example 5.8 Emlen's method

A method due to Emlen (1971) became quite popular with
ornithologists. It depends on a "coefficient of detectability" which is
determined by an intensive study on one area, and then used to adjust
counts in other areas. The basic approach is to use the observed data to
determine where visibility drops off.  If we let this point be ∆, the
assumption is that all birds are seen between the transect line and ∆.
Suppose k1 birds are counted in this strip, and that we want to estimate
the number of birds expected to be found between the transect line and
some outer boundary, R.  The logical estimate is just (k1/∆)R.  Emlen
divides the total number of birds (k) seen between the transect line and
R by this projected number and calls this the "coefficient of
detectability":

                                                              C.D. = 
k∆

k1R 

This clearly amounts to an estimate of the proportion seen of the birds
present between R and the transect line.  Emlen then proceeded to divide
the number seen (k*) on a new area by the coefficient of detectability,
and regarded this as a population estimate for the new area:

                                                              N
^

  = 
k*k 1R

k∆  

Actually R is selected so that a fixed transect length (1 mile) gives N

as the number of birds per 100 acres.  Hence N
^
  is really a density, and

we note that if units of feet are used 2RL = 100(43,560) = C, so we can

write R = C/2L and express N
^
  as:

                                                            N
^

  = 
Ck*
k    [

k1
2L∆ ]

Since the quantity in brackets is just Kelker's estimate [Eq. (5.12)],
Emlen's procedure turns out to have the following steps:
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(1) Estimate density on one area by Kelker's method, while
counting all of the birds visible on 100 acres (k).  

(2) Count all of the birds visible on 100 acres (k*) on a new
area.

(3) Use the ratio k*/k to project the Kelker estimate of the first
area to the second area.

Several limitations of the method seem apparent.  One is that the
visibility curve is assumed to have a particular form, i.e., all birds
are seen out to some particular distance.  A second limitation is that
it is assumed that we can located that distance from observed data.  A
third, and major problem, is that it is assumed that the visibility
curve remains constant from area to area, and time to time.

These several limitations can be avoided simply by taking one
precaution. That is to record separately all birds seen between the
transect line and the distance ∆ on the second area.  One then can use
Eq. (5.11) with b = R/∆ and get a direct estimate of density
independently on the two areas.

5.9 Assumptions underlying line transect methods

A decision to use a particular line transect method needs to take i n t o
account the underlying assumptions.  The list given here is based on s e v e n
assumptions given by Gates et al. (1968) and Seber (1973,1982), but i s
rearranged to show just which assumptions are required for a given l i n e
transect method. We assume that randomly located transect lines are uti l ized,
and thus drop one restrictive assumption, that of random location of t h e
objects being censused, which is not required for randomly located t r a n s e c t
lines (Eberhardt 1978b).

The first three assumptions are basic and whether or not they are m e t
will depend on behavior of the observer and of the animal being censused.
They are:

(1) No animal (or object) is counted more than once on a given transect line.
(2) When flushed, each animal is seen at the exact position it occupied w h e n
startled by the observer's approach.  Obviously this does not apply to a n i m a l s
or objects that are fixed in place during the census.
(3) The response behavior of the population on a census plot does not c h a n g e
during the course of running a given transect.

Definitions of the response behavior serve to distinguish the va r i ous
methods.  One of these is achieved by defining a visibility curve as follows: T h e
probability that an animal, or object, being seen, given that it is at a r i g h t -
angle distance x from the transect line is a simple function, g(x), such t h a t
g(0) = 1 (i.e., animals, or objects directly on the transect line are observed w i t h
certainty).  These assumptions then suffice for right-angle line t ransec ts .
Assumption (3) now means that the visibility curve does not change d u r i n g
the course of running a given transect line.
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A fourth assumption serves to define conditions for the fixed f l u s h i n g -
distance line transect.  This assumption defines the response behavior of t h e
an imals :

(4) Individual animals have fixed flushing radii, during the course of r u n n i n g
a given transect, and flush if, and only if, an observer comes within t h i s
characteristic distance (r).  It is of course, also necessary to assume that r i s
accurately observed and recorded.

An alternative assumption, plus some others, leads to the v a r i a b l e -
distance line transect:

(4a) The animals are homogenous with regard to their inherent r e s p o n s e
b e h a v i o r .
(5) The sighting of one animal is independent of the sighting of another.
(6) The instantaneous probability of flushing is a function, f(r), of the rad ia l
distance, r, between animal and observer.

These several assumptions lead to the theory of the variable d is tance
model (Eberhardt 1978b).  It may be remarked that one could assume a
particular mathematical model for f(r) and proceed to derive e f f i c i en t
estimates for density estimation under such a model.  This has been done i n
some of the literature (e.g. Gates et al. (1968) and Gates (1969)). We h a v e
previously mentioned two tests that should be applied to observed data b e f o r e
the flushing-distance method and Eq. (5.4) is used (cf. Example 5.5). We w i l l
return to discussion of some aspects of the above assumptions in a s u b s e q u e n t
section on sampling design.

5.10 Strip transects

The simplest case of a strip transect occurs when the objects b e i n g
censused are readily visible and sufficiently abundant to permit using a
restriction on width of the strip covered.  The method then amounts simply to a
sample survey using long, narrow plots.  The methods of Chapter 4 can then b e
applied. A basic assumption is that all of the objects on the plot are tallied.

When there is a reason to believe that not all of the objects on the p lo t
are seen, then it may be necessary to introduce a visibility-curve.  We h a v e
preferred to treat such situations under the heading of right-angle l i n e
transects (as in Fig. 5.1).  However, this is mostly a matter of preference, a n d
one could classify such situations as "strip transects using visibility- cu rves . "
This may be a more natural-seeming description in circumstances where a
finite boundary exists on strip width.  An example is the study of Anderson a n d
Pospahala (1970), who counted duck nests on dikes.  The width of the dike t h e n
provided a natural boundary on strip width.  However, the methods o f
estimation will remain essentially those treated here as right-angle l i n e
transect, except that the total number of objects tallied (m) will be those ta l l ied
within the strip, and the visibility-curve, g(x), is truncated (cut-off) at t h e
strip boundary.
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An important issue in such situations is that a visibility-curve has t o
enter the calculations of density in some manner.  Several publications h a v e
used a procedure to correct for reduced visibility away from the transect l i ne .
This consists of summing the total observations from the entire survey f o r
various intervals out from the transect line.  With the symbols used above, o n e
would thus have k1 observations in the interval (o,∆ ), k2 in (∆ ,b∆ ) and so o n .
It is then assumed that all of the animals are seen in the innermost i n t e r va l ,
and the fraction seen in the other intervals is calculated from the observed
data, i.e., k2/k1, k3/k1, etc.  These rates are then used to adjust daily (or week ly ,
etc.) observations in the outer intervals, supposedly correcting them for t h e
fraction missed.  However, this procedure simply results in adjusting all of t h e
intervals to equal the central one (to k1 observations), so one may as well u s e
only that interval and not bother with the rest.  The same kind of p r o c e d u r e
has also been used to adjust for numbers seen by time of day when c e r t a i n
observation periods give the highest counts.

While the Cox method (Sec. 5.8) does not require postulation of a spec i f i c
visibility-curve, it does take the existence of such a curve into account in t h e
estimation procedure.  All of the other methods actually used thus far do
specify a particular curve or "family" of curves.

Strip transects have been widely used in aerial surveys, largely o f
terrestrial animals.  It is now well-established that not all of the animals o n
the strip are seen by the aerial observers.  Caughley (1974) has summar ized
evidence on this point.  Caughley et al. (1976) have conducted some
experiments designed to explore the effects of strip width, altitude and speed
on the numbers of animals counted.  They go further, and use mu l t i p le
regression equations to attempt to correct for these variables.  However, I do
not recommend the use of such equations, because a very uncertain sort o f
extrapolation is utilized--going from the observed data to zero strip w id th ,
speed, and altitude.

Two alternatives seem worth consideration.  One is to utilize s u c h
experiments to arrive at a standard set of observation parameters, and to t h e n
regard the observed data as an index.  When accurate counts by a n o t h e r
method are feasible, one can then attempt to go further by " g r o u n d- t r u t h "
correction.  A variety of special precautions need to be taken in aerial su rveys ,
and are described in a publication by Norton-Griffiths (1975).

As mentioned in Sec. 5.8, the Cox method might be applied to a e r i a l
surveys in the form of Eq. (5.11), using two strips.  This approach i s
particularly attractive in that it will not ordinarily be possible to attempt t o
record right-angle distances.  About all that is likely to be feasible is to r e c o r d
observations in two intervals, demarcated by markers on windows and s t ru ts .
Since most such surveys are conducted by observers who look out side w indows
of small aircraft, a particular drawback to this arrangement needs to be noted.
This is that the visibility-curve is not likely to be that of Fig. 5.8, w i t h
certainty of observation of animals directly on the transect line.  This i s
because the transect line is directly under the aircraft, and not readily v iewed
by the observer.

Unless a specially fitted-out aircraft is available, with provision for a
"bow" observer to look directly forward and down, the only alternative seems
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to be to attempt to locate, by experience, the right-angle distance that can b e
viewed effectively and comfortably by observers.  The observers should t h e n
concentrate on "guarding" (covering) a fairly narrow strip starting at t h a t
point.  This strip then becomes the interval (0,∆ ) and frequent glances up a n d
out are used to tally animals in the outer strip (∆ ,b∆  ).  The critical point is t o
concentrate enough effort on one line which is considered to be "the" t r a n s e c t
line (normally there will be one such line on either side of the aircraft).  I n
larger aircraft, it may be feasible to assign two observers to a side.  One does
nothing but scan the "track line," while the second observes the outer s t r i p
(∆ ,b∆ ) .

5.11 Modified strip transects

Three modifications of strip transects have been mentioned above.  One
includes corrections for decreasing visibility with distance from the t r a n s e c t
line, and we have elected to cover this situation under right-angle l i n e
transects.  A second is the case where animals, largely marine mammals, a r e
visible only intermittently.  The third has to do with animals that are in f a i r l y
constant motion, as with some small birds.

One basis for dealing with animals that submerge, and thus are n o t
always visible on a transect, assumes a constant diving time (u) and a c o ns t a n t
period on the surface (s) between dives.  This is not particularly sat is factory,
since both quantities may vary, and needs modification. In shipboard counts o f
ringed seals (Phoca hispida), McLaren (1961) assumed that all surfaced seals                          
could be seen out to a fixed distance (r) from the vessel.  This, too, is not a v e r y
reasonable assumption, as quite certainly there will be a decrease in v is ib i l i t y
with distance.  It might, however, be acceptable if this distance (r) is k e p t

reasonably short.  If the average probability ( p
_

 ) that a seal within a strip o f
width 2r will be counted can be estimated, then the observed count (m) w i t h i n
the strip can be translated to an estimate of density as:

                                                                    D^  = 
m

2 r L ( p
_

)
                                              (5.16) 

i.e., the number present is estimated as m/p
_

  and this is divided by the area of a
strip of length L.

McLaren (1961) gave the probability ( p
_

 ) of seeing an individual seal ,
given that it is in the strip, as:

                                                    p = 
t

s+u   + 
s

s+u                                            (5.17)  

where t denotes the duration of the period when a surfaced seal would b e
visible to an observer.  This varies according to the right-angle distance f r o m
the vessel, since the radius of visibility (r), shown in Fig. 5.10 limits the t i m e
an animal can be seen at a given right-angle distance.  If v denotes velocity o f
the vessel, then (see Fig. 5.10):

                                              t = 
y
v   = 

r sinθ
v  
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Fig. 5.10. Dimensions used in shipboard surveys of marine mammals. The a r r o w
denotes the ship's course along a transect line, while the observers scan t h e
semi-circular area of radius r.

McLaren assumed that no point could be kept under observation for a s
long as u minutes, that is, t < u.  Given this restriction, Eq. (5.17) can b e
obtained by considering the two successive intervals representing a dive ( u )
and the succeeding time on the surface (cf. Exercise 5.13.1).  If we make t h e
usual assumption of random transect locations (and thus a uniform p robab i l i t y
of a
seal being present at a given right-angle distance), then Equation 5.17 can b e
"averaged" to obtain:

                                                       p
_

  = 
π
4 

r
v (s+u)   + 

s
s+u                                             (5.18) 

This differs from McLaren's (1961) result (see Eberhardt 1978b).

A similar approach has been employed for censusing whales v isua l ly ,
except that a narrower width of field forward of the vessel is scanned.  Also,
much longer detection distances are postulated, due to the greater visibility o f
"spouting" or "blowing" by the whales.  Doi (1974) developed an expression f o r
the probability of detection.  He also assumed a constant diving time, so t h a t
the same question of the effect of a variable diving time arises in c o n n e c t i o n
with his results.  An important difference in the two approaches is t h a t
McLaren assumes t < u, i.e., that submerged seals may go undetected, even i f
they are in the zone of maximum possible detection directly ahead of t h e
vessel.  Doi, however, postulated a zone within which the observation time i s
long enough that any whales were seen with certainty.  Doi also introduced a
correction factor (K) for the prospect that observers may fail to see some
whales, even though they do surface and "blow."  This factor is:

                                        K = 1 - (1 - 
θp
2θ1

 )s

where θp represents the visual angle of the observer,  θ1 is the angle searched
(on either side of the vessel) and s is the number of observers. Buckland et al.
(1993)  described another method for whales called “cue counting”.
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The second modification to be considered here is that required to dea l
with animals, such as small birds, that are in motion during the course of t h e
survey.  Yapp (1955) proposed an approach based on the kinetic theory o f
gases.  The mathematical aspects were later reviewed by Skellam (1958).  T h e
two equations involved are:

                                                                    D^  = 
z

2 r v                                                    (5.19) 

where D = density of the population, z = number of encounters per unit time, v
= average velocity of the animals relative to the moving observer, and r =
range or radial distance within which an animal must approach the o b s e r v e r
to effect an encounter.

                                                                v2 = u
_

 2 + w
_

 2                                              (5.20)

where u
_

  = average velocity of the organisms and w
_

  = average velocity of t h e
obse rve r .

An important assumption is that the behavior of the animals is n o t
influenced by the presence of the observer.  Eq. (5.19) is based on t h e
assumption that the area in which encounters take place is a circle or radius r .
This, then is the same sort of troublesome assumption encountered before i n
this chapter.  If we let z = m/T, where m is the number of animals observed

during the total time of the survey (T), and also assume  u
_

  = 0, then:

                                                           D^  = 
m

2 r w
_

T
  = 

m
2 r L 

where L represents the total distance traveled by the observer.  We thus h a v e
the usual equation for a simple strip transect.  One can, of course, let

 w
_

  = 0, i.e., assume that the observer sits still and base results on the a ve r a g e
velocity of the organisms:

                                                                  D^  = 
m

2 r u
_

T
                                                    (5.21)  

This has some attractive features, in that the radius (r) can probably b e
determined with reasonable accuracy under such circumstances, and a
motionless observer is less likely to influence behavior of the animals.  A
drawback is in the "representativeness" of the spot selected for observa t ion .
No doubt random selection of several spots would help on this score.  However ,
if the radii vary, as they likely will, t hen questions of the effect of density vs .
cover type may need to be considered.

An important problem with the above method is that of measuring t h e

average velocity of the animals ( u
_

 ).  Clearly this cannot be done during t h e
survey, at least not if the observer is also moving.  However, if the o b s e r v e r
sits still he might then use a stop watch to time movements of animals and t h u s
estimate their velocity.

Little use seems to have been made of Yapp's method, so that it i s
difficult to provide an evaluation based on experience.
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5.12 Survey design

Although much of the discussion of line transect methods is couched i n
terms of results obtained on a single transect line, practical use of the me thod
will frequently require combining results from a number of separate l i n e s
into a single sampling unit.  This will be especially true in terms of v a r i a n c e
calculations, since precautions need to be taken to avoid individual s a m p l i n g
units on which no animals are observed.  As we have already indicated, w e
believe variance estimates based on theory should mainly be used for s u c h
purposes as comparing methods of estimation, appraising bias, and the l ike .
Another important use is in obtaining approximations suitable for es t ima t ing
sample sizes in planning a survey, as in Eqs. (5.14) and (5.15).

In the actual analysis of survey results, we recommend variances b e
estimated directly from the survey estimates, as illustrated in the s e v e r a l
examples.  However, the investigator should not wait until the data are all i n
hand before considering how this is to be done.  The arrangements f o r
analysis of the data should instead be decided at the survey design stage.

Usually the survey will require a number of days for completion so t h a t
a worthwhile precaution is to arrange the sampling plan so that the t r ansec t s
run in the same sub-area are spread out over the total time interval d u r i n g
which the survey is conducted.  Thus "replication in time" is introduced i n t o
the survey, and it may be useful, in analysis of the data, to try to evaluate a n y
trends in time.  When this kind of arrangement is feasible, it will be i m p o r t a n t
to randomize the locations of successive lines falling in the same sub-area.  I n
fact, this may well be the best way to use randomized sampling, in that t h e
separation in time will usually eliminate the need for concern about h a v i n g
two transects fall close together.  When large areas must be dealt with, it w i l l
usually not be possible to use a scheme of this sort.

The above scheme may be illustrated by reference to Fig. 5.11, w h i c h
shows a study area divided into three subunits, denoted by vertical lines in t h e
figure.  One randomly located transect line (L1, L2, and L3) is shown in e a c h
sub-area for each day on four successive days.  To obtain a variance es t imate
on the basis of " interpenetrating," or "replicate" sampling, one s imp l y
calculates as estimate of density for each day, and uses that estimate in t h e
variance calculation.  That is, density is estimated as

                                                                    D^  = 
1
n   ∑

i=1

n
 Di                                           (5.22) 

and variance as

                                                        s2(D̂ ) =   
1

n ( n - 1 ) ∑
i=1

n

 ( D i -  D̂ ) 2

(5.23)

where in this case n = 4.  Note that the variance given is that of a mean, i.e., s(D^

)  is usually described as the standard error.
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For larger areas, travel time will be rather too costly to permit use o f
single transects in each sub-area.  Alternatives are to use several r a n d o m l y
located lines in each sub-area, or to use a systematic arrangement with a
randomly selected starting point.  Suppose three lines in each unit are to b e
used.  Then each base line length (Wi ) is divided into three segments of l e n g t h
W i /3.  A random location is selected in the first and the remaining units spaced
out by the interval Wi/3.  It may be noted that the baselines (Wi) of Fig. 5.11
are not of the same length.  This is because of the irregular shape of t h e
region--it is best to try to keep the areas of the subunits about equal. D i f f e r i ng
lengths of transect line can be handled as described in Example 5.1. Note t h a t
the three systematically placed lines discussed above should be treated as o n e       
transect line in the analysis.

Stratified random sampling (Chapter 4) may well be desirable in l i n e
transect work.  Example 4.6 illustrates use of stratification with a s t r i p
transect. Unfortunately stratified sampling has not been used much with l i n e
transects, so we have little experience to draw on for planning.  One p rospec t
is that the use of variable sampling intensity (by strata) will call for m a k i n g
individual population estimates for each stratum.  Obtaining separate v a r i a n c e
estimates for each stratum may thus require fairly intensive sampling in e a c h
s t ra tum.

A very important feature of survey design is to review the u n d e r l y i n g
assumptions (Sec. 5.9), and to consider whether the proposed design is likely t o
result in violation of one or more of the assumptions. I have repea ted ly
recommended random sampling, as this is the basis for the present theory.  A
practical alternative is a systematic sample with a random start.  With a n i m a l s
that are highly mobile, one has to avoid a sampling pattern that places l i n e s
near enough together that individual animals might be seen twice on the s a m e
systematically arranged sampling unit.

The various assumptions that have to do with response b e h a v i o r
obviously require good knowledge of the species and situation.  Some spec ies
behave in ways that make them doubtful candidates for line t r a n s e c t
censusing.  When right-angle distances are used, the "behavior" of t h e
observer is of crucial importance.  Some design arrangements can help r e d u c e
the effect of observer differences.  For example, if several observers are used
in a single aircraft, for an aerial survey, they should rotate through t h e
viewing positions fairly often (in small aircraft this may be practicable o n l y
on landing).  This practice helps "average out" observer and position effects.
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Fig. 5.11. Randomization of transect lines within sub-areas on successive
census days.
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Since circumstances of line transect surveys are quite variable, it is n o t
possible to review each situation with regard to the assumptions.  T h e
investigator needs to understand them, and to take precautions wh e r e v e r
possible.  Another example is that lines should not be run close to sharp b r e a k s
in cover, topography, etc.  One can, of course, simply not census on the side o f
a line that parallels such a break.  Sometimes it is possible to arrange that t h e
lines go at right-angles to such "discontinuities," and this should help.  A
similar reasoning dictates that transect lines should not run the "long way" o f
an elongated study area.  Methods to minimize errors of measurement and da ta-
recording are of course essential in survey design and planning.

A variety of recommendations concerning transect methods i n
censusing marine mammals appears in Eberhardt et al. (1979).  Some of t h e s e
may be useful in other circumstances. As noted earlier, much more detail o n
recently developed methods appears in the book by Buckland et al. (1993).

5.13 Exercises

5.13.1 Calculate CV2(p) from Table 5.2  using ratio estimation, and calculate a
standard error for p using the individual proportions. Show your calculations.

5.13.2 calculate the weighted average density from Table 5.2 using ratio
estimation, and its standard error. Show your calculations.

5.13.3 Carry out calculations for the Hayne and half-normal methods for the
lizard data of Table 5.4. Show calculations.

5.13.4 Do  the calculations for Example 5.7.

5.13.5 Estimate the Di for Exercise 5.13.3 and tabulate these along with the Di
from Exercise 13.4. Compute coefficients of variation treating each transect as
an independent estimate. Compute correlations among the three sets of data.
Also compute the coefficient of variation for the Cox method given in Eq.
(5.13),  combining the data from the several transects.

5.13.6  Components of variance

It was remarked in Sec. 5.5 that the fixed distance model could be used t o
show that a larger variance results if right-angle distances are used f o r
estimation, rather than the flushing distance.  One way to appreciate this is t o
recall that the basis for estimation for the fixed distance model depends o n
doubling the flushing-radius to determine the probability of observing t h a t
individual.  Doing this with the right-angle distance introduces an addi t ional
component of variability due to the fact that the observed right- a n g l e
distance (x) falls randomly between zero and the flushing-distance ( r ) .
Students with some training in mathematical statistics may want to t r y
calculating coefficients of variation for x and r, assuming x to be u n i f o r m l y
distributed on (o,r) and that r has some underlying distribution, say m(r). One
can then find the two C.V.'s in terms of the first 3 moments (µ1,µ2,µ3) a n d
obtain a notion of the relative difference in efficiency.
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5.13.7  Deriving a sighting probability

Students should attempt to derive Eq. (5.17), assuming s and u are f ixed
and that t < u.  Nothing beyond elementary probability considerations i s
involved, but a diagram helps.

5.13.8  A seal census

McLaren gives data as follows.  Ship's speed 0.12 nautical miles per h o u r ,
visibility limit 0.32 miles, s = 1 minute and u = 3 minutes, and 43 seals w e r e
counted on a given transect.  He does not give the transect length. Students
should convert Eq. (5.16) to represent number of seals (N) in the area sc a n n e d
by the observer and carry out the relevant calculations.



6.1

6.0 THE ANALYSIS OF VARIANCE

6.1 One-way Analysis of Variance

We will begin with the simplest case, the one-way analysis of k sets of
observations (the t-test considers k=2). The ANOVA is usually presented as a
table showing the sums of squares, degrees of freedom, mean squares and the
associated F-tests of significance (named for the pioneer worker and
originator of the test, R. A. Fisher, who devised much of the methodology in
the 1920's and 1930's).

The basic calculations depend only on algebraic identities yielding the Sums of
Squares. These hold for any k sets of numbers so there are no assumptions
involved in the basic calculations. We bring in various assumptions in order to
develop statistical tests of significance.

We will subject one set of data (the pheasant count data of Table 6.1) to several
different forms of ANOVA to demonstrate the mechanics of calculations for
various arrangements of data. The assumptions involved in F-tests will be
discussed more fully later, after we examine the basic calculations.

Table 6.1. Pheasant call count data reported by S.M. Carney and G. A. Petrides
Journal of Wildlife Management 21:393, 1957

OBSERVERS
STATIONS A B C D E F

1 39 33 33 32 29 27
2 46 36 32 30 35 35
3 45 36 44 31 31 23
4 15 25 29 18 18 14
5 17 14 14 9 14 7
6 27 24 26 14 20 15
7 24 19 15 13 19 15
8 22 22 22 13 16 13
9 28 35 33 32 26 28
10 26 24 23 26 22 17
11 12 13 5 9 8 8
12 8 11 9 9 12 7
13 6 5 9 4 10 3
14 7 6 7 2 7 6
15 7 11 11 6 10 6
16 9 11 9 6 10 4
17 1 2 4 2 5 0
18 5 4 4 4 6 2
19 3 2 3 1 3 1
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 Fig. 6.1 Counts of calling (crowing) pheasants at 19 stations counted
simultaneously by each of 6 observers.

The short horizontal lines in Fig. 6.1 mark the mean counts for each of the 6
observers. If it is assumed that the data  all come from the same population or
process, then the apparent differences in means arise as a matter of chance.
Then any particular cluster of points will occupy roughly the same position as
any other cluster. On the other hand, if at least some of the populations (or
processes) do have quite different means, then the clusters of plotted points
will not occupy quite the same positions. Three ways in which the clusters of
points can differ are: (1) one or more clusters are shifted up or down from the
others (a "scale" or "location" difference), (2) the spread of the individual
clusters may differ, and (3) the shape of the clusters may differ. Sample
variances provide a measure of the spread of the data, being calculated for the
ni  observations from each observer as:

so that data with a wide spread (scatter) of points will have a large variance. If
the clusters have the same shape (this can't be reliably checked without very
large samples) and spread (same variance), then a simple shift up or down
scale can be detected by comparing the variability of individual clusters with
that of the whole set of data. If the clusters are shifted well apart, obviously an
overall variance will considerably exceed that of the individual clusters.
Offhand, it doesn't look as though the several sets of pheasant data differ
much. Another example, based on natural logarithms of counts of "signs"

s
y y

ni
i i

i

2
2

1
= −

−
Σ( )

                                          (6.1)
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(mounds and dens) of pocket gophers at different locations appears in Fig. 6.2,
which does seem to suggest real differences between sites.
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Fig. 6.2 Logarithms of counts of pocket-gopher signs at different locations
and/or years (Reid, Hansen, and Ward, Jour. Wildl. Manage. 30:330,1966).

A comparison between an overall variance and that of individual comparisons
can be constructed by examining the sum of squares making up the overall
variance. That is, let yij  be the jth observation in the ith column of tables of
data and ni  be the number of observations in that column. Denote the overall

mean by y-   and a column mean by  y-  i . Then the overall variance is written as:

Considering only the numerator of eq. (6.2) (the sum of squares) for the
present, we can rewrite it as:

                           TOTAL S.S.       = WITHIN S.S.  +   BETWEEN  S.S.

This results because a little algebra shows that the cross-product term
vanishes (students should do the algebra for themselves). The first of the two
resulting terms is just the sum of the components that would be used to
calculate a separate variance for each column and is thus denoted the "within"

( )y y

n

ij
ji

i
i

−

−

∑∑
∑

2

1
                                            (6.2)
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(within columns) sum of squares. The second component represents the
variability "between" columns. These quantities are usually displayed in an
Analysis of Variance (ANOVA) table (let Σ ni  = n):

Table  6.2  Analysis of Variance for a one-way design.

                                                              Degrees of      Mean
Source                  Sum of squares                    freedom                                     squares                                

The "mean squares" (MS) are estimates of variances, and under the
hypothesis of no difference between the populations (processes)
represented by the columns of the Figures above, these estimates should be
equal. Arriving at the divisors (degrees of freedom) can be remembered
by the following devices: (1) there are k means being considered in the
"between" groups so the usual practice for estimating a variance prevails,
i.e., divide by k-1, (2) within each group a variance would be
estimated by Eq. (6.1). A logical way to pool these within-group variances is to
weight by the degrees of freedom, i.e., calculate:

which gives the between-groups value used above (Table 6.2).

 Whether the two variance estimates are significantly different or not is tested
by the "F-ratio", which is:

                                            F = 
S Sb/ (k-1)
S Sw/ (n - k )

 

 Values denoting significant deviations are widely tabulated in textbooks in
statistics and are now printed out by the various computer programs used to
calculate ANOVAS. The advent of such computer programs has made it very
easy to do the calculations. The serious disadvantage of these "canned"
programs is that virtually anyone can calculate complex analyses without
having any real idea what the results mean. Students thus need to actually
work out the calculations for the above examples so as to understand how they
are carried out. This is easy to do on a spreadsheet, such as EXCEL.

Inasmuch as EXCEL will conduct one-way ANOVAS, we can first use that
function (Anova: single factor) and then calculate the sums of squares directly

Between groups          k -1              

Within groups        n - k             

Total                               n -1
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on a separate spreadsheet, as a way to understand what's going on. Thus the
EXCEL one-way program produces a listing of sample sizes, sums, averages and
variances for each column in the table of pheasant call-count data, followed
by an ANOVA table of Sums of Squares, degrees of freedom, mean squares, F
value, P-value (probability of significant difference between groups, and "F-
crit" (the significant value of F at the α  = 0.05 level).

To check these results directly, one needs only to insert two columns between

each of the existing columns of data, calculate column means (y-  i )for the data

and the overall mean (y-  ), and use these to calculate "within" and "total" sums
of squares and add them up to get the values produced by the program. The
"between" sum of squares is calculated directly from the definition given in
Table 6.2 above using column means and overall mean.

6.2 Two-way analysis of variance

One-way ANOVA usually does not involve much in the way of a study
design. The comparisons are likely to be obvious, and the only complication
that may arise is if it is desired to compare subgroups of the k sets of
observations. We will return to such comparisons later on. The "higher-order"
forms of ANOVA are more versatile and thus more powerful. More planning is
thus involved, and we need to distinguish between the various possible
approaches. The simplest of the more complex ANOVA's is the two-way analysis
without replications. As the name suggests, it is based on a two-way table.
There are k sets of data, each appearing in r rows, so that there are rk
observations. The pheasant call-count data provide an example, where we now
consider the rows (stations) as a factor in the analysis. This is done by
calculating a row sum of squares, and incorporating it in the ANOVA table. It is
worthwhile to depict the data as an table of xij with k columns and r rows as
follows (some authors use r rows and c columns; others a rows and b columns -
- notation is not consistent in statistics books). It is useful to border the table

with row and column means. The dot notation (e.g, x-  1.) is used to signify that

the average is taken over a row or a column (x_ .1). A double dot notation (x_ ..) is
used to designate the overall means (sometimes this appears with two bars over
x). Note that we have switched from yij  to xij . Both notations are
common; it is worthwhile to use xij  from now on because yij  will be used as the
"independent" variable in regression analysis later on.
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                                  COLUMN MAIN EFFECT

1 2 3 i k

1 x1 1 x2 1 x31 ...  xj1  .... xk 1 x-  .1

2 x1 2 x2 2 x3 2 xj2 xk 2 x-  .2

ROW EFFECT 3 x1 3 x2 3 x3 3 xj3 xk 3 x-  .3
             .

 .
                                     .

j x1 j x2 j x3 j x i j xk i x-  .i
             .

 .
             .

r x1 r x2 r x3 r x i r xk r x-  .r

x_ 1. x_ 2. x_ 3. x_ i . x_ k. x_ ..

The sums of squares (S.S.) are obtained in the same way as in the previous
example, that is, we expand the Total S.S. to form the other sums of squares:         

Total S.S.             - Columns S.S.       - Rows S.S.           = Residuals (Error) S.S.

These results are calculated by EXCEL as 2-way ANOVA without replication. The
program produces tables of row and column means and variances along with
an ANOVA table.

6.3 Randomized blocks designs

The two-way program is listed in EXCEL as being "without replication".
However, this is not necessarily true, as the row effects can indeed represent
replications. Such an arrangement results from a randomized blocks design.
These designs are widely applicable. Suppose we have k treatments to study,
and can arrange to test them in r "blocks", where each block is comprised of k
units that are relatively uniform in nature. For example, we might want to
evaluate the effectiveness of k drugs on weight gain in rats. We might thus
obtain r litters of k rats each, and give the different drugs to each of the k rats
of each litter (choosing individual rats out of a given litter at random to
receive one of the k drugs), and maintain the individual litters together under
uniform conditions. The trick is to keep the blocks as uniform as possible so as
to minimize "within block" variability so that most of the variance within a
block results from the treatments. The method was developed in agricultural
experimentation where the blocks are usually plots of ground selected for
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their uniformity. Each plot is made up of k subplots, to which some set of, say,
fertilizers, is applied. Fig. 6.3 shows how randomized blocks designs are laid out
in plots. Note that the blocks may be separated by some distance, being selected
for the uniformity of material within a block, which can reduce the "error"
M.S. considerably.

The randomized blocks design can be a powerful and efficient approach.
Note that the individual units in the blocks serve as true replicates so that the
randomized blocks design does have replication. In our pheasant example, the
stations are not replicates, so the ANOVA there is "without replication".
However, the two cases (with and without replication) use the same
calculations. The difference lies in the experimental design -- randomized
blocks may be far more efficient in assessing differences. Much of the
efficiency depends on the investigator's knowledge of the experimental
material -- there is an element of "art" in picking blocks. In long-term studies
one can sometimes take advantage of previous year's data to see how uniform
the blocks are. Also, "uniformity" studies can be run to measure the variability
within blocks. In these studies the same "treatment" (usually no treatment) is
applied to all plots, and the ANOVA run to measure variability within and
between blocks. One would, of course, like to have a very small "within" mean
square, and can tolerate a large "between" blocks M.S.
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A randomized block study design. T here are k units, assigned to a lo cation
at random within each block, and r  blocks in all. Every treatment ap pears
in each block (randomly assigned t o a position).

r

Fig. 6.3 Randomized blocks layout. The blocks (often plots in agricultural
studies) are laid out to be as uniform as possible within individual plots.

6.4 Two-way analysis of variance with replication

The two-way analysis of variance with replication normally appears
with replicates "within cells" in a table of data. We thus need to consider
observations with three subscripts, xi jk , as shown in the table below, which
has 3 replicates per cell. In general, we may have m replicates per cell where
m > 2, and thus rkm observations in the entire table.  
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The calculations for S. S. in the ANOVA table now become somewhat
more complicated, but take on a general form that can be followed in even
more complex cases. The residual S. S. (error term) is always calculated from
the replicates within cells, i.e.,

where  x
-

 ij . is the cell mean (these are not shown in the table below as they are
an average of the m observations in the cell; 3 observations in the table
above). An easy way to remember how to calculate residual (error) mean
squares when there is replication, is to note that the units within a given cell
all get identical treatments, and thus furnish the best estimate of the
underlying variability. Hence the error mean square estimates the underlying
variance of the experimental units. Any other variance estimate (mean
square) may be inflated by treatment effects.

     COLUMN MAIN EFFECT

  1   2   3     i    k
x1 1 1 x2 1 1 x311 ...  xj11.... xk11

1 x1 1 2 x2 1 2 x312 ...  x j12  ...xk12    x
-

 .1.
x1 1 3 x2 1 3 x313 ...  x j13 ... xk 1 3

x1 2 1 x2 2 1 x3 2 1 x i 2 1 xk 2 1

2 x122    x222    x322    x i22     xk22      x
-

 .2.
x1 2 3 x2 2 3 x3 2 3 x i 2 3 xk 2 3

. . . . . .

. . . . . .

. . . . . .

x1j1 x2j1 x3j1 x i j1 xk j1

ROW EFFECT j x1j2 x2j2 x3j2 x i j2 xkj2      x
-

 .j .
x1j3 x2j3 x3j3 x i j3 xk j3

. . . . . .

. . . . . .

. . . . . .

x1 r 1 x2 r 1 x3 r 1 x i r 1 xkr1 

r x1 r 2 x2 r 2 x3 r 2 x i r 2 xkr2    x
-

 .r.
x1 r 3 x2 r 3 x3 r 3 x i r 3 xk r 3

x_ 1.. x_ 2.. x_ 3.. x_ i. . x_ k.. x_ ...

Residual S.S.                          (6.7)= − •∑∑∑ ( )x xijk ij
kji

2
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Another very general S. S. is the Total sum of squares, calculated from
the individual observations as before:

with x_ ... the overall mean.

The third general S. S. is the Treatment Sum of Squares, calculated from
the cell means

If any of the treatments are effective, the treatments mean square will be
inflated. Of course, we want to be able to break this overall S.S. down into row
and column S. S. . As  before, we do this with row and column means:

The two-way analysis with replication contains a new S. S., the interaction
Sum of Squares. This is often calculated as Treatment S. S. - Row S. S. - Column
S. S. but a direct calculation from the means is

The Total S.S. breaks down into Treatments and Error, and the Treatments S.S.
contains Rows, Columns and Interaction S.S. Textbooks usually show the ANOVA
table in this form, but EXCEL ignores Treatments, producing only Total, Rows
(labelled Samples for unknown reasons), Columns, and Interaction.

In the final ANOVA, the F-test of significance of the interaction mean
square (MSInter/ M SError) is very important in deciding what can be said about
the main effects. This is because a significant interaction mean square
suggests that the row and column main effects are somehow correlated, i.e.,
they "interact". If this is the case, then one cannot discuss the two sets of main
effects (row and column) separately, making interpretation of the experiment
much more difficult.

Note the similarity of the equation for Interaction S. S. to  that for the
Residuals (error) S. S. for the 2-way ANOVA without replication. This suggests
that the error term in that case is really an interaction term, making it
evident that we need to have replications to assess interaction (there is a test,
Tukey's test, for a particular form of interaction in a 2-way ANOVA based on
one observation per cell. It appears in many statistics texts (e.g., Snedecor and
Cochran , Statistical Methods, Iowa State University Press, Ames, Iowa, 6th
Edition, 1967).

Total S.S.                          (6.8)= − •••∑∑∑ ( )x xijk
kji
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The pheasant count data of Table 1 were not replicated in a strict sense,
which would require repeated counts at the same station by the same
observers. One of the reasons this is not done is that calling activity drops off
quite sharply after the early morning hours. It is also obvious from Table 1
that there is a gradient over distance. High counts are obtained in the best
pheasant habitat, and this route apparently went into marginal habitat beyond
Station 10. Inasmuch as the stations are reasonably close together (usually 1
mile apart to keep from counting the same calling individuals a second time),
it isn't too much of a stretch of technique to regard adjacent stations as
"replicates". To do this, we drop the counts on Station 19, and use successive
pairs as replicates (thus counts on Stations 1 and 2 are called replicates, while
Stations 3 & 4 are also replicates, etc., giving r = 9, while k= 6 for rkm= 9(6)2 =
108). The analysis of variance table is as follows.

Table 6.3 Analysis of variance of Pheasant count data with m=2.  

Source SS           df MS               F
Rows 11189.91 8 1398.74 52.24
Columns 568.41 5 113.68 4.25
I n t e r a c t i o n 605.76 40 15.14             0.57
W i t h i n 1446.00 54 26.78

Total            13810.07
 
6.5 Assumptions for the analysis of variance

The discussion thus far has focussed on the mechanics of the analysis of
variance, being mainly concerned with developing Sums of Squares for 3
models: (1) one-way ANOVA, (2) 2-way ANOVA without replication (and the
special case of randomized blocks designs), and (3) two-way ANOVA with
replication. The ANOVA tables present the S. S., their associated Mean Squares,
and the ratios of Mean-Squares (F-ratios). As previously noted, the tests of
significance (F-tests) depend on the assumptions underlying ANOVA, but the
underlying framework - the Sums of Squares, along with the Mean Squares
and F-ratios, can be calculated for any set of numbers. No assumptions are
required. We thus have a mechanical analysis that says something about
variability introduced by treatments, without assumptions about the
underlying data.

To consider the assumptions required for tests of significance, we write
a model for the observations for a 2-way ANOVA with replications:

                              xij  = µ + αi  + βj  + γij  + εij                                         (6.13)

Here, µ  represents an overall mean value, α i  and β j  are the main effects
(column and row effects), γi j  represents the interaction between the two main
effects, and ε i j  is the error term. This latter term (ε i j ) is assumed to have an
"expected value" of zero. That is, when it is averaged over a large data set it
should equal zero. Usually it is assumed that Σα i  = 0 and Σβj = 0. We thus have the
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x ij  made up of an overall mean value (µ ) plus an effect for its row (α i ) and its
column (β j ). As we noted earlier, an "interaction" is an effect that makes
adjacent observations tend to be correlated. When there are no interactions
(γi j  = 0) then the expected value of xij  (effectively xij  averaged over very large
samples) can be written as E(xij ) = µ + αi+ β j  and we say that the model is
additive. Such analyses are far easier to understand and interpret than are
those where interactions are present  (γi j  not equal to zero).

It is important to recall that we want to test several hypotheses that state that
the main effects and interaction are zero, and the assumptions become
important in assuring validity of the F-tests.

Assuming additivity, we can use the reduced model:

       xij  =  µ + αi  + βj  + ε ij                                                   (6.14)

Two major assumptions underlying tests of significance in ANOVA are:

(1) the ε i j  are independent, i.e., uncorrelated.

(2) the ε ij are from a normal distribution with mean zero and variance σ 2.
The normal distribution is a symmetrical, bell-shaped curve, with its "spread"
(variance) measured by σ2 [Eq.(1.3)].

Consider a two-way ANOVA with many replications per cell (and no
interactions). The mean value in any cell should be approximately

                     x
_
 ij . = 

 
µ + αi  + βj

and the xi jk  in this cell should have the same variance, σ2. Any two cells

should have the same variance, σ2. This is often described as homoscedasticity,
which simply means equal variances.

The assumptions for ANOVA can be listed as:

(1) additivity (γij  = 0).
(2) independence of the ε i j

(3) ε ij normally distributed with mean zero and variance σ 2.

Sometimes (3) is split into 2 assumptions:
(3) ε ij normally distributed with mean zero

(4) homoscedasticity - variances in replicates are all equal to σ 2.

In most applications of ANOVA there simply are not enough replicates
within cells to test these assumptions. Given quite large samples in the cells
(say 20-30 replicates per cell) it is worth comparing variances. Testing for
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normality takes larger samples. Some authors recommend Bartlett's test, but
Scheffe (The Analysis of Variance, J. Wiley and Sons, 1959, p. 83) points out
that it "is extremely sensitive to nonnormality", and recommends that a
preliminary test of homogeneity of variances not be made.

Ecological data often come as counts of some kind, and these tend not to
be normally distributed, often having a skewed frequency distribution -- a
long "tail" of less frequent observations on one side or the other of the bulk of
the observations. Such data can be brought into closer approximation to
normality by a transformation. Two of the most commonly used
transformations are the square root transformation (xij )0 .5, and the
logarthmic transformation, loge(x ij ). It often turns out that standard
deviations of ecological data tend to be proportional to the mean values

(coefficient of variation, s/x
_

  = approximately a constant). The logarithmic
transformation tends to "normalize" such data and to make variances more
nearly equal on the transformed (i.e., logarithmic scale).

Testing the need for or the effects of a transformation is often
recommended, but it is risky to let such tests govern a decision to use or not use
a transformation.

It is worthwhile to simulate data based on the assumptions for ANOVA.
We start with Eq.(6.14); no interactions, and produce a table of main effects
(using α i  and β j  such that they sum to zero) to which we add µ  (taken as 5
here). A table of random normal deviates can be produced using EXCEL (used
here as N(0,1), i.e. normal with zero mean and unit variance). These are added
to the main effects table giving a set of simulated data (3 replicates per cell
were used; they have the same main effect value, but different random draws
were used to add ε ij ). The table of data follows, along with the ANOVA table.

1 2 3 4
1 6.10 5.89 4.98 5.67

7.18 4.80 5.51 5.70
DATA 5.73 6.71 4.89 6.80
FOR 2 6.33 6.17 6.75 2.91
ANOVA 6.48 5.89 2.54 4.13

6.77 4.42 5.56 5.23
3 6.57 5.36 5.93 3.71

6.93 4.93 3.08 4.80
5.68 5.42 2.81 5.31

4 6.49 4.14 5.80 2.65
3.39 4.74 5.26 5.82
4.49 6.39 4.74 3.89

5 4.18 5.97 5.14 2.61
6.55 5.18 4.46 3.11
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4.10 3.99 3.93 3.57
6 5.69 4.40 4.20 4.25

4.15 3.63 4.18 4.78
3.97 2.88 3.75 4.49

Source SS d f MS F P-va lue F crit
Sample 21.20 5.00 4.24 4.08 0.00 2.41
Columns 14.67 3.00 4.89 4.71 0.01 2.80
I n t e r a c t i o n 18.29 15.00 1.22 1.17 0.32 1.88
W i t h i n 49.86 48 1.04

Total 104.02  71

We can repeat the above exercise with interactions. In this case, the γi j
were taken as a fractional power of the product denoting row and column
positions of a main effect entry, γi j  = (xy)0.7. Again a random normal deviate is
added to give eq. (6.13). The table of "data" and ANOVA table follow.   

1 2 3 4
1 7.10 7.51 7.14 8.30

DATA 8.18 6.42 7.67 8.34
FOR 6.73 8.33 7.05 9.43
ANOVA 2 7.96 8.81 10.25 7.20

8.10 8.53 6.04 8.42
8.40 7.06 9.07 9.51

3 8.73 8.87 10.59 9.40
9.09 8.44 7.73 10.50
7.84 8.93 7.47 11.00

4 9.13 8.43 11.49 9.62
6.03 9.03 10.96 12.79
7.13 10.67 10.44 10.85

5 7.27 10.98 11.79 10.75
9.63 10.19 11.12 11.25
7.19 9.00 10.58 11.71

6 9.19 10.09 11.77 13.50
7.65 9.33 11.75 14.03
7.47 8.57 11.31 13.74

Source of
Variation

SS df MS F P-value

Sample 78.15 5 15.63 15.05 0.0000
Columns 69.00 3 23.00 22.14 0.0000
Interaction 44.39 1 5 2.96 2.85 0.0030
Within 49.86 4 8 1.04

Total 241.40 7 1

As noted previously, some authors recommend testing the deviations
(given in Eq.(6.12)) for normality. With the numbers of replicates usually
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available, this is not sensible advice. A plot (Fig. 6.4) of all 72 normal deviates
used in the simulations was generated from a normal distribution, but is not
too reassuring in terms of the assumption of normally distributed errors.
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Fig. 6.4. Frequency distribution of 72 deviations from data used in simulations.

6.6 Comparisons in ANOVA

In a brief account like the present one, it is not possible to cover more
than a fraction of the features of the Analysis of Variance. The book by
Scheffe is a classic account, and should be examined for more details. It is,
however, couched in the language of matrix algebra. Another good account is
that of Snedecor and Cochran, Statistical Methods, the Iowa State University
Press, Ames, Iowa. It has gone through at least 8 editions, and is another classic
text. Important topics that we have not covered are those of comparisons or
contrasts. In most experimental work, the main interest will be in certain
comparisons (e.g. Exercise 6.12 on weight gains in rats). In the pheasant data
there were 2 observers with experience, so a comparison between experienced
and inexperienced observers is of considerable importance. The pocket-
gopher data (Exercise 6.5) was collected at different locations and over
different years. One would thus emphasize those comparisons. In Exercise 6.8
there is a "control" plot ("check" treatment) which would normally be
compared with all other plots. Snedecor and Cochran give good descriptions of
how to sort out such contrasts. A short account of two approaches follows.

When comparisons are planned in advance, a t-test can be used to test
these specific comparisons for significance. The test depends on computing a
linear combination of the observed means:

             L = λ1x-  1 + λ2x-  2 +   ...  +   λkx-  k
                                         (6.15)
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with the  λ i  constants adding to zero, i.e. Σ  λ i  = 0. The standard error of L is
estimated as:

The d.f. for the estimated standard error of L are those used to estimate s, and n

is the number of observations used to compute each mean, x-  i . Scheffe
describes comparisons such as L as contrasts. The t-test for comparisons
planned in advance is:

t = 
L

 sL
                                                           (6.17)

The  λ i are dictated by the comparison desired. If, for example, 2 means, say x-  1,

and x-  3, are compared to a third one, x-  2 then   L = 
x- 1
2    +  

x- 3
2    - x

-
 2 with the λ i

being 1/2,1/2 and -1, and thus adding to zero. If there are additional means in
the overall analysis that are not to be involved in the comparison, then the λ i
for those means are assumed to be equal to zero. The simplest comparison is

that for 2 means, with the comparison being  x-  1 -  x
-  2, so that λ1 = 1 and λ2 = -1,

a n d
sL  = 21/2s/n1/2 so that:

t = 
n1 /2(  x- 1  -   x- 2 )

21/2s
 

with n being the number in each group and s is obtained from the error M.S.

A test due to Scheffe provides a general method for finding significant
differences among a  full set of means without designating these comparisons
in advance of conducting the experiment. The price paid is less sensitivity
(broader confidence limits). It uses the same set-up as above, but declares L/sL

significant only if it exceeds [(k-1)F05] 1/2 where F05 is the 5% level of the F-
distribution for k-1 and n-k degrees of freedom when we are considering a
one-way analysis. The test can be used in more complex ANOVAs using (k-1)
and the d.f. associated with the error mean square. Scheffe's test also reduces
to the t-test when k = 2. The test should not be used if the F-test in an ANOVA is
not significant, as there are then no significant contrasts in the data. It is
important to understand that the S-method can be used to check all significant
contrasts in the means, while preserving the chosen α  level.

We illustrate the two procedures by using data simulated as in Section
6.5  where the simulations were used to study the assumptions for ANOVA. In
this example the column main effects have been changed. The "data" are as
follows:

S E L s
s

nL i. .( ) = = Σλ2                                     (6.16)
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1 2 3 4
1 5.90 5.39 5.48 5.87

6.98 4.30 6.01 5.90
5.53 6.21 5.39 7.00

2 6.13 5.67 7.25 3.11
6.28 5.39 3.04 4.33
6.57 3.92 6.06 5.43

3 6.37 4.86 6.43 3.91
6.73 4.43 3.58 5.00
5.48 4.92 3.31 5.51

4 6.29 3.64 6.30 2.85
3.19 4.24 5.76 6.02
4.29 5.89 5.24 4.09

5 3.98 5.47 5.64 2.81
6.35 4.68 4.96 3.31
3.90 3.49 4.43 3.77

6 5.49 3.90 4.70 4.45
3.95 3.13 4.68 4.98
3.77 2.38 4.25 4.69

Means 5.3995 4.5498 5.1398 4.6118

The ANOVA (two-way with replications) is:
Source SS df MS F P-value

Sample 21.1987 5 4.2397 4.0818 0.0036
Columns 9.1840 3 3.0613 2.9473 0.0421
Interaction 18.2903 1 5 1.2194 1.1739 0.3233
Within 49.8576 4 8 1.0387

Total 98 .5306 7 1

If we suppose the planned comparison was between means 1 and 3 against
means 2 and 4, then:

L = 0.25(5.3995) -0.25(4.5498) + 0.25(5.1398) - 0.25(4.6118) = 0.3444

and:    sL  = (Σ λ i2)1/2 
s

n 1 / 2
   = 0.5[(1.0387)/(18)]1/2 = 0.122

then:   t = 
L

 sL
    = 

0.3444
0.122  = 2.82 with 48 d.f.

From t-tables (α  = 0.05) we have 0.005 <P <0.010. EXCEL has a function that will
compute the probability directly. Enter the statement = TDIST(t,d.f.,tails) where
t is the calculated value (2.82 here), d.f. are 48, and "tails" is 2 for a 2-tailed test.
This function yields P = 0.007. Quite possibly past experience would lead to a
one-tailed test for a planned comparison.

We can illustrate Scheffe's S-method for the same comparison. The t-
value remains the same (2.82) but we use:
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[(k-1)F05]1/2 = [3(2.80]1/2 = 2.90
as the criterion for significance at the 5% level, where 2.80 is the tabulated F-
value at α  = 0.05 with 3 and 48 d.f. Hence, the test is close to the 5% level of
significance. We can go on and look for other significant contrasts as
suggested by the data while still having α = 0.05. This is definitely not the case
for the first comparison tested above, which has to be selected in advance of
the study. Because it is a general-purpose "data-snooping" tool, Scheffe (1959)
suggested his test might be used with α  = 0.10, rather than the usual 0.05. EXCEL
can be used to find the tabular F-value by using the function FINV(P, d.f.1,
d.f.2) where P = 0.05 here and, d.f.1 = 3, and d.f.2 = 48. This function gives F05  =
2.798, and F10 = 2.201.

6.7 Type I and II errors and "power"

Most ecologists are used to the notion of Type I error, routinely
conducting statistical tests, such as the t-test, at the 5% level of significance (α
= 0.05). They understand that such tests give a 0.05 probability, over the long
run of many such tests, of erroneously claiming that the null hypothesis of
"no effect" can be rejected when it is in fact true. Many do not seem to realize
that there is another side to the issue, which is failing to find a significant
difference when it exists (possibly because there were not enough samples or
replications to detect an important difference. This is known as a type II error.

This issue of type II error can be discussed in terms of the "sensitivity"
of a study, i.e., how small a change or difference will a study of a given size
reliably detect? The statistician's answer is usually couched in terms of a
power function or the "power of a test". Consider the likely points of view as to
the impact on the environment of some new facility. There are usually two
sides, those who construct and operate the facility and those with
environmental regulatory authority. Suppose that both sides can agree on a
study method that has well-known statistical properties and can be applied in
the circumstances under consideration. Suppose that they further agree to
make certain modifications in the facility and/or operational procedures if a
field survey shows a specified degree of change has taken place (an "impact").
What remains is to decide how large a sample should be taken in the field
study. But that depends on the amount of protection each party requires
against errors damaging to their best interests.

These can be described as follows: (1) The people doing the construction and
operation would rather not have the survey results indicate a significant
change when the agreed-on degree of change really did not take place (Type I
error). Just how strongly they voice objections will depend on the
consequences of a determination of "change". If only minor modifications are
then necessary they perhaps will agree that a 10% rate (α  = 0.10) of such "false
positive" results is acceptable. However, if the changes require costly
retrofitting and expensive operational modifications, they may well want to
try to insist on Type I error rates of 1% or maybe even less.

(2) On the other side, the staff of the regulatory agency would not like to fail to
recognize a significant impact when one does occur (Type II error). If small
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samples are taken, the results almost always will come out not significantly
different. Hence the regulators may be guided by rules that require an 80%
chance of being sure to detect a real difference (of the magnitude agreed on)
when the impact is not of minor environmental consequence. But if very
substantial damage to an important resource may be involved, they may well
argue for a 99% assurance. All too often, by default or lack of understanding
the actual rate may be about 50%, much like settling the issue by flipping a
coin and doing no field work.

To make any progress in the ensuing arguments a way of estimating
sample sizes is needed. An easy solution is just to take a very large sample.
Usually that is either too expensive or impractical (it may also result in
environmental damage from the sampling process). A handy formula for
approximating sample size for given Type I and II errors is given by Snedecor
and Cochran and in the useful book by Cochran (Planning and Analysis of
Observational Studies, W. G. Cochran 1983, J. Wiley and Sons). It can be written
as:

where zα  = normal deviate for Type I error, zβ = normal deviate for Type II

error, σ2 = variance (assumed the same in both data sets being compared), and
δ = true (unknown) difference between two population means (µ 1 - µ 2) or two
areas being studied, and n = the desired sample size for each population or area
(thus 2n required). zα  is the familiar value used in confidence limits, i.e.,
z05 = 1.96,  z10 = 1.64. Some values of zβ are:

Type II        Power
error (  β              )     (1 -   β          )       z  β   
0.20 0.80 0.84
0.10 0.90 1.28
0.05 0.95 1.64
0.01 0.99 2.33

A major problem is that σ  is always unknown, and must be either guessed at or
estimated from a preliminary survey (etc.). Thus the right-hand side of eq.
(6.18) is frequently used, i.e., one guesses at the ratio of the difference to be
detected to σ. Suppose we take zα  = 1.96 and zβ = 1.28 (power = 0.90). Then

n = 
2(1.96 + 1.28)2

{
δ
σ} 2

   = 21

{
δ
σ} 2

 

Consequently, if we suppose that the true difference is one-half of σ , n = 84,
while n = 21 if we assume σ  = δ. Clearly, if we assume a small difference is to be
detected, the sample size required may be huge. Using a small sample without

n
z z z z

=
+

=
+2 22 2

2

2

2

( ) ( )

{ }

α β α βσ
δ δ

σ

                                   (6.18)
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looking at power of the test amounts to operating in ignorance (but still
happens a lot).

6.8 Other aspects of ANOVA

We did not go beyond two-way tables with replications. Efficient designs
will use more factors in order to get the most information per dollar spent on
experimentation. Again Snedecor and Cochran provide good discussions. There
are text-books devoted entirely to the design and analysis of experiments, and
a bewildering array of prospects. We also did not investigate what are called
unbalanced analyses. These are typically two-way analyses with replications
where the same number of replications per cell is not present. Sometimes a
study is planned with m replicates per cell but some are destroyed or, in the
case of experiments with animals, die unexpectedly, etc. In other cases, it may
not be possible to get m replicates per cell. Analyses of unbalanced designs can
be complex and, in some cases, controversial. It may be noted that the pocket-
gopher example is unbalanced, but this is not a problem in one-way analyses.

The models described here are fixed-effects models, where interest is
solely in the set of main effects studied in the experiment. Very often we have
to consider random-effects models where the effect studied is regarded as a
sample from some large population of effects. The analysis then takes a
different form. Probably most practical work can be described by mixed-
effects models, where one set of factors is fixed and the remainder random. The
great advantage of the fixed-effects model is that the analysis of variance is
quite "robust" in such cases, i.e., non-normality is not as serious a concern as
in the random-effects models, where we assume sampling from a random
normal distribution, and depend much more on that assumption for tests of
significance. We remarked that significant interactions pose problems of
interpretation, but did not note that it the may be necessary to use the
interaction term as the denominator of F-tests.

The prominence of ANOVA in ecological studies is a bit puzzling. A quick
review of a major ecological journal a few years back showed that ANOVA was
then the dominant statistical technique used in that publication. However, I
suspect that many of the cases really stem from editorial and reviewer
insistence on statistical testing. The mere fact that some “significant” result
was obtained doesn’t really provide much information about the process being
studied. Hence I suggest that students use the data-snooping quality of the test
due to Scheffe (Section 6.6) whenever possible as a tool for searching out the
particular comparisons  that really are significant in an analysis. As noted
there, Scheffe proposed using a 10% significance level with the test, but that
may not be very palatable to editors (who often will not realize that it is up to
the investigator to choose the significance level, not an editor or a referee).
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6.7 Exercises

6.1 Show that the cross-product terms in eq. (6.3) cancel out, resulting in
eq.(6.4).

6.2 Calculate a one-way analysis of variance for the pheasant data using the
ANOVA program in EXCEL.

6.3 Using the group variances printed out in the EXCEL output for Exer. 6.2,
calculate a value for Eq. (6.5) and locate the corresponding value in the one-
way ANOVA table prepared in Exer. 6.2 (the calculations can be inserted to the
right of the summary of means and variances in the one-way output tables).

6.4 Copy the data from Exer. 6.2 to a new spreadsheet in the same Workbook and
calculate the S. S. for the one-way ANOVA directly from the definitions given
in eq. (6.4).

6.5 Repeat the calculations for Exer. 6.2 and 6.4 on the pocket gopher data
given below, but first convert the counts to natural logarithms [natural log =
LN(number ) ] .

Pocket gopher counts
       Black Mesa Grand Mesa

1 9 6 2 1 9 6 3 1 9 6 4 1 9 6 3 1 9 6 4
1 6 1 2 3 7 8 2 1 6 7 6 2
2 6 1 2 7 1 6 8 1 8 3 1 7 2
3 1 3 2 2 5 3 1 6 8 2 9 7 1 0 6
4 1 5 8 1 5 7 1 9 0 1 8 8 8 7
5 9 0 2 4 4 3 3 2 3 8 8 9
6 5 2 1 8 0 5 7 2 8 5 8 1
7 1 0 7 2 6 9 3 0 1 2 4 2 9
8 7 3 1 3 8 2 5 2 0 9 7 5
9 1 5 5 1 5 9 5 0 2 4 8 6 5

1 0 7 7 2 3 7 1 3 1 2 0 4 4 6
1 1 8 2 1 0 8
1 2 9 7
1 3 1 6 7

6.6 Run the two-way ANOVA without replications on the pheasant data. Notice
that the total sum of squares remains the same as the one-way analysis, and
the between-groups S. S. is the same as that for columns in the new analysis.
However, the F-tests are now significant, and it is worth considering why this
should happen (look at the mean square for error, and compare it with the
within-groups value of the one-way analysis. What is your explanation?
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6.7 Calculate the S. S. for Exer. 6.6 directly.

6.8 Randomized blocks The data below are from a randomized block study
reported by Snedecor and Cochran (Statistical Methods, 6th Ed., p. 300). Do a
two-way analysis in EXCEL and compare the M. S. for replication with that for
treatments. What do the F-tests suggest?

Replicates
Treatments 1 2 3 4 5
CHECK 8 1 0 1 2 1 3 1 1
ARASAN 2 6 7 1 1 5
SPERGON 4 1 0 9 8 1 0
SEMESAN 3 5 9 1 0 6
FERMATE 9 7 5 5 3

6.9 Calculate the ANOVA table for Exer. 6.8 directly. It shouldn't take long, and
is first-rate practice in using EXCEL.

6.10 Calculate ANOVA  for the pheasant data arranged as having 2 replicates as
described in the text section on 2-way ANOVA.

6.11 Copy the data from Exer. 6.10 to a new spreadsheet in EXCEL and calculate
the S. S. directly from the definitions of eq. (6.8) thru eq.(6.12). This is
something of a chore, with the main difficulty being in keeping things
straight (use good labelling). Use two spreadsheets. You will need 2 copies of
the original counts (one for computing Total S.S., the other for computing
error S. S.) and 2 copies of the cell means (to calculate Treatment and
Interaction S. S.). If you label things carefully and use the proper multipliers
(m, k, and r) you will get the same S. S. as in Exer. 6.10. Patience is necessary,
as is accuracy. If you do all of the exercises, it should help in remembering
how to use ANOVA.

6.12 Snedecor and Cochran (1967:p. 347) give the following data on gains in
weight (grams) of rats fed on six diets. The columns are replicates (individual
rats on the same treatment). Run an ANOVA and report the results. Note that a
two-way ANOVA with replications is indicated.

                  High level                     Low level
Beef Cereal Pork Beef Cereal Pork

1 7 3 9 8 9 4 9 0 1 0 7 4 9
2 1 0 2 7 4 7 9 7 6 9 5 8 2
3 1 1 8 5 6 9 6 9 0 9 7 7 3
4 1 0 4 1 1 1 9 8 6 4 8 0 8 6
5 8 1 9 5 1 0 2 8 6 9 8 8 1
6 1 0 7 8 8 1 0 2 5 1 7 4 9 7
7 1 0 0 8 2 1 0 8 7 2 7 4 1 0 6
8 8 7 7 7 9 1 9 0 6 7 7 0
9 1 1 7 8 6 1 2 0 9 5 8 9 6 1

1 0 1 1 1 9 2 1 0 5 7 8 5 8 8 2
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6.13 Use the planned comparison method on the data of Exer. 6.12 to compare
the 2 levels of protein (High and Low). You may also want to look at the
breakdown given by Snedecor and Cochran for this example, as it uses
orthogonal comparisons to break down the treatment S.S. into 5 individual
comparisons. Apply Scheffe's S-method to the data. Discuss results.

6.14 Use the planned comparison method to compare the "check" (control)
mean with the other treatment means of the data in Exer. 6.8. Make the same
comparison with Scheffe's method. List his criterion for α  =0.10 as well as for α
=0.05. Discuss results.
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7.0 INTRODUCTION TO POPULATION ASSESSMENT 
 
7.1 Viable populations 
 
 There has been much interest in recent years in maintaining viable populations of 
various species. Many of the efforts stem from the requirements of the Marine Mammal 
Protection Act of 1972 and the Endangered Species Act of 1973. Due to the complexities 
of natural systems, legislative mandates often cannot readily be translated into programs 
that can actually be implemented in a field setting. Thus an early question was "what is a 
viable population?" One attempt at an answer led to definition of a "Minimum Viable 
Population" (MVP) as the population size that had a 95% probability of surviving for 100 
years. Stochastic population models were implemented on a computer and starting 
population size varied to find an initial population size that resulted in about 5% of the 
simulated population going extinct in 100 years. A major problem with such models is 
that the outcomes depend very much on the set of parameter estimates used in the model. 
If the parameters are such that the average population trend is a decrease, then higher 
initial population levels are required to meet the criterion than if the expected trend is 
upwards. Interpreting the available field data provides another pitfall -- three such 
stochastic models have been published that consider the Yellowstone grizzly bear 
population, all with shortcomings of interpretation. 
 
 When the difficulties in the Minimum Viable Population approach began to 
become apparent, appraisals using less specific and broader methodology were developed 
and described as Population Viability Analysis (PVA). Various kinds of models 
continued to be emphasized for the analysis of populations of endangered species (Soule 
1987). These broader appraisals of Population Viability Analysis include the important 
feature of the possible loss of genetic variability, but there is as yet controversy about the 
minimum population size required to preserve sufficient genetic variability to maintain 
the species (Boyce 1992).  It does seem to be generally accepted that an occasional 
exchange between isolated subpopulations is sufficient to maintain genetic diversity, so 
that the genetic issue may be of major importance when only one small remnant of a 
species exists.  
 
 A crucial uncertainty in modeling any natural population is the poorly understood 
role of density-dependence. Consider a population containing 50 females in which births 
and deaths are balanced so that the expected trend is to remain constant (λ = 1.00). If a 
stochastic model with no density-dependence is run 1,000 times for 100 years each run, 
the outcomes may be as in Fig. 7.1, in which less than 2 % of the "populations" were 
extirpated, thus meeting the MVP criterion of "viable". A major problem with such an 
approach is that constant rates cannot be expected to continue regardless of population 
size. If the population is stable at about 50 individuals, then it is widely accepted that 
increases much over this level will not occur due to “density-dependence”, which seems 
largely to be expressed in large mammals as resulting in lower first year survival when an 
asymptotic population level is approached. Conversely, if the population falls much 
below the asymptotic value, then early survival increases so that it tends to return to the 
asymptotic level. Unfortunately, the model (generalized logistic given in Chapter 13) that 
seems to best fit data on larger animals does not account for the occasional “overshoot”, 
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when a population exceeds the “carrying capacity” level, so there isn’t any really 
satisfactory model for populations above carrying capacity. Consequently, an effort to 
introduce density-dependence in the model used for Fig. 7.1 has to have an arbitrary 
component for those cases where the population overshoots.  
 
 The model used here uses data for an elk population, as presented in Chapter 11. 
Data for rapid growth of that population come from work by Houston (1982). More 
recent data on a Yellowstone elk population (Garrott et al., 2003), gives adult female 
survival rates of about 90%, in contrast to rates of about 99% from the work by Houston 
(1982). In order to achieve the “stationary” population, first year survival was reduced 
until the estimated value of λ was unity, with adult female survival at 0.90 (only females 
were considered in the simulations). Random draws for individuals were used to generate 
the data of Fig. 7.1. Density-dependence was then introduced through the generalized 
logistic model of Chapter 13, which seems to work reasonably well for populations 
below carrying-capacity. When an “overshoot” occurred, rates for the stationary 
population of Fig. 7.1 were introduced, giving Fig. 7.2 for the outcomes of 1,000 runs. 
This arbitrary adjustment for “overshoots” means that the right side of Fig. 7.2 is of 
somewhat dubious utility (but less than 8% of 1,000 simulations were “overshoots”). The 
important feature here is that density-dependence resulted in no populations going 
extinct, with a lower limit around 20.  
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Fig. 7.1. Outcomes of 1,000 simulation runs of a population starting with 50 females with 
parameters selected to give λ = 1.00, and no density dependence. 
 
 Until much more is known about the mechanisms controlling trends in small 
populations, the most prudent approach to maintaining viable populations is to 
concentrate on "population analysis", that is, to determine survival and reproductive rates 
in an effort to determine whether the population can be expected to increase or decrease 
in the immediate future. If a decrease seems likely, then management actions need to be 
directed towards changing the rate most likely to be responsible. First-year or adult 
survival appear to be responsible in the available examples. The same general principle 
appears to apply in those cases where the goals are to control an over-numerous 
population or to secure a maximum sustainable yield from an exploited population.  
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Fig. 7.2. Outcomes of 1,000 simulation runs of 100 years for an initial population of 50 
females with a density-dependence function acting on first-year survival and "carrying-
capacity" (K) set at 50 females. 
 
 Many studies may require 10 years or more to obtain enough data to determine 
the key issues, and to begin to develop effective approaches to solutions. Often the initial 
assessments of the perceived problem turn out to be in error, and it may take a long time 
to correct these initial perceptions in the face of public pressure to "do something". While 
the "environmental movement" has created a climate in which actions to maintain 
endangered or threatened species have become possible, the many private organizations 
dedicated to fostering such actions may hamper progress in particular cases. This usually 
results from the need to demonstrate their active participation in order to maintain a flow 
of funds from the public. Litigation engenders publicity and thus funding, but may also 
seriously limit the ability of a responsible agency to obtain required data.  
 
7.2 Methods for population analysis 
 
 Administrators and the general public always ask "How many are there?" when 
faced with some issue concerning a population. This seems to be a wholly reasonable 
question, and is one that often has to be answered in one way or another. If sizable 
removals are made for exploitation or control purposes, an estimate of absolute numbers 
may be essential, in order to assess the likely impact of the removals. Endangered species 
are often present in low densities, and may thus be very difficult to census. Consequently, 
an investigator may expend much of the available resources in an attempt to obtain a 
population estimate, only to discover that the precision of the estimate is not adequate for 
the major goal of any study of an endangered species. This almost always has to be one 
of determining trend of the population. If, as usually seems to be the case, a very large 
effort has to be expended to get a census estimate of relatively low precision, then 
repeating the census in another year very likely will not supply a useful measure of trend.  
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 There are basically two alternatives. One is to opt for some measure of trend 
based on an index of abundance that may be much less expensive to obtain than an 
estimate of absolute abundance. The other is to obtain reproductive and survival data on 
which to base an estimate of likely trend. This has a distinct advantage for studies of 
endangered species, inasmuch as such studies usually also need to try to determine why 
the species is "in trouble" and what might be done to insure a positive rate of increase. If 
one relies only on trend data, it likely will take a sizable number of years to establish a 
trend, and the mere observation of trend  will not provide any information on reasons for 
the change. It is true that the basic cause for a declining trend may be obvious, i.e., loss 
of suitable habitat. Nonetheless, it may be essential to know how this cause affects rate of 
change in the population, and this requires knowledge of reproductive and survival rates. 
If positive steps to reverse a  decline can be taken, then the impact of such steps will most 
likely first be evident in reproductive and survival rates.  
 
 Virtually all field data on large populations is inadequate in scope for "textbook" 
analyses of present status and likely future trends of the population. Each data set has 
unique features, often in consequence of the unique nature of the particular species, but 
also because of the difficulties and costs of data collection. A variety of approaches is 
thus required, including various kinds of approximations and indirect methods of 
estimating essential parameters of the population.  
 
 Most field studies of large populations seek to predict the future trend of a 
population by assessing data collected over time. In some instances either research goals 
or a legislative mandate (see, for example, Eberhardt 1977a) may direct attention mainly 
to the past, often with a goal of evaluating present status of the population or predicting 
the likely impact of some alteration of the landscape or its uses. A universal need in such 
studies is to evaluate likely accuracy and precision of the outcome.  
 
 Because the methods used in practice all require assumptions that are very 
difficult to support under field conditions, the only satisfactory demonstration of 
accuracy may be independent estimates of the same quantity, usually rate of change of 
the population. This can be achieved by comparing estimates based on trend data (e.g., a 
log-linear regression of a population index) with those derived from reproductive and 
survival data. Most studies fall short of this goal through lack of estimates of some 
essential rate. Another need is thus to indicate something of the minimal requirements for 
assessing accuracy of a population study. 
 
 Uncertainty about fulfillment of assumptions has similar effects on precision for 
any given kind of estimate (e.g., of population size). Since an overall assessment will 
require a number of individual estimates, appraising precision of the end-product (e.g., a 
rate of increase) is also very difficult, and rarely attempted. The problem needs to be 
faced, however, because improving population analyses will likely depend on combining 
inferred parameter estimates (e.g., those derived from, say, age and sex ratio data) with 
direct measurements (obtained, for example, through radiotelemetry). Combining two 
such sources will usually require weighting by measures of precision. The non-
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parametric methods, such as bootstrapping and jackknifing,  provide the necessary 
flexibility.  
 
 The basic ingredients for an assessment are measures of population size and 
estimates of reproductive and survival rates. These may be obtained in a variety of ways, 
and can be used in an analysis based on either a direct projection of population size or by 
estimating a rate of change from survival and reproductive rates alone. The major 
difference between the two is that projections require estimates of population size. We 
are thus concerned here with three sources of data and two methods of utilizing that data 
(Fig.7.3). A brief listing of the individual sources and methods given in Fig. 7.3 follows. 
 
 Population estimation can be approached by making direct estimates of actual 
abundance or through indices of abundance. There is a very large literature on methods 
for estimating animal abundance (Seber's 1982 book is still the major reference) and 
much theoretical and practical work continues to be published on these methods.  
 
 Survival estimates are usually obtained either indirectly through analysis of age 
structure data or directly through evaluation of data from tags and marks. Use of age 
structure data alone requires the very restrictive assumptions of constant population size 
and constant recruitment to the population in the years in which the age structure was 
developed, along with constant survival. If tags are used, then the assumption of constant 
recruitment is not needed in estimating survival from tag recoveries. A major advance 
has been use of radiotransmitters as tags, reducing uncertainties and variability associated 
with tag recoveries.  
 
 Reproductive rate data are usually more readily obtained than information on 
population size and survival. Often sizable numbers of individuals can be examined for 
pregnancy and age-specific rates derived directly. However, some  species (e.g., bears 
and whales) do not reproduce annually, so that it may be necessary to use a composite 
measure of reproductive rate, based on sex ratios at birth, litter sizes, breeding intervals, 
and so on.  
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Figure 7.3  An outline of techniques useful in analysis of large vertebrate populations. 
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 Methods for population assessment using the data outlined above can be 
considered in two classes. Projection models require an estimate of population size and 
apply birth and death rates to project the population from one year to the next. The 
simplest such models that incorporate provisions for removal of known numbers of 
individuals are: 
 
                                                   Nt+1 = R(Nt - Kt)                                                      (7.1) 
 
                                                  Nt+1 = RNt  - Kt                                                         (7.2) 
 
where Kt denotes removals at time t and R represents a rate of increase. The two 
equations differ in terms of whether the removal takes place just before or just after 
reproduction occurs. When age-specific birth and death rates are known, the equations 
may be written as matrix models, with R = M, the Leslie matrix. When age-specific rates 
are not available, the equations may be expressed as simple difference equation models, 
with R = λ, a constant annual rate of increase.  
 
 One of the major difficulties in actual applications of projection models is the 
present uncertain state of knowledge about population regulation. If the prospect of 
density dependence is to be incorporated in the model, then some sort of functional form 
has to be assumed, operating directly on R for difference equation models and one or 
more of the elements of the Leslie matrix for age-structured data.  
 
 In the absence of population estimates, a direct evaluation of population dynamics 
may be conducted on the basis of age-specific reproductive and survival rates. The 
classical approach is that of A .J. Lotka, who first demonstrated that constant age-specific 
birth and death rates result ultimately in both exponential growth (or decline) and a 
constant relative age structure (the stable age distribution). Lotka's basic equation is 
equivalent to the characteristic equation of the Leslie matrix, so the models are here 
described as Lotka-Leslie models. In practical applications, there usually is not enough 
data to use more than a few reproductive and survival rates, so Figure 7.3 includes a class 
of simplified models based on these rates.  
 
7.3 Population estimation 
 
 Although there is a large array of methods for estimating population densities, 
relatively few methods are actually used on large vertebrates. The principal techniques 
used in the field are transect methods and those based on harvest data (largely "catch-
effort" methods). For the most part, the use of a limited set of methods is a consequence 
of the very large areas involved and the high costs of marking animals on such areas. The 
catch-effort methods have mainly been applied to marine mammals, usually give highly 
variable results, and suffer from several other difficulties (cf. Eberhardt, Chapman and 
Gilbert 1979). Transect methods are largely used from aircraft or ships and thus are 
frequently subject to uncertainty as to whether the assumptions required for density 
estimation are met (Eberhardt, Chapman and Gilbert 1979; Burnham, Anderson, and 
Laake 1980). As noted above, the major reference for estimating both population size and 
survival rates is the book by Seber (1982). A monograph by Pollock et al. (1990) 
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provides some further discussion of underlying models and access to a computer program 
suitable for estimating parameters of these models. Program MARK maintained at 
Colorado State University may be one of the most up-to-date of the many programs now 
available. 
 
 In many applications, it is likely that the data on population abundance have to be 
considered as an index, rather than as an estimate of absolute numbers. There are two 
difficulties. One is just that very little quantitative work has been done on indices. A 
more serious problem is that many field applications concern populations subject to 
harvesting or other removals. Since removals are  expressed in absolute terms, it is 
necessary to also express population size in absolute terms, or to make the very 
restrictive assumption that removals are directly proportional to abundance. Because  the 
projection models require estimates of absolute abundance, indices may be most useful to 
check calculation of a rate of change from the Lotka-Leslie models in those cases where 
the population is not subject to substantial removals.  
 
 Optimal use of index data for population analysis requires some sort of calibration 
to convert the index to an estimate of absolute abundance. Often a method that provides 
direct estimates is available, but is too expensive or time-consuming for application over 
the entire area of concern. The appropriate means for calibration may then be the 
statistical technique known as double sampling, in which small samples obtained through 
an expensive but accurate technique are used to make ratio or regression corrections to 
large samples obtained by a relatively inexpensive technique (the index). Unfortunately, 
the available statistical basis for the method depends on approximations, so that the usual 
recommendations for sample sizes (Cochran 1977) are larger than can be managed for 
many animal population studies. Some simulations indicate that smaller samples can be 
used, and various devices may be used to try to reduce the effort required for calibration 
(Eberhardt and Simmons 1987).  
 
 The principal alternative to calibrating an index may be large scale marking. For 
the most part, costs are too high to make capture-recapture uses of tagging and marking 
feasible for large populations inhabiting sizable areas, so that the technique has mainly 
been used to estimate survival. The high, stable survival rates necessarily exhibited by at 
least the adult female age classses of many species of large vertebrates suggest the 
possibility of periodic population estimates based on tagging or marking over a number 
of years, so that enough marks are built up in the population to yield reasonably precise 
estimates in a recapture series. DeMaster et al. (1980) reported one such attempt for polar 
bears, but assumed a constant, known survival rate for estimation purposes. 
Unfortunately, satisfactory direct estimates of survivorship are very difficult to obtain for 
this species (and most others). Consequently, it seems likely that progress along these 
lines will call for the imposition of appropriate restrictions on the Jolly-Seber method 
(see, for example, Brownie, Hines, and Nichols 1986).  
 
7.4 Survival estimation 
 
 Survival estimates are likely to be the most important ingredient in population 
analysis, yet are often the least satisfactory estimate obtained in actual practice. Their 
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importance is due to the magnitude of the effect of a small difference in adult female 
survivorship on rate of change of the population (cf. Eberhardt and Siniff 1977). A few 
percentage points one way or another spell the difference between a comfortably 
increasing population and one threatened with extirpation. Subadult survival rates have 
markedly less effect on rate of change, and may thus be the major factor in population 
regulation, while adult female survivorship quite possibly provides the last mechanism to 
come into play in a sequence of events under natural conditions (Eberhardt 1977b).  
 
 Poor quality or outright absence of survival estimates in many studies no doubt 
reflects the high cost of obtaining useful estimates. The least expensive route is via age 
structure data. If survivorship in adult age classes is constant from year to year, and the 
same number of individuals are recruited to adult status each year, then the ratio of 
numbers in successive age classes will ultimately reflect the common survival rate. 
Averaging over a number of age classes in a sample is necessary to reduce variability in 
the estimate, and Chapman and Robson (1960) described an efficient estimator for that 
purpose. Other methods can be very much less efficient (see Eberhardt 1972 for 
examples).  
 
 Unfortunately, the assumptions required for use of survival estimates from age 
data are so restrictive that they are unlikely to be met in practice, and should be tested 
whenever the method is used. A null hypothesis of constant annual survival rates plus 
constant recruitment implies that age structures in successive years should be 
homogeneous, so that chi-square might be used to test the hypothesis and thus the 
assumptions. However, such homogeneity is not a sufficient condition to justify 
estimating survival from age structure data since homogeneity of successive age 
structures is implied by the stable age distribution (Keyfitz 1968). Such a distribution 
results from populations changing at a constant rate. Consequently, adequate justification 
for using survival estimates from age structure data also requires a demonstration that 
population size has remained constant.  
 
 In many instances, a population may tend to increase (or decrease) at a relatively 
constant rate (examples are given by Eberhardt 1987). The Chapman-Robson method 
may then still be used, but now under the assumption of constant survival and of 
recruitments changing at a constant rate. The parameter estimated then becomes s/ λ, 
where  λ denotes the "finite population multiplier", i.e., λ = er or  λ = 1+r depending on 
whether continuous or discrete rates of population change are assumed.  
 
 The alternative to using age structure data is to mark or tag individuals, and 
estimate survival rates on the basis of rates of recovery of these individuals in subsequent 
years. This disposes of the assumption of constant recruitment, by virtue of the fact that 
the number of marked individuals is now known. The Chapman-Robson estimation 
procedure remains appropriate with recoveries from marking and tagging (Paulik 1962). 
However, if marked animals are introduced over a series of years, the way is then opened 
for a wide range of estimation procedures along with some additional tests of 
assumptions. An extensive set of models and estimation procedures was developed by 
Brownie et al. (1978), mainly with reference to applications to bird-banding. A general 
method of analysis based on numerical solutions of maximum-likelihood estimators was 
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proposed by White (1983), and illustrated on a set of large vertebrate data. The book of 
Seber (1982) contains the most extensive coverage of methods, but should be 
supplemented with the recent monograph by LeBreton et al. (1992) which covers recent 
developments and lists the many computer programs now available for processing data. 
 
 One of the more troublesome aspects of use of marking and tagging for estimating 
survival is that only a relatively small fraction of marked individuals are ever recovered. 
This opens the door for a variety of biases (cf. Pollack and Raveling 1982) and results in 
substantial variability in the estimates. A logical approach to the difficulty is then to use 
telemetry, so that status of individuals is largely known throughout life of the 
transmitters. Relatively little quantitative work has yet been done on survival rates 
estimated from telemetry data. A useful reference dealing with circumstances in which 
survival of an individual is checked at irregular intervals (Bart and Robson 1982) gives 
results that should be useful in telemetry studies, while Heisey and Fuller (1985) 
specifically discussed estimation of survival rates by telemetry, as did Pollock et al. 
(1990).  
 
 A problem in using these methods is that they are based on the assumption that 
survivorship is constant from day to day and among individuals. The results may thus be 
suitable for relatively short time intervals, but cannot safely be extended to longer 
periods, such as a year, due to the prospect that daily rates cannot be assumed constant 
throughout long periods. An alternative is to do the analyses in terms of years, not days. 
This will, in most cases, be necessary for long-lived animals in any case, due to 
infrequency of mortalities. Another issue in need of attention is that of censoring, i.e., 
individuals may be lost to observation when the radios cease to function or by emigration 
from the study area. Also, in long-lived species, many of the tagged individuals will 
remain alive at the end of the study period.  

7.5 Reproductive rate estimation 
 
 For those species that reproduce annually, there usually is little serious difficulty 
in obtaining estimates of reproductive rates. The major sources are observations of 
pregnancy rate and tallies of young per adult female. Normally only pregnancy rates can 
be determined on an age-specific basis. In any case, survival rates for the youngest age 
class used need to be defined in terms of the reproductive rate used, e.g., if pregnancy 
rates are used then early survival includes mortalities in late-term pregnancy.  
 
 Species that do not reproduce annually may pose some special problems in 
estimating reproductive rates, particularly when direct observation is not feasible. It may 
then be necessary to use a composite rate, based on different sources of data. Litter size 
may be directly observed, while sex ratios of young may be available only from those 
individuals that can be caught and handled (often sex ratio is simply assumed equal at 
birth). The composite rate might then be computed as: 
 
                                        (sex ratio)(mean litter size) 
                                m = _________________________ 
                                       breeding interval 
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Direct measurements of breeding interval are likely to require marking or tagging, and 
may best be done with radiotelemetry to reduce the prospect of missing a reproductive 
event. Knight and Eberhardt (1985) discuss problems in estimating this composite rate 
for grizzly bears.  
 
 In some situations it may be feasible to substitute proportion giving birth rather 
than breeding interval since, in an equilibrium situation, the proportion giving birth will 
approximately equal the reciprocal of breeding interval. When single births are the rule, 
if sex ratios are assumed equal, then m simply equals proportion giving birth. It is, of 
course, necessary to assume that only fully mature females are involved in the 
calculations. In reality, individuals usually do not reach full reproductive capability in a 
single year, so that some corrections for reproductive rates of younger animals may be 
needed.  
 
7.6 Projection models 
 
 The major uncertainty in using projection models is whether or not some 
functional representation of density dependence needs to be incorporated in a given 
example. Although most ecologists largely accept density dependence as reality, there 
simply is not enough information available to specify how it may apply in particular 
circumstances. If regulation is to be considered in a projection, then a specific model has 
to be used. Two classes of models have been used in actual applications concerning 
vertebrates. The model used for large vertebrates has been described as a "generalized 
logistic": 
 

                                     rt = r [1 - (Nt/K)z]                                                 (7.3) 
 
where the annual rate of increase (rt) is reduced from a maximal rate (r) as the population 
(Nt) increases towards an asymptotic value (K). The rate (z) controlling approach to the 
asymptote determines the inflection point: 
 

                                             p = (1 + z)-1/z                                                     (7.4) 
 
When z = 1, this model reduces to the discrete form of the ordinary logistic growth 
model, hence the term "generalized logistic". The main practical application thus far has 
been in calculations performed for the International Whaling Commission.  
 
 The second class of models used in practice includes the stock-recruitment 
models of fisheries research and management. The two main forms are those of Beverton 
and Holt and of Ricker (Ricker (1975) gave extensive details). The Beverton and Holt 
curve is essentially based on the ordinary logistic growth curve. As a growth model, 
Ricker's model can be shown to be essentially equivalent to the Beverton and Holt curve 
when r is in the range typical of large vertebrates (Eberhardt 1977c). It is only when 
annual rates of increase approach those reported for some species of fish that the two 
curves need to be distinguished.  
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 Probably the only real assurance as to whether a functional model of density 
dependence needs to be incorporated in a given actual projection comes from experience. 
There is a slowly increasing body of evidence that the inflection point for large mammals 
is usually well above the 50 percent level of the ordinary logistic curve (Fowler 1981). If 
this is generally true, then it may not be necessary to utilize a density dependence 
function in a projection model unless the population approaches relatively high levels. At 
present, past experience with the particular population likely has to be the principal 
source of guidance on this score. Eberhardt (1987) described growth patterns for 16 
populations with a simple exponential curve, but also found it necessary to use a density 
dependent function at higher levels for several of these populations.  
 
 In a number of cases, projection-type models have been used for "back-
calculations". Most examples result from the need to compare present population levels 
with likely pre-exploitation abundance (see, for example, Breiwick, Eberhardt and 
Braham 1984). It will then be essential to include density dependence in the model, and 
the inflection point chosen will have an appreciable impact on outcome of the back-
calculation. Most such back-calculations have been made to comply with regulations that 
mandate a given population should not be reduced below its "maximum net productivity" 
or maximum sustainable yield level (cf. Eberhardt 1977a). However, choosing different 
inflection points may influence the outcome substantially. 
 
 When it comes to actually using a projection model with data, very little work has 
been done with fitting matrix models to large vertebrate populations. This is largely a 
consequence of the fact that the necessary data are usually not available. About all that 
can presently be done is to attempt to estimate the essential parameters for the Leslie 
matrix at some point in time. If population estimates for a series of years are available, it 
may then be feasible to attempt to see how well matrix calculations "track" the observed 
data. If age structure data are also available for a number of years, it should then be 
possible to attempt to estimate some of the parameters in the matrix by iteritive fitting 
procedures using a chi-square criterion.  
 
 In the much simpler case where the projection model is a difference equation, it 
may then be feasible to estimate parameters by direct fitting procedures (some examples 
were given by Eberhardt 1987). If it is necessary to use equation (7.3), or some other 
functional representation of density dependence, then the fitting will become much more 
complicated.  
 
7.7 Some historical features of population analysis 
 
 The word "population" derives from the Latin Populus, meaning people, while 
"demography" stems from the Greek Demos, also meaning people. These roots indicate 
clearly the origins of the terminology and methodology now applied to aggregations of 
all kinds. It is now common practice to use "population" to mean any well-defined 
collection of objects, both animate and inanimate. There are, however, those who 
interpret "demography" as meaning only the study of human populations. Because the 
bulk of the techniques in use in ecology stem directly from early work on human 
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populations, it seems pointless to use a separate term for animal and plant populations. It 
is obviously bad grammar to use "animal demography".  
 
 An excellent review by Cole (1954), under the title "Sketches of general and 
comparative demography", provides many interesting historical details, and is the basis 
for much of the present section. Students should also refer to the book by Allee et al. 
(1949) for additional perspective on origins of ecological population studies. Although 
over 50 years have elapsed since this book was published, it is still one of the better 
references, due to its detailed and thorough coverage of many features of animal ecology.  
 
 Population enumeration was no doubt practiced well before the census was 
developed by the Romans, and an elaborate system of population registration was in use 
in China before Marco Polo's time. Surprisingly enough, not until the 17th century did 
the "modern" nations begin complete population enumerations. Cole (1954) suggested 
that "Plato, and probably Solon before him, had a definite concept of an optimum 
population size and an understanding of factors regulating population size."  
 
 An Italian, Botero, in 1588 clearly recognized the limitations placed on 
population growth by environmental resources. He also preceded Malthus by some two 
centuries in formulating the concept of potential geometric growth of populations. 
Skellam (1955) noted that Linnaeus (in 1740) described potential population increase in 
plants by a geometric growth scheme, thus also preceding the famous 1798 essay by 
Malthus.  
 
 The Romans sold annuities at rates that changed with advancing age, but it was 
not until 1662 that the basis for an effective life table was developed by John Graunt, and 
then refined into something approaching modern versions by Huygens in 1669. In the 
1750's Buffon enunciated a clear qualitative statement of the principles of the "balance of 
nature", while a century later Darwin and Wallace produced the ultimate key to 
evolutionary understanding. In the same period, the forerunners of modern mathematical 
and statistical development were at work. These included Quetelet, Gompertz, and 
Verhulst (in the 1820's and 1830's) followed by Galton and the rapid development of 
biometric methods culminating in the work of Karl Pearson and his associates in the early 
20th century. Modern mathematical approaches to demography were pioneered in the 
early 20th century by Pearl, Lotka, and Volterra.  
 
7.8 A classification of methods for estimating abundance 
 
 The classification used here rests on a basic dichotomy between situations where 
plants or animals can be readily and directly counted, and those where this is not feasible. 
The direct sampling methods can be further subdivided in terms of the sampling units 
employed in the field. Indirect sampling methods can be conveniently subdivided in 
terms of whether or not an individual animal is likely to be observed on more than one 
occasion. Single observations necessarily result when the animal is killed (e.g., catch-
effort methods) and are generally expected for most of the index methods. Repeated 
observations on individuals are necessary for the capture-recapture methods.  
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 The classification is given below in segments, with each unit followed by a brief 
discussion. References to Chapters or Sections are included, along with a few special 
literature citations. Additional references are included in the appropriate chapters. The 
classification is adapted from one given by Eberhardt (1978a). The first section deals 
with direct counts of individuals.  
 
************************************************************* 
Classification                      Applications                                        References 
************************************************************* 
   
I. DIRECT SAMPLING          Used where direct counts are         Chapter 4 
                                           feasible 
  A. Area counts 
    1. Discrete sampling         
                  units                Parasites on or in hosts, colony           
                                           counts, artificial substrates,  
                                           sampling catches of individual 
                                           vessels, time-area counts 
      a. Counts of all  
         individuals                                                                                    
         or absence 
     
    2. Quadrats 
      a. Counts of all 
          individuals                 Counts of plants, deer drive                  
                                               counts, corers. 
      b. Tally of presence     Used in attempts to reduce  
         or absence                  sampling effort  
      c. Proportion of            Used for plants when  
         plot occupied             individuals difficult  
                                              to distinguish.  
      
    7. Strip transects 
      a. Counts of all            Counts of plants,                                       Section 5.10 
          individuals              inanimate objects, sessile  
                                             animals. 
    
       b. Partial counts 
          i. Visibility             Animals that do not flush or                      
             decreasing           are sessile, plants,  
             with distance      inanimate objects.  
         ii. Intermittently    Marine mammals                                         
              visible 
    
   
    B. Counts at fixed        Counts at dams or weirs,  
       points                        or vantage points along  
                                           streams or coastlines (usually  
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                                           migratory species).  
    
    C. Line methods 
       1. Line intercept     Plant canopies and other                          Section 5.3 
                                          sizable objects 
       2. Line transect 
         a. Animal flushes   Animal censuses                                        Section 5.5 
         b. Searching by     Inanimate objects, animals                      Section 5.6 
            observer            that do not flush 
   
 
     
D. Point methods 
       1. Point frames       Plants                                                  Greig-Smith (1964) 
       2. Distance methods    
         a. Radial               Plants, sessile animals         
         b. Linear              An alternative arrangement      
           ("variable-         more suitable for use in  
            area" plot)         the field.                                                               Section 5.4 
       7. Bitterlich            Used to estimate basal area                        
          method               in forestry                                                             Section 5.4 
          ("angle-count")  
    
************************************************************* 
 An important distinction in "area counts" is whether or not natural groupings can 
be accurately distinguished. Examples of such natural sampling units include individual 
plants, beaver colonies, fishing vessels, and the like. When natural sampling units are not 
available, or cannot be precisely delineated, some sort of artificial sampling unit has to be 
defined. The commonest example is a sample plot or quadrat. When natural sampling 
units are available, two factors must be considered. One is whether or not a random 
sample of such units can be obtained, and the other is whether all of the items of interest 
on selected units can readily be enumerated. If random sampling of units is feasible, and 
complete counts of individual items on the units are readily obtained, then standard 
sampling methods are appropriate. When there are difficulties with either factor, then 
other techniques need to be used. These can be quite complex, as will be evident from 
looking through any of the sample survey texts (e.g., Cochran 1977). However, a simple 
approach that works well in many practical situations is to use a plot sample to estimate 
the number of units, and then to tally the items of interest on all or a subsample of the 
natural units falling in the plots (cluster sampling).  
 
 In the case of either discrete sampling units or quadrats, various efforts have been 
made to reduce the labor involved in tallying individual plants and animals by only 
recording whether there are any individuals present or not ("presence and absence" data). 
Sometimes this information is all that is wanted, e.g., in determining the proportion of 
plants or animals infested by parasites. However, when this approach is used as a shortcut 
for estimating a total count, it usually fails. This is because the usual underlying 
assumption is that the individual items (e.g., parasites) are randomly distributed to 
sampling units (hosts). If this is the case, then the binomial distribution (or Poisson 
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approximation) holds, and the proportion of "zero counts" can be used to estimate a total 
number or density. Almost invariably some kind of clumping or "contagion" (i.e., non-
randomness) holds, and the method does not work. It may be possible to assume some 
kind of non-random distribution (e.g., the negative binomial) and proceed to make an 
estimate from the frequency of zeros postulated by that distribution. Unfortunately, this 
involves knowing or estimating one or more additional parameters for the assumed 
distribution, so that it is almost always better to resort to stratified sampling or ratio 
estimation.  
 
 Some plants do not have readily distinguishable individuals, so that counts are 
very difficult. In this situation, and when it may not be desirable to attempt to tally all of 
the individuals present, one may simply resort to measuring or estimating the proportion 
of the plot covered by vegetation. An alternative is to measure the biomass present, either 
by clipping and weighing material on the entire plot, or by subsampling.  
 
 Strip transects are essentially long, narrow plots, and thus can be treated by the 
methods already discussed. They are, however, discussed separately because of the close 
connections with other transect methods, and in consequence of some special problems. 
One is that of objects present on the transect strip, but not observed, and another is that a 
set of sample transects may have quite different lengths, requiring some provisions for 
adjustments.  
 
 Counts at fixed points have mainly been used for migratory species, but not much 
statistical analysis has been done on the resulting data, or in designing appropriate 
sampling schemes. Stratification may be the best approach, with strata being times of 
day, season, etc.  
 
 The "line" methods have two major categories. One depends on the interception 
of some sizable object by a line laid out by the observer. Data may be collected to either 
determine the proportion of the total area covered by the objects, or the number (density) 
of objects on the study area. Two different measurements are taken (length of 
interception, and width of object), and these permit unbiased estimation. The line transect 
methods depend on measurements of distances from a transect line traversed by the 
observer to objects of interest. When the "objects" are animals that are observed because 
they are startled (by the observer's approach; they "flush"), one kind of theory seems 
appropriate. If, on the other hand, detection depends on the observer's locating the object, 
a different theoretical approach may be preferred.  
 
 The "point" methods depend on measurements taken at sample points. In one 
version, the points are projected onto vegetation (e.g, by a set of long thin metal pins, a 
"point frame") to determine proportions of vegetative cover provided by various species. 
Several problems exist, including layering of vegetation and inefficiency in sampling, 
and the method is not very widely used.  
 
 The distance methods have several variants, but the best-known and most useful 
depend on the distance between a randomly selected  sampling point and the nth nearest 
object of interest (usually a plant). Although there has been much interest, and variety of 
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theoretical developments, the current picture seems to be one of use for studying pattern, 
and not for estimating density. The basic method depends on searching outward in a 
spiral from the sampling point until the nth object is located. This can be rather difficult 
in the field, so an alternative method is worth considering. This is to use an open-ended 
plot that is extended until the nth object is located. The underlying theory approximately 
that of the conventional plot approach if n is large enough.  
 
 The Bitterlich method is mainly used by foresters, and has an interesting 
connection to line-intercepts. The basic method depends on whether or not an "angle-
gauge" appears to be narrower than the apparent width of a tree-trunk. The remaining 
methods are based on indirect tallies of various kinds, conveniently split into two sections 
based on whether or not individuals need to be observed on more than one occasion. The 
first segment deals with methods that require only a single observation of individuals.  
 
************************************************************* 
Classification                     Applications                                      References 
************************************************************* 
II  INDIRECT SAMPLING       Used where direct visual count not feasible 
   A. Single observation 
       of individuals  
      1. Catch-effort            Mainly used with harvest data;,  
         methods                    also electro-shocking                            Ricker(1975)  
         a. Closed                   Population assumed unaffected by  
            population             mortality, recruitment, emigration 
                                           or immigration during sampling.  
           i. Variable 
              effort 
            (1) Leslie              Regression of catch per unit         
                method              effort on cumulative catch.                   Seber (1982:297) 
            (2) Ricker             Regression of log c.p.u.e. on                  Seber (1982:302) 
                method             cumulative effort, catchability  
                                          coefficient large. 
            (3) DeLury            Regression of log c.p.u.e. on                   Seber (1982:303) 
                method             cumulative catch, catchability                   
                                           coefficient small.    
                                    
           ii. Constant           Same effort applied in each                          Zippin  
                 effort                 sampling                                                              (1956,1958) 
                                                                                                        
          
          b. Open                    Situations where mortality,                     
             population            recruitment, emigration, immigration 
                                         are likely to be significant.  
      2. Indices 
        a. Visual                    Roadside counts, aerial counts,                           Chapter 9 
                                          roadkills, transects (unadjusted),  
                                          census with dogs                  (Overton and Davis 1969:427)  
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        b. Capture or             Bag and creel census, drift-samplers 
           harvest                  nets, trawls, set-lines, traps  
                                         plankton-pumping, grabs, dredges,              Ricker (1975) 
                                         electro-fishing, poison.  
        c. Signs                     Fecal counts, dens, mounds and nests, 
                                         tracks, beds, roosts, scent posts,  
                                         muskrat houses, beaver dams and                    Chapter 9 
                                         lodges, amount of food consumed.  
        d. Auditory 
           i. Active                Echo-ranging (fish, aquatic  
                                        invertebrates). 
           ii.Passive              Tallies of calls or other sounds.                            
   
************************************************************ 
 
 The catch-effort methods almost universally depend on data obtained by 
exploitation of a population. It is thus not surprising that they were largely developed in 
fisheries management, and continue to be mainly applied in that field. An important part 
of the development of fisheries usage is due to W. E. Ricker, whose 1975 book should be 
consulted for more details. The methods largely utilize simple regressions of catch per 
unit effort (cpue) on either cumulative catch or cumulative effort. In exploitation, effort 
normally varies from day to day (or week to week, depending on how records are kept), 
so the variable effort models are of major importance. Seber (1982) used different names 
for three main equations, but many authors lump the methods as "Leslie-DeLury 
models". One situation where effort usually remains constant from day to day is that of 
"removal trapping".  
 
 The catch-effort models are very simple and easy to use when the population can 
be assumed to be "closed", i.e., affected only by the harvests. When the duration of the 
period of exploitation is not short, it becomes necessary to deal with losses from other 
causes (e.g., "natural mortality"), and, in some cases, with additions to the population 
("recruitment"). In these situations, the models may become rather complex, and the 
results may be quite unsatisfactory unless additional information about the population is 
available. One way to provide such auxiliary information is to introduce tagged animals 
into the population at various times. Readers faced with this situation are advised to 
consult Ricker's (1975) book and more recent texts on fisheries management. 
Surprisingly little use has been made of catch-effort methods on game harvest data, 
which is unfortunate, considering that such data are quite widely available.  
 
 A major source of information about relative levels of populations has received 
very little quantitative and statistical treatment. This is data that can be expressed as an 
"index of abundance", or measure of relative abundance. The classification given above 
amounts to a convenient way to categorize the data by the means by which an animal's 
presence is observed. The actual analysis of such data depends on some sort of model, on 
the sampling method used, and on any auxiliary information that may be available.  
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 Some indices can quite readily be converted to direct estimates of population 
density, given the appropriate conversion data are available. One example is the deer 
pellet-group count. Other indices may be expressed in terms of population density but are 
known to be biased. Conceivably these methods might be treated separately as direct 
estimates of abundance, but they seem most readily dealt with as indices. The best known 
census methods depend on repeated observations of individuals (the capture-recapture 
methods) and are usually divided into the simpler applications requiring the assumption 
of a closed population, and the more complex situations where a population is "open" to 
losses and gains. We first consider methods appropriate for closed populations.  
 
************************************************************* 
Classification                      Applications                          References  
************************************************************* 
B. Repeated observations 
   of individuals 
   1. Capture-recapture             Mobile and secretive animals                    Chapter 8 
a. Closed population 
        i.Petersen method            Usually only 2 sampling periods.            Section 8.2            
          (Lincoln Index)               May also be applied with  
                                                     stratification.  
           (1) Basic method     
           (2) Sampling with         Second sample by visual  
               replacement             observation.  
           (3) Sequence of            Second sample taken as sequence  Seber (1982:125) 
               removals                  of observations (e.g., tag                                
                                               recovery in commercial fishery). 
            (4) Subsampling          Second sample observed on random  
                                               sample of subareas.                     Seber ( 1982:111) 
    
(5) Inverse                         Second sample size (tagged or  
      sampling                       untagged) fixed in advance. 
     
        ii.Schnabel method          More than 2 sampling periods;                Section.8.3                     
                                               tagging continues throughout  
                                               sampling.  
           (1) Basic method     
           (2) Mean Petersen        Petersen estimates from successive    
               method                    pairs of samples averaged; may  
                                              reduce effects of departures from  
                                              assumption of closed population.  
           (3) Inverse and            Fixing number of tagged or  
               sequential               untagged to capture in advance.  
               methods 
           (4) Corrections           Attempts to correct for violation 
               for                          of assumption of equal probabilities 
               catchability            of capture.  
               (a) Frequency          Number not captured estimated by       
                of capture              fitting frequency distribution to 
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                methods                 capture data. 
                (b) Marten's           Assumes catchability changes at     Seber (1982:150) 
                    model                constant rate.                                                       
                                                                                                          
                (c) Tanaka's          Regression of log(prop. marked) on Seber (1982:145) 
                 model                  log(cumulative marked                                        
                                                                                                           
           (5) Multi-sample       Each tag release followed by                  Seber 1982:193 
                 single-                permanent removals (as in commercial) 
                 recapture             fishery).  
************************************************************ 
 
 As the name implies, the capture-recapture methods depend on catching an 
animal, marking and releasing it, and then again capturing it at a later time. When the 
population under study can be assumed "closed", that is, not to gain or lose members 
during the study period, then rather simple estimation methods can be used. Also, the 
marking method does not have to distinguish between individuals. It only needs to 
indicate that a given animal has previously been captured. The simplest approach 
(Petersen method) requires only an initial marking, followed by one recapture period.  
 
 In the basic method, it is assumed that a sample of the population is somehow 
marked, and that a random sample is later captured and examined for marks. This 
provides an estimate of the proportion marked in the total population, so that it is a 
simple matter to calculate an estimate of the total population size. It is usually assumed 
that the members of the second sample are all caught at nearly the same time. However, 
this isn't necessarily the case. It may be possible just to observe the animals on a number 
of occasions and to record the fractions marked. This amounts essentially to sampling 
with replacement, and leads to a somewhat different model. In some situations, the 
second sample may not be obtained from one recapture operation, but may come from a 
sequence of removals from the population. Data of this kind may be treated by a 
regression model.  
 
 When large areas are under study, it may be necessary to use subsampling, 
leading to various complications, for which not enough experience is yet available for 
definite recommendations on procedures. A final variant on the basic Petersen model 
depends on fixing, in advance, the number of marked or unmarked animals to be captured 
on the second occasion. Since this is rather difficult to do in practice, the approach is 
mainly of theoretical interest.  
 
 The Schnabel method was developed to deal with situations where animals are 
captured and released on more than two occasions, and the unmarked animals are marked 
as they are caught. As the number of capture sessions increases, the number (or 
proportion) of marked animals will increase, so that some sort of regression analysis can 
be used to extrapolate to total population size. It is, however, also possible to calculate 
Petersen estimates for each pair of successive capture occasions, and then average the 
resulting estimates. This has some advantages when the assumption of a closed 
population is doubtful. Various arrangements for fixing numbers to be examined in 
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advance of the samplings have been developed for the Schnabel method, but again are 
mainly of theoretical interest.  
 
 One of the major problems in the main capture-recapture models is that 
probabilities of capture are assumed to be the same for all individuals at any given time. 
There is a lot of practical experience to show that this is not usually true, so various 
attempts to make adjustments or corrections have been proposed, but unfortunately none 
of these modifications seems to work satisfactorily in all circumstances. Three such 
models are listed in the above classification.  
 
 A final variant of Schnabel-like methods is the situation where a number of 
releases of marked animals is followed by a single capture period. It is of main interest in 
connection with commercial fishing investigations. The final section of the classification 
deals with capture-recapture models applied to open populations.  
 
 
************************************************************ 
Classification                   Applications                         References 
*************************************************************    
 b.Open populations       Gains and losses to population  
occur during census period.  
i. Jolly-Seber                Stochastic model, estimates                    Section 8.4 
         method                 mortality and recruitment as well  
                                      as population size. 
 ii. Bailey's                   Limited to 3 sampling periods,  
          triple-catch          simplest instance of more general  
          method                theory.  
      iii. Fisher-Ford        Deterministic model ("trellis"                      Cormack 
           method               arrangement of data).                                    (1968:476) 
      iv. Manly-Parr        Avoids assumption that all                           Seber  
          method                individuals have same survival rate            (1982:282) 
                                     as required in Seber-Jolly method                  
       v. Regression          Mainly used for survival estimation         Seber  
          method                                                                                             (1982:237) 
                                                                                                                     
2. Change-in-ratio        Uses change in ratio induced by  
    method                      known removals. Principal use with  
                                     harvests, but much wider potential  
                                     scope.  
    
7. Bounded count          Adjustment to maximum observed count      
     method                   (assumes finite probability that every  
                                    member of population can be counted in  
                                    a single census).  
************************************************************* 
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 As soon as it becomes necessary to assume a population "open" to additions and 
losses during the study period, the necessary models become quite complex. The main 
method in current favor is due to independent work by Seber and by Jolly. It requires that 
individual tag-releases be distinguishable, since this information is used to estimate 
additions and losses to the population over time. The earlier methods are mostly now of 
historical interest, but the Bailey "triple-catch" method is worth consideration as the 
simplest instance of the more general theory. The Manly-Parr method provides a way to 
avoid one assumption required by the Seber-Jolly approach.  
 
 Two methods of population estimation that do not fit into the above classification 
are the change-in-ratio method and the bounded-counts method. More experience is 
needed with both methods to determine their ultimate value. The change-in-ratio method 
depends on observing some ratio in a population, such as the sex ratio, before and after a 
removal that is restricted to one of the two classes making up the ratio (e.g., males). The 
method is conceptually very versatile, and can potentially provide various estimates other 
than population size, such as recruitment and survival. It also turns out to encompass a 
variety of other methods, and is thus worth study as a means for understanding the other 
methods. A practical drawback is that the method will usually be based on observations 
taken before and after a season of exploitation. Groupings and spatial distribution of the 
population are likely to change meanwhile, making for various sampling problems.  
 
 The bounded counts method depends on the assumption that it is possible, 
although perhaps with low probability, to see every member of a population in a given 
survey. In practice, the confidence limits appear to be quite large, and the method may 
not be very useful.  
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8. CAPTURE-RECAPTURE METHODS.

8.1 Introduction                              

This chapter deals with some methods for estimating the absolute abundance o f
an animal population, using observations of marked individuals. There are two b r o a d
uses of marking for population studies. One use is in studying only the m a r k e d
population with little attention paid to unmarked individuals. Such studies may b e
concerned with temporal movements (either local or migratory), delineation o f
geographic range ("home range" of individuals, range of particular population o r
sub-group of a population), or life history aspects (growth rates, survival rates, a g e
specific reproductive rates, and so on). The other use is that of concern here, i n
which the primary interest is in the change in observed proportion tagged ( wh i c h
may initially be zero) as tagging progresses. The basic principle is the same in t h e
change-in-ratio method. An important distinction is that the more compl icated
capture-recapture methods do make use of information as to the identity of s i n g l e
individuals. A distinction is made between "single-recapture" and "mul t ip le -
recapture" methods. In the early studies, the basic assumption for virtually all of t h e
methods was that each and every individual in the population has the s a m e
probability of capture in any given sampling. Under such an assumption, a n y
individual behaves like every other individual, and information that an ind iv idua l
has been caught once before or many times is largely irrelevant. One might equa l l y
well replace a marked individual with one from another population insofar as t h e
theory of the method is concerned.

The assumption that individuals all behave alike insofar as capture i s
concerned is not very acceptable to most experienced field workers. In most cases, i t
is clear that the assumption is not realistic, and the issue is whether, in a g i v e n
situation, the resulting bias can be tolerated. Various aspects of this problem w i l l
turn up in what follows. It is worth mentioning here, though, that one i m p o r t a n t
means of testing the assumption of equal probability of capture does depend on t h e
history of capture of individuals -- if individuals do not behave identically, t h e n
their past history gives information on that fact. In some models such information i s
used to produce an improved estimate of population size.

In describing the various methods, perhaps the most important aspect is t h a t
of whether the population is "open" or "closed" to those factors that may p roduce
changes in the size of the population during the course of a capture-recapture study.
Individuals may move into and out of the study areas, some may die, and others m a y
be born or otherwise "recruited" to the population (in entomological studies,
transfers between instars, pupation, etc., are additional such factors). A "closed"
population with constant probability of capture permits very simple analyses, most ly
based on the binomial distribution. Although such populations may not exist i n
practice, such a model provides a useful starting place, and may at times be adequate.

"Open" populations produce many more complications, particularly if they a r e
small or if small changes are important. Then the models need to take into a c c o u n t
chance effects, that is, stochastic (as opposed to deterministic) models need to b e
employed. Only quite recently have fully stochastic models been developed;
fortunately their application in practice is less difficult than many of the p rev i ous
methods. We are thus currently at a stage where only one general method may n e e d
to be considered in many practical situations. However, since that model also depends
on the same unrealistic assumption of equal probability of capture, f u r t h e r
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developments are needed, and the practicing ecologist will have to spend a great dea l
of effort in checking and cross-checking his estimates.

In some cases, the simpler methods may be adequate, or constitute about a l l
that can be done under the circumstances of the study. Occasionally they may s h e d
some light on particular aspects of a problem, or weakness in a necessary assumpt ion
that  may not be apparent in the analysis of the more sophisticated form. Students
will also need an understanding of the essentials of the various methods t o
understand and appreciate much of what they will find in the literature on a
particular species. Thus a number of methods will be described here.

8.2 Petersen's method (Lincoln Index)                                                                      

While the first recorded use of this method has been ascribed to Laplace in t h e
16th century (Cormack 1968), there are two commonly cited origins for its use in f i s h
and wildlife work. Most fisheries workers know the technique as "Petersen's method"
due to a suggestion by C.G.J. Petersen in 1896. Wildlife workers tend to refer t o
"Lincoln's Index" due to its use by F.C.Lincoln in efforts to estimate North A m e r i c a n
waterfowl abundance in the 1930's. A third early use was by C.H.N.Jackson (1933) i n
his studies of tsetse flies in Africa.

The method requires only two census periods, one involving the i ni t i a l
marking of M individuals, of which m are recovered in the n animals caught on t h e
second occasion. If the population is closed (i.e., there are no gains or losses due t o
immigration, emigration, mortality, etc.), then it can be intuitively supposed that t h e
fraction marked in the population (M/N) may be estimated by the proportion o f
marked animals (m/n) found in the second sample; that is:

                                         m/n = M/N         and      N
^

   = Mn/m                                               (8.1)

The relevant probability distribution is the hypergeometric distribution.

The assumptions necessary to the method can readily be understood b y
reference to the model resulting in a hypergeometric distribution. One description i s
via an "urn" model. Suppose we have a vessel of some sort (an "urn") containing N
objects, M of which bear distinguishing marks (tags). If the objects are t h r o r o u g h l y
mixed, one is removed and recorded (but not returned), then the remaining objects
thoroughly mixed again, another removed and recorded, the objects mixed, a n o t h e r
removed, and so on until n have been removed (m of which are marked), then t h e
hypergeometric distribution serves to describe the behavior of the random v a r i a b l e
m, the number of marked individuals recovered in a sample of n. In practice, n is a lso
a random variable, but the usual approach is to consider the results to b e
"conditional" on the n actually observed, or to suppose that we sample on the second
occasion until exactly n individuals are examined for marks.

One advantage of the urn model is that it helps clarify the position as r e g a r d s
random sampling. In the urn model there is no requirement that the M marks be p u t
on according to any special scheme; the only requirement is thorough mixing b e f o r e
each draw (equivalent to random selection of the n animals taken on the second
occasion). For all practical purposes, one thorough mixing is enough, so that one c a n
infer the essential assumption to be one of either a random marking or a r a n d o m
recovery. Both are not required, as has been stated in the literature. In fact, it can b e
shown that the only essential feature is that the methods of capturing ind iv idua ls
need only be such that the individual probabilities of capture on the first occas ion
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are independent of those existing on the second (Junge 1963). Thus one m i g h t
attempt to put tags on by, say, trapping and use another method (e.g., hunting) f o r
recoveries. A difficulty with such an approach is in assuring that the two methods do
in fact result in independence of the two sets of probabilities. This cannot b e
ascertained from two sampling periods alone. Another, less crucial, limitation is t h a t
the variance formulas (given below) do not apply unless capture probabilities a r e
equal over all members of the population on the recapture occasion.

A summary of the assumptions is as follows:

(1) The marks (tags) are not lost and are always identified on recapture.

(2) The population is closed (but this assumption can be modified).

(3) Every individual has the same probability of capture (at recovery time).

Assumption (2) can be modified in two ways:

(2a) There are losses of tagged and untagged animals which occur at the same ra te ,
but there are no additions to the population. This does not change the p r o p o r t i o n
tagged and the estimate of population size remains valid but applies only to t h e
population at the time of first sampling (tagging).

(2b) There are gains to the population between initial tagging and recovery of tags,
but no losses, and the probability of capture is the same for all individuals during t h e
recovery period. If there are no losses, then at the time of recovery, there are still M
tagged individuals in the population, and the proportion tagged (m/n) estimates w h a t
fraction of the current population carries tags, so that the estimate of eq.8.1 app l ies
to the population at the time of recovery. Note that (2a) and (2b) thus estimate t h e
population size at tagging and at recovery.

As we have already noted, assumption (3) can be modified as:

(3a) Marking at random.

(3b) Independent probabilities of capture at both marking and recapture ( wh i c h
necessarily includes (3a) as a special case).

These several modifications depart from the conditions necessary for t h e
hypergeometric distribution to hold, and thus prevent strict applications of t h e
relevant variance formulas. One simple way to obtain a useful estimate of t h e
variance is to randomly subdivide the number of animals initially marked (M) i n t o
several subgroups, and to estimate the population size separately for each s u c h
subgroup. These independent estimates then provide the data for calculating a va l id
variance. How many subgroups to use depends on the number marked initially ( M )
and the fraction recovered, since there are obvious drawbacks in having any of t h e
subgroups result in no recoveries of marked individuals. Presumably one m i g h t
tolerate one such group, using the modified estimation formulas given below.

From a formal statistical point of view, the estimate of eq.(8.1) has t h e
drawback of having an "infinite bias". This results because there is always a f i n i t e
probability that m=0 (i.e., no marked animals are caught on the second occasion) .
Chapman(1951) proposed an adjusted equation to circumvent this difficulty:
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                                                    N̂  C  = 
(M+1) (  n + 1 )

( m + 1 )     -  1                                               (8.2)

which has variance estimate:

                                      v* =     
(M +1) (n  +1) (M -  m) (n  -  m)

( m  +  1 ) 2 ( m  +  2 )
                                   (8.3)    

When N is large, the hypergeometric distribution (sampling wi t hou t
replacement) is very closely approximated by a binomial distribution (sampling w i t h
replacement), and when P is sufficiently small, a Poisson distribution also p rov ides
an excellent approximation. On the other hand, when P is not very small, the n o r m a l
distribution may provide an adequate model. Various rules have been suggested as t o
to when to apply the several approximations in practice. Chapman(1948) used m/n a s
a guide to magnitude of P, and gave the following criteria:

N < 500                   m/n < .10             Poisson  
                                m/n > .10             binomial
500 < N < 1000      m/n < .075           Poisson  
                                m/n > .075           normal
1000 < N                 m/n < .05             Poisson   
                                m/n > .05              normal

However, other authors used less stringent rules. One of the best ways to gain i n s i g h t
into the differences due to various approximations is to intercompare sets of tables o f
the distributions for several examples.

The various approximations are particularly convenient in calculating a
confidence interval around an estimate from the Petersen method. DeLury (1951)
noted that, under the binomial assumption, P=M/N, so that the expected value of t h e
random variable (m) here representing the number of successes is:

                                                             E(m) = 
nM
N                                                                    (8.4)   

with binomial variance:

                                                     V(m) = 
nM
N    [1-(M/N)]                                                    (8.5)

so that if we substitute m/n as an estimate of P, an estimate of the variance of m i s
just m[1-(m/n)]. Going one step further, and assuming m is approximately n o r m a l l y
distributed, approximate 95 percent confidence limits for m are:

                                                          m ±2 [ m ( 1 -
m

n
) ]1 / 2

and DeLury inserted these values in the Petersen estimate (eq.8.1) to provide
confidence limits on N, i.e.,

                                        Upper limit =  
nM

m m m n{ [ ( / )] }
( . )/− −2 1
8 61 2                                  

                                         Lower limit = 
nM

m m m n{ [ ( / )] }/+ −2 1 1 2



                                                                                                                                                    8.5

An alternative way to proceed is to write the estimate (eq.8.1) as N = M/p, where p =
m/n, and to use tables or graphs to find confidence limits on P in order to ca lcu la te
upper and lower limits for N from those for p.

Still another approach (Leslie 1952) can be described by changing eqs. 8.4 a n d
8.5 from those representing the random variable m, to those for a random v a r i a b l e
multiplied by a constant:

                                       E(aX) = aE(X)             and V(aX) = a2V(X)

where a is a constant. If we use a = 
 1
n M   , then:

                                                                     E(
m

nM  ) = 1/N                                                     (8.7)

                                                                 V(
m

nM  ) = 
1

nNM   [1-
M
N  ]

but since N is unknown, we estimate the variance by replacing 1/N by m/nM (eq.8.7
justifies this), and obtain:

                                                     s2(
m

nM  ) = [
m

(nM)2   ][1- 
m
n    ]                                          (8.8)

whereupon, assuming 1/N to be approximately normally distributed, one can o b t a i n
approximate 95% confidence limits on 1/N as:

                                                                    
1
√N

± 2 s(
m

nM  )                                                     (8.9)

The main advantage here is that estimators of N are quite skewed as can be seen f r o m
sampling experiments, or by considering p (=m/n) to be normally distributed a n d
reflecting what the distribution of 1/p will look like. It turns out that 1/N is m u c h
more symmetrically distributed, hence confidence limits expressed as in eq.(8.9) a r e
presumably less biased than those previously described here.

Assuming a binomial distribution (rather than the hypergeometric) leads to a
slightly different correction for bias in the estimation equations. Bailey (1952)
suggested:

                                                           N̂  B  = 
M ( n  +  1 )
( m  +  1 )                                                        (8.10)  

with variance estimate:

                                                      v1 =    
M 2(n + 1)(n - m)

( m  +  1 ) 2 ( m  +  2 )
                                         (8.11)  

The difference between eq.(8.2) and eq.(8.10) is clearly very small. Bailey (1952)
showed that N as estimated from eq.(8.1) tends to overestimate, having a bias "of o r d e r
1/m", while eq.(8.10) has a bias of order e-m.

Cormack (1968:460) and Seber (1982) provide convenient summaries of a
number of schemes to avoid biased estimates through "inverse" sampling. These
schemes require sampling on a second occasion to continue until some p r e -
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determined event happens, e.g, until exactly m marked animals are caught. In m a n y
field situations such schemes are very difficult to carry out, and, as p rev ious l y
indicated here, the crucial source of bias is that having to do with u n e q u a l
probabilities of capture, for which satisfactory corrections are presently difficult. I n
most practical situations, the investigator should use eqs. (8.2) or (8.10). If t h e
numbers of recaptures (m) is small enough to make the theoretical biases i n
estimation important, it will also be true that the estimates will be highly va r iab le ,
and thus will provide very little information on the population under study in a n y
case.

Example 8.1 Petersen method

Nixon et al. (1967) trapped and marked squirrels (  Sciurus  ) in Ohio in 1962. In
their first day of trapping, 22 individuals (M) were caught, while on the
second day, 13 were caught (n). Seven of these were marked (m), having also
been caught on the first day. From eq. (8.1), we have:

                                            N
^

   = 
22 (13 )

7     = 40.9, while Chapman's equation (8.2)

gives:

                                            N
^

  c  = 
23(14)

8    - 1 = 39.2, with variance estimate:

                                         v( N
^

  c ) = 
2 3 ( 1 4 ) ( 1 5 ) ( 6 )

6 4 ( 9 )    = 50.31

DeLury's estimated confidence limits are (eq. 8.6) calculated from:

                                                  
1 3 ( 2 2 )

7  +  2 [ 7 ( 1  -  
7

1 3) ] 1 / 2
  

   

which gives:   28.0   <   N   <   84.0.  Leslie's approach (eq.8.8 and 8.9) gives:

                                    s2(
nm
M   ) = 

7
13 22

1
7

132[ ( )]
( )− = 0.0000395

and 0.0119   <   1/N   <   0.0370 which is useful if one has some interest in the
reciprocal of population size. Inverting gives essentially the same result as
DeLury’s approach. Bailey's method (eq. 8.10) gives:

                                    N
^

  B  = 
22(14)

8    = 38.5  with variance estimate (eq. 8.11):

                                   s2(N
^

  B) = 
( ) ( )

( )
22 14 6

64 9

2

= 70.6.

8.3 The Schnabel method                                              

We now consider a situation wherein sampling is not restricted to two
occasions, and all of the unmarked animals caught in successive samples are m a r k e d
and returned to the population. In most applications, the marks only serve to ind ica te
that the animal has been caught previously and do not identify individuals. T h e
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method was first proposed by Schnabel (1938) and further studied by S c h u m a c h e r
and Eschmeyer (1943) who provided a variance estimate and an a l t e r n a t i v e
estimation formula (also derived by Hayne 1949) . The basic assumptions are t h o s e
previously given, i.e., (1) marks are not lost nor missed, (2) the population is closed,
and (3) constant capture and recapture probabilities.

A very convenient way to visualize the process and to derive the va r i ous
equations is that of DeLury (1958). An initial sample serves to introduce some m a r k e d
individuals into the population, and then k further samples are taken (giving k+1
sampling periods in all). Estimates are obtainable for population size in each of t h e
subsequent sampling occasions but not for the first (although the assumptions do, o f
course, imply that the population is of constant size throughout the study). It is w o r t h
noting that there is no requirement that the first set of marks be put on at r a n d o m
(i.e., that all individuals have the same probability of capture). Thus if it is feasible t o
mark a substantial number of animals by some inexpensive but obviously b iased
method, the investigator might profitably do so, and then revert to some m o r e
expensive means of capture that is more in line with the assumptions for the k
subsequent recapture periods.

The notation used here is as follows:

Mi= number of marked individuals in the population just before the it h sample i s
taken; i = 0,1,2,...,k so that Mo is the number marked on the first occasion.

ni  = number of individuals caught on ith sampling (since, in most studies, no = M1, w e
will be concerned here with n1,n2,...,nk ) .

mi  = number of tagged individuals caught in the it h sample; mo = 0, and we cons ide r
m1,m2,...,mk.

In any given sampling (after the initial marking), mi / ni  gives an estimate o f
the proportion marked in the population. If sampling is random with respect t o
whether or not the animal is marked (i.e., a constant probability of capture holds) ,
then we have a binomial-type situation applying at the time of sampling, and we c a n

write (with p = 
mi
n i

  ):

                                                                  E[
mi
n i

  ] = 
M i
Ni                                                          

(8.12)  

                                                      V[ 
mi
n i

  ] =  
M i
Nni

   [1- 
M i
N   ]                                                (8.13)

Since N is unknown, it is necessary to use mi / ni  to estimate the variance, as is u s u a l
in dealing with samples from a binomial distribution. The data from a c a p t u r e -
recapture study can be conveniently plotted with mi / ni  on the vertical axis and Mi
along the horizontal, and ideally should constitute a series of points ( mi / ni  and Mi)
scattered about a straight line through the origin. Solutions to the problem o f
estimating N depend on the choice of methods for fitting a regression line to the data.
That is, eq.(8.12) can be represented as a straight line through the origin with s lope
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equal to 1/N; if one writes yi= mi /ni  and xi= M i , then the line yi=bxi  is equivalent to e q .
(8.12)  with b=1/N.

Since the "y" values ( mi / ni ) are subject to sampling (chance) errors, a
weighted regression scheme is indicated. One choice is to use reciprocals of t h e
variance estimates [eq.(8.13)] as weights (thus the more precise data have g r e a t e r
weights). This procedure leads to Schnabel's original formula, which has to be solved
by iteritive (tr ial-and-error) methods; that is one finds a value of N most n e a r l y
sat is fy ing :

                                                            Σmi = Σ 
(ni - mi)Mi

N̂ -  m i
                                               (8.14)   

for which Schnabel gave an approximate solution as:

                                                                 N̂   = 
Σ  niM i
Σ  m i                                                          (8.15)  

However, DeLury pointed out that one of the common features of actual application o f
the method is that of a tendency for tagged individuals to be grouped or clustered i n
the habitat, which makes eq.8.13 a poor variance estimate (it underestimates). He
therefore proposed weighting by the "sample size" ( ni ) at each point in time. Th is
gives the simpler Schumacher-Eschmeyer formulation:

                                                                 N̂   =  
ΣniM

2
i

ΣmiMi                                                          
(8.16)   

A variance for the estimate (8.16) is calculated in the same manner as f o r
weighted regression equations. This gives:

                                               s2   = {Σ( m

n
i

i

2
)  - 

(Σ m iM i)2

ΣniM
2
i

  }/(k-2)                                (8.17)

and confidence limits are calculated from:

                                                              C.L. = 
Σ

Σ Σ
n M

m M t s n M
i i

i i i i

2

2 2 1 2 8 18
± α [ ]

( . )/                                                        

where the ±sign determines lower and upper limits respectively, and tα  refers to t h e
value obtained from t-tables for selected α  and k-2 degrees of freedom. An i m p o r t a n t
point here is that a small number of sampling times will result in fairly large va lues
of tα  and hence wider confidence limits than might be obtained with more days o f
t a g g i n g .
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Example 8.2 The Schnabel method

The trapping mentioned above (Example 8.1) was continued for a total of 11
days. The data are given below, along with the calculations for eq.(8.16).

            Number                               Tagged in
            caught        Recaptures       population

Day         (n          i        )                  (m       i           )                   (M      i          )                          Σ     m i    M  i               Σ      n i  M i    2              N
^

           

1 2 2 0 0 0
2 1 3 7 2 2 1 5 4 6 , 2 9 2 40.9
3 1 5 1 0 2 8 4 3 4 18 ,052 41.6
4 1 0 5 3 3 5 9 9 28 ,942 48.3
5 6 5 3 8 7 8 9 37 ,606 47.7
6 5 3 3 9 9 0 6 45 ,211 49.9
7 1 5 1 0 4 1 1 , 3 1 6 7 0 , 4 2 6 53.5
8 1 1 6 4 6 1 , 5 9 2 9 3 , 7 0 2 58.9
9 1 8 8 5 1 2 , 0 0 0 140 ,520 70.3
1 0 8 7 6 1 2 , 4 2 7 170 ,288 70.2
1 1 1 6 1 0 6 2 3 , 0 4 7 231 ,792 76.1

Using DeLury's regression approach to the data, we let yi = 
mi
n i

  , xi = Mi, and β = 
1
N  

Thus eq. (8.12) becomes E(yi) = β xi,  and a weighted equation using sample
sizes (ni) as weights is:

                β
^
   = 

Σwixiyi

Σw ixi2
   = 

ΣmiMi

ΣniM i2
      and this estimates the reciprocal of N, hence

eq.(8.16).

Calculating a variance estimate (eq. 8.17). we get:

       s2 = 
1
9   [44.772 - 

(3 ,047)2

2 3 1 7 9 2   ] = 0.5243, and 95% confidence limits for  N
^

  , from

eq. (8.18) are:

             
231792

3047 2 26 0 524 2317921 2+ . [( . )( )] /
= 

231792
3047 788 59± .

 or  60.4 <  N
^

    <  102.6  

Since the last day's trapping turned up 6 unmarked squirrels, there were at
least 68 (M11 = 62 and 6 unmarked) in the population, so the lower limit
should be 68. In the next hunting season, 41 squirrels were shot, of which 25

were marked. Using eq.(8.2), we have  √NC = 
69 42

26
1 110 5

( )
.− =  which is

appreciably above the upper limit. The authors felt that probabilities of
capture were not constant, with some individuals being more likely to be
recaptured.

Example 8.3 Estimation from frequency of capture

In a situation like that of Example 8.1 and 8.2, where it appears that the
population is being underestimated, the best cure no doubt is to identify the
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faulty assumption and do something about it. This is not always as easy as it
sounds. One way is to mark by one technique and recover by another, e.g., to
tag by trapping and recover tags in hunting. However, this approach doesn't
necessarily cure the problem (see, for example, Eberhardt et al. (1963:43-47),
in which a particular model, the geometric distribution was postulated for
recaptures). There is, of course, no assurance that this model should hold
widely. Seber (1982:Ch.4) summarizes the theory and gives some other models
that might be used. Eberhardt (1969) found that the geometric distribution did
seem to fit a wide range of recapture data (40 sets on 10 species). An example
of application of the method is available in the paper by Edwards and
Eberhardt (1967). A series of taggings were carried out on a population of
cottontail rabbits confined to a 40 acre pen in Ohio, in the fall of 1961.
Data for a Schnabel census are set forth below.

                     No. of                                         Tagged in
                 captures            Recaptures          Population
Date                  ni                           mi                      Mi         

Oct. 24 9 0 0
       25 8 2 9
       26 9 6 1 5
       27 1 4 3 1 8
       28 8 4 2 9
       29 5 4 3 3
       30 1 6 8 3 4
       31 7 4 4 2
Nov.   1 9 3 4 5
         2 3 2 5 1
         3 8 7 5 2
         4 1 4 5 5 3
         5 2 1 6 2
         6 5 0 6 3
         7 1 1 5 6 8
         8 0 0 7 4
         9 5 5 7 4
        10 9 7 7 4
                   ______                _____                _____
Totals             142                       66                       76

Students should carry out the Schnabel  calculations in order to gain
familiarity with the method. Edwards and Eberhardt (1967:Table 3), using eq.
8.16, obtained a population estimate of 97 animals. The actual population in
the pen was 135 rabbits, previously caught by drive-netting (to avoid previous
experience with box-traps, which were used for the experimental study of
capture-recapture methods), and introduced on October 19, and 29, 1961.
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Frequencies of capture were:

           Number of            Number of         Number of
times caught        rabbits                                  captures                            

1 4 3 4 3
2 1 6 3 2
3 8 2 4
4 6 2 4
5 0 0
6 2 1 2
7 1 7

                                                 ____                 _____
7 6 1 4 2

The underlying model for the frequency distribution (geometric distribution)
is a very simple one:

                              f(x) = pqx               (x=0,1,2,....)

where q=1-p, and p is the probability that the animal will not be caught at
all, i.e., f(0) = p. Strictly speaking, the geometric distribution applies to
a conceptually infinite series of trials, and can be at best an approximation
to reality. Seber (1982:Ch. 4) can be consulted for various other theoretical
difficulties and for the nature of the approximations on which the method
rests. In the present instance, there were 18 trapping days and the maximum
number of time any individual was caught was 7. In some situations, when the
maximum number of captures approaches the number of capture occasions, an
adjustment for truncation may be needed (the number of trapping occasions sets
an upper limit on the possible number of recaptures). Seber (1982:172-174)
gives a method for doing this and uses the data of Example 8.2 above to
illustrate the method.

The essentials for estimation by the frequency of capture method are as
follows:

                     q
^

   = 
s  -  r

s  -  1                 and               N
^

   = 
r ( s  - 1 )
s  -  r   

where r is the number of individuals that are caught s times. Referring to the
data above, it may be seen that r = 76 and s = 142. Estimates thus are:

          q
^

   = 
1 4 2  -  7 6

1 4 1    = 0.468         and     N
^

   = 
7 6 ( 1 4 1 )

1 4 2  -  7 6     = 162.4

In this instance, the method thus overestimates the known population. The
estimates above can be used to set up a goodness of fit test by calculating
expected numbers as:

                                  E(nx) = Npqx                    x=1,2,...

and introducing estimates of N
^
   and  q

^
  . This yields the following results:
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                                              Original
          Number of                   number of             Calculated
          times caught                rabbits                                      number                          

1 4 3 40.42
2 1 6 18.92
3 8 8.86
4 6 4.15
5 0 1.94
6 2 0.91
7 1 0.42

                                                 ______                ______
                                                    76                       75.62

          These are obtained from √√√Npq =162.4(0.5319)(0.4681) = 40.43 for the
first entry, √√√Npq2 =162.4(0.5319)(0.4681)2 = 18.92, and so on (multiplying
each successive entry by 0.4681). It can be seen that the data are fitted
reasonably well. However, students should do a chi-square calculation to check
this. In the present example, 135 rabbits were introduced into the pen, so we
have 135 - 76= 59 in the not-caught (0) category. The expected number is
162.4(0.5319) = 86, which is substantially larger.

Example 8.4 Mean Petersen method

The Schnabel method depends on the population being closed (i.e., the same
population of N individuals is present throughout the study). If this
assumption is doubtful or disproven, then it is necessary to use a more
complex method in which rates of loss (and/or gain) to the population are
estimated. Before doing so, it may be worthwhile to consider a very simple
approach, in which Petersen estimates are formed from successive entries in
the table of data. That is, referring to the data of Example 8.2, the first 2
days can be used to obtain a Petersen estimate, then the results from day 2
and day 3 can be used, and so on. As noted in Sec. 8.2, the assumption of a
closed population can be relaxed somewhat for a Petersen estimate (assumptions
2a and 2b), so that the sequence of Petersen estimates may be used to look for
evidence of a trend in the population. If both gain and losses are taking
place, the method isn't, strictly speaking, acceptable. However, if day to day
changes aren't large, the overall average may be useful. This leads to the
"mean Petersen" estimate proposed by Chapman (1952; see also Seber 1982:138).

Estimates are formed according to eq.8.2 and averaged:

                         N
^

   = 
1

1 2k
Ni

i

k

− =
∑ √  (only k-1 estimates can be obtained from k

periods).
Variances can be estimated by averaging the estimates of eq. 8.3 as:

                                   ( v N
k

v Ni
i

k

1 2
1

1
1

( √)
( )

( √ )=
− =

∑ )

or as the variance of the individual estimates:
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                     v N
k k

N ave Ni
i

k

i2
2

21
1 2

( √)
( )( )

[ √ ( √ )]=
− −

−
=
∑

Students should perform the calculations using the data of Example 8.3.

8.4 Methods for "open" populations

All populations are subject to change, so the methods described thus far a r e
mostly useful under circumstances such that any change in population size is l i ke l y
to be of minor importance. As we noted earlier, if there are only gains or losses, t h e
Petersen method may give a valid estimate for one of the two sampling occasions. I n
general, however, one needs to have a method capable of taking into a c c o u n t
temporal changes in populations.

Early workers largely dealt with open populations by assuming constant r a t e s
of gain or loss. When populations are large, such deterministic models can be q u i t e
satisfactory. However, even when a large population is being studied, it usually t u r n s
out that some aspects of the study will depend on small numbers, and thus introduce a
stochastic element into the analysis. Consequently, a number of models have b e e n
developed that have both deterministic and stochastic elements. Some of these models
are very complex and require cumbersome or intricate calculations.  Versions of a
fully stochastic model for open populations were published by G.M.Jolly (1965) a n d
G.A.F.Seber (1965). Cormack (1968) suggested that, inasmuch as virtually iden t ica l
results were obtained independently by Jolly and Seber, the technique should b e
called the Jolly-Seber method.

Some of the earliest efforts to deal with open populations arose from t h e
pioneer studies of C.H.N.Jackson on tsetse fly populations in Africa ( Jackson
1937,1939,1940,1948). He used two rather different schemes, one (the "posi t ive
method") depending on a single release of a large number of individuals followed b y
a series of samplings in which marked and unmarked individuals were tallied, but n o
further marking was done (however, marked individuals were released again a f t e r
capture). In the second, "negative" method, marking was accomplished on a series o f
occasions but recaptures were tallied only in one final intensive sampling. T h e
negative method uses the greater reduction in returns from the earlier releases ( a s
compared to those from later releases) to estimate survival rates, which are in t u r n
used to estimate the number of marked animals alive in the population at the time o f
the final large scale recapture sampling. An estimate of population size at the f i n a l
sampling can thus be obtained from the Petersen formula, but M is now est imated
rather than known exactly. Because any immigrants are reflected in the f i n a l
sampling, it is not necessary to make special provision for measuring i m mi g r a t i o n
(of course the rate of immigration is not estimated).

On the other hand, the positive method may be expected to measure dilution b y
immigrants since all of the marking is done in the initial survey. Thus the decrease
in proportion marked in successive surveys should reflect the effect of i m mi g r a t i o n
(or other sources of unmarked animals). Combining the two methods gives t h e
necessary ingredients for a complete analysis, and this is what the more r e c e n t l y
developed methods are designed to accomplish. Although direct use of the Jackson
methods is not now recommended, it may happen that one of the two schemes may b e
useful in special circumstances -- for example, in Jackson's work unskilled ass is tants
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were sometimes used to carry out marking on a broad scale. Bailey (1951,1952) g a v e
improved estimates for Jackson's methods, while Chapman and Robson (1960)
described methods to improve on his survival estimates.

A method ascribed to Fisher and Ford (1947) is mainly of historical interest b y
virtue of its use of a "trellis" diagram to classify recaptures on each day by the dates
of release. The method thus uses data on all previous recaptures of individuals. No
variance estimate was given. A detailed study by Leslie and Chitty (Leslie and Chi t ty
1951, Leslie 1952, and Leslie, Chitty, and Chitty 1953) developed a rather ex tens ive
approach to dealing with open populations. They assumed that, with small samples,
observational data as to various classes (e.g., date last caught) can be represented as a
multinomial distribution, and thereby produced a series of estimating equations. One
problem is that the solutions are very difficult to obtain if there are a number o f
sampling periods.

It is intuitively evident that estimation of gains and losses from a popu la t ion
will require a minimum of three sampling periods. Thus "Bailey's triple ca t c h "
method (Bailey 1951, 1952) is of interest both as an illustration and a p rospec t i ve
method for either pilot studies or rapid estimates. The various items of data are a s
follows:

   Period(i)       Time       Total             Total tagged    Marked individuals
                                      captured        and released    caught later
           0            0                                       so
           1            t1              n1                    s1                  m01
           2            t1+ t2      n2                                           m012,m02,m12

In the above table, m01 are those caught in the first time period and recaptured i n
the second. Some of these appear again in the third period and are labelled m012. T h e
estimates are:

                                                  
√ ( )
N

s n m m

m m1
1 1 02 012

01 12

= +
                                                      (8.19)

                                            λ̂   = exp(β̂   t2) = 
m01n2

n1(m 02+ m 0 1 2 )                                         
(8.20)   

                                             µ̂   = exp(-α̂   t1 ) = 
s1(m02+ m 012)

s0m12
                                      (8.21)  

Variance estimates are:

                          v(N̂  1) =  N̂  12 [
1

m0 1    + 
1

m1 2
   +  

1
m 02  +  m 0 1 2

   - 
1

n1
  ]                   (8.22)

                          v(λ̂   ) =  λ̂    2 [
1

m0 1    +  
1

m 02  +  m 0 1 2
    -  

1
n1    - 

1
n2

   ]                      (8.23)

                              v(µ̂  ) =  µ̂  2  [
1

m1 2
   +   

1
m 02  +  m 0 1 2

    ]                                          (8.24)
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Note that e x p ( √βt2) estimates the gains to the population in the time interval (t2)

between second and third captures ( √β  is an instantaneous rate, while e x p ( -α t1)
measures losses in the first time interval (t1 between initial marking and the second
sample (first recaptures). For the method to be strictly valid, it has to be assumed t h a t
rates of loss and gain are constant during the study period, so the important est imates

are √βand √α . With this arrangement, one avoids the necessity for having t1 = t2.

The fully stochastic (Seber-Jolly) models use some additional notation and, i n
common with many earlier models, require knowledge of the identity of ind iv idua l
animals, or at least the occasions on which individuals are marked, so that in m a n y
cases identification of individuals is practically essential. Additional symbols used a r e
as follows:

si  = marked animals released on the it h occasion (the si  may be equal to the ni  if a l l
unmarked animals are marked and no individuals are killed in handling or o the rw i se
removed from consideration).

r i = the number of the si  that are again caught before the study is concluded.

zi  = number of individuals in the population that have been marked before the it h

period and are caught again after the it h period but not during the it h period ( t h i s
then is a measure of the marked animals known to be present during the it h pe r i od
but not caught then).

The first estimate required is that of the number of marked individuals (Mi) alive a t

the ith period:

                            Μ̂    =  
zisi
r i      + mi                               (i=1,2,...,k-1)                             (8.25)

There are again k+1 marking periods, the first (denoted by a subscript of zero) a n d
the last (k) for which there is not sufficient data to estimate Mi  The basis for eq.(8.24)
can be seen intuitively by considering the fraction zi / (M i - mi ) -- this is t h e
proportion of the marked animals alive at time i that are not caught then but a r e
subsequently caught. Furthermore, out of the si  released on the it h occasion, ri  a r e
caught later. If the animals behave alike (the key assumption of equality of c a p t u r e
probabilities, again), then clearly these two fractions should measure the s a m e
quantity; hence equating them gives:

                                                                
z i

M i  -  m i
    = 

ri
s i

  

and rearranging yields the estimate of Mi given in eq. 8.26. Perhaps it should b e

mentioned that mi represents number of tagged animals in the catch ( ni ) at the it h

period, as it has in previous models. Also, we retain the assumptions that tags a r e
neither lost nor misread, as well as that of equality of probability of capture a m o n g
individuals on each occasion (however, this probability can change b e t w e e n
occasions) .



                                                                                                                                                    8.16

Population size on the ith occasion is simply estimated by the Petersen method:

                                         N̂  i = 
niM

^
i

m i
                                  (i = 1,2,...,k-1)  .                    (8.26)

Again, estimates for the first and last periods are not available.

Survival between sampling occasions ( √φi ) is estimated very simply from the
data on Mi :

                                    Φ̂  i =  
M̂i + 1

 M̂i  +  s i  -  m i
                       (i=0,1,...,k-2)                   (8.27)  

The denominator is comprised of the M̂  i  animals estimated to be alive at the it h

trapping plus any newly marked animals actually released at that time (si - mi ) .

The number of animals coming into the population is estimated as:

                   β̂  i =  N̂  i+1 -  Φ̂   i ( N̂  i - ni + si)                     (i=1,2,...,k-2)                  (8.28)

and the logic of the estimate is evident from its structure. There are Ni  animals in t h e

population at the ith sampling of which ni -si  are removed (i.e., the ni  caught m i n u s

any removals; often ni=si  and none are removed by the experimenter). A f rac t ion √φi

of these survive to the next period, so the equation estimates the number of " rec ru i t s "
still alive at the i+1st sampling.

A fifth estimate, that of the probability of capture at the ith sampling is often
usefu l :

                                                                     √p i = 
n i

N̂i
                                                          (8.29)  

Again the logic is straightforward, and an equivalent estimate is √p i= mi/ M i.

The variances of the several estimates are complicated, reflecting the
complexity of the underlying theoretical development. Seber (1982:Chapter 5) gave a
full treatment. A briefer version with simpler equations appears in the monograph
by Pollock et al. (1990). They use corrections for small sample biases of the kind used
in eq.(8.2). Most users will no doubt depend on a computer program to estimate
variances. A number of programs are available, and the Wildlife Society maintains a
Web Page with access to a variety of programs. The address is:

h t t p / / fw ie . fw . v t . edu /wsb /

This page  contains a link to the  Colorado State University Department  of  Wildlife
and Fisheries and  Colorado Cooperative Unit Web Page  which provides access to
program MARK, currently one of the major programs for capture-recapture and
survival estimation. The Appendix to the present course contains a program (JSMP)
to do the main calculations and to bootstrap results.
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Example 8.5 the Jolly-Seber method

The main difficulty in applying this method lies in understanding and making
an accurate tally for the basic tables from which the estimates are made.
These procedures can best be understood by starting with Table 8.1, which is a
tabulation of the history of capture for 56 Weddell seals. There were 5
sampling or census occasions. On the first (i=0),. 28 tags were put out. On
the second (i=1), 12 new animals were tagged, 11 on the third, and 5 on the
fourth. None were tagged on the fifth census (but this quantity is not
relevant to the estimates, anyhow)

The entries in each census column denote the history of a given animal. Thus,
tag number 1 was caught initially, but never seen again, while numbers 11 and
12 showed up on every occasion. Number 30 was not tagged until the second
census (i=1) and was not seen on the fourth (i=3), but showed up again on the
fifth visit to the study areas.

The basic table of summary data is Table 8.2, in which the entries are the

mhi, which is defined as the number caught in the ith sample that were last

captured in the hth sample. The top two rows contain basic data from the
actual census trip. The first item is the ni, total number of animals examined
on each census. The second item contains the number of tagged animals that
were released at that census. In many studies, all of the untagged animals
would be tagged and released, so that si, the number of tagged animals
released into the populations at each census would be equal to ni. In the
present example, this was not possible, so that of the 63 (n0) animals
observed in the first census, only 28 (s0) were actually tagged.

The mhi entries in the body of the table start with m01, which is the number
of the 28 animals tagged on the first visit (i=0) that were found again on the
second visit. The next entry in that row (m02=2), are those of the 28 tagged
animals that did not show up until the third census (i=2). The final entry
(m04=1) is tag number 22, who was observed only in the first and last
censuses. All of this data comes from the first 28 tag numbers.

The next row of the table of mhi includes tagged animals last seen on the
second census (h=1) and then observed on the third, fourth or fifth census.
This now brings in the data from tag numbers 29-40, as they were tagged in the
second census. Totals of the table row entries constitute the rh , the number

of animals last captured on the hth sample and then reobserved at some time in
the future. The final column includes those animals initially tagged but not
observed again (i.e., tag numbers 1,2,5,6, etc.). This number is not used in
the calculations, but serves as a check, since rh plus this number equals the
number of tagged animals released in the appropriate census (e.g. the 28 of s0
equals 17 + 11).

The only really practical way to be sure of one's understanding of this
procedure is to actually reconstruct the other table entries from Table 8.1.

A second table is usually prepared as a means of calculating the zi. This is

shown as Table 8.3, which shows the chi, those individuals caught in the ith

sample that were last caught in or before the hth sample. Thus inspection of
Table 8.1 shows that c02=2, i.e., tag number 3 and 8 meet this criterion. We
also have, as a further example, that c04=1, since there is only one
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individual (tag 22) caught in the first and last censuses only. The sum of the
row entries give z1, z2, and z3. These totals should be checked by scanning
the tables with the appropriate definition in mind. For example, z2 is the

number of animals  caught both before and after the 3rd census (i=2). Hence,
tag numbers 9,10,13,16,17,22,...,40 qualify (11 in all). One could, of course,
just make such a tally directly and not bother with Table 8.3, but it is best
to have the cross-check resulting from making the table and then a direct
count. Logically, entries c01, c12, c23, and c34should be in the table, but
these are just m0, m1, and m3 and do not correspond with the definition of z1,

i.e., caught before and after but not in the ith sample. Once the necessary
ingredients are in hand, calculation of the estimates is straightforward from
the definitions given in equations 8.25 to 8.29.

Table 8.1. History of capture for Jolly-Seber census.
                    Tag                          Census number
                    number  0 1 2 3 4
 Tags put out at first census                                             

1 1 - - - -
2 1 - - - -
3 1 - 1 1 1
4 1 1 - - -
5 1 - - - -
6 1 - - - -
7 1 1 - - -
8 1 - 1 1 1
9 1 - - 1 1

1 0 1 - - 1 1
1 1 1 1 1 1 1
1 2 1 1 1 1 1
1 3 1 1 - - 1
1 4 1 1 1 1 1
1 5 1 1 1 - 1
1 6 1 1 - - 1
1 7 1 1 - 1 -
1 8 1 1 1 - -
1 9 1 - - - -
2 0 1 - - - -
2 1 1 1 1 - 1
2 2 1 - - - 1
2 3 1 - - - -
2 4 1 - - - -
2 5 1 - - - -
2 6 1 - - - -
2 7 1 - - - -
2 8 1 1 1 1 -

___________________________________________________________
Tags put out at second census                                                  

2 9 - 1 1 1 1
3 0 - 1 1 - 1
3 1 - 1 1 - -
3 2 - 1 - - -
3 3 - 1 - - -
3 4 - 1 - - 1
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3 5 - 1 - - -
3 6 - 1 - 1 1
3 7 - 1 - 1 -
3 8 - 1 - 1 1
3 9 - 1 1 1 1
4 0 - 1 - - 1

___________________________________________________________
Tags put out at third census                                             

4 1 - - 1 - -
4 2 - - 1 - -
4 3 - - 1 - -
4 4 - - 1 - -
4 5 - - 1 1 1
4 6 - - 1 - -
4 7 - - 1 - -
4 8 - - 1 1 -
4 9 - - 1 - -
5 0 - - 1 - -
5 1 - - 1 1 1

_________________________________________________________
Tags put out at fourth census                                               

5 2 - - - 1 1
5 3 - - - 1 1
5 4 - - - 1 -
5 5 - - - 1 -
5 6 - - - 1 -

__________________________________________________________
Table 8.2. Tabulation of the mhi, the number caught on the ith sample last captured on the hth

sample.
i 1 2 3 4 5                                                      

_____________________________________________________________
ni 6 3 4 3 4 1 4 2 58                             number not
s i 2 8 2 4 2 4 2 2 2 3 rh           seen again
0 - 1 2 2 2 1 1 7 1 1
1 - - 1 1 4 4 1 9 5
2 - - - 1 1 3 1 4 1 0
3 - - - - 1 5 1 5 7

                 ______________________________________________________
mi 0 1 2 1 3 1 7 2 3

Table 8.3. Tabulation of chi, the number caught in the ith sample last caught in or before the hth

sample.
                                                                        i

h 1 2 3 4 5 Total
____________________________________________________________

- - 2 2 1 5 = z1
1 - - - 6 5 11 = z2
2 - - - - 8 8 = z3
3 - - - - -

             ____________________________________________________________
A program in the Appendix (JSMP) calculates these results, and is illustrated
with the above data.
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8.5 The Manly-Parr method.

The Jolly-Seber method has largely become the standard method for dealing
with open populations. A method devised by Manly and Parr (1968) gives very much
the same results, but has not been widely used. With the availability of computer
programs for the Jolly-Seber method, the Manly-Parr approach may not receive
much further attention. It does have the advantage of simplicity and is worth
remembering inasmuch as estimates can be obtained with an ordinary calculator.
One can thus explore a set of data with without needing reference or access to a
computer. Tabulate the data in a matrix of zeros and ones with dates of observation as
columns and records of individuals as rows. For every column (except the first and
last) identify  those individuals known to be in the population on that date by finding
those that were seen before and after that date. Label this group as CI where i= 2,3,…,
k-1 (or 1,2,3, …,k-1 if you designate the first occasion as 0 as done in the Jolly-Seber
notation). Now count the number of individuals that were actually observed on that
occasion, and designate them as ci. Then:

                                                       ƒp
k

Ci
i

i

=              (i = 2,3,…,s-1)                      (8.30)

estimates the probability of capture on the ith occasion, and the population present
on that date is estimated as:

                                                        ƒ
ƒ

N
C

pi
i

i

=             (i = 2,3,…,s-1)                      (8.31)

The following figure shows Jolly-Seber and Manly-Parr estimates for a number of
sets of data from a capture-recapture study of Weddell seals in Antarctica, and shows
that the two methods gave virtually identical results.

Fig.  8.1. Comparison of Manly-Parr and Jolly-Seber estimates for Weddell seal data.
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A segment of data from that study appears below to illustrate the method.

DATE 1 2 3 4 5 6
TAG NO.

727 1 0 1 0 0 0
748 1 0 1 1 1 0
818 1 1 1 1 1 1

1030 0 0 1 1 1 0
1040 1 1 1 1 1 1
1274 1 0 0 1 1 0
1286 1 1 1 0 1 1
1288 1 1 1 1 1 0
1445 0 0 1 0 1 0
1541 1 1 1 0 0 0
1577 1 1 0 0 0 0
1590 1 1 1 1 0 0
1594 1 1 1 1 0 1
1620 1 1 1 0 0 0
1893 1 1 1 1 1 0
1901 1 1 0 0 1 1
2018 1 1 1 1 1 0
2097 1 1 1 1 1 1
2285 1 1 1 1 1 1
2593 1 1 1 1 0 0
2619 1 1 1 1 0 0
2673 0 1 1 1 1 1
2700 0 0 1 1 1 1
2708 0 1 0 1 1 1
2717 1 1 1 1 1 1
2807 0 0 0 1 1 1
2930 1 1 1 1 1 0
2945 1 1 1 1 1 1
3010 1 1 1 1 1 1
3454 1 1 1 1 1 1
3511 1 1 1 1 1 0
3585 1 1 1 1 0 0
3685 1 1 1 1 1 1
3714 0 0 0 1 1 1
3923 1 1 1 1 1 1
3949 0 0 0 0 1 1
3999 1 1 0 1 1 1
4071 1 1 1 1 1 1
4190 0 1 1 1 1 0
4220 1 1 1 1 1 1
4224 1 1 1 1 1 1

Ci                                         31             31          30             22
ci                                         28             27          27             21
pi                                       0.903       0.871      0.90        0.954

Because this is only a segment of the data, the results should not be taken as actual
estimates of seal numbers.
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The reason that the Jolly-Seber and Manly-Parr methods give essentially the
same results, as suggested in Fig. 8.1, is that the equations for the proportion marked
in the population actually converge to give identical values as the number of
observations (i) increases. As discussed in Example 8.5 above, in some cases all
unmarked individuals cannot be tagged at the time of capture, but instead “batch”
tagging may be employed and an individual is treated as though it were newly tagged
at the time of first capture. With this change, the main results and calculations are
essentially the same, whether all newly caught individuals are tagged at capture, or
only those carrying a tag from independent captures are considered as newly tagged.
Convergence of the two methods can be shown most conveniently by starting with
the estimate of the proportion tagged given below eq. (8.29):

                                                           √
√p

m

M
i

i

i

=                                    (i = 2,3,…,s-1)             (8.32)

introducing the estimate of the number marked in the population given by eq.(8.25),
and rearranging to give:

                                 √ ( )p R z

m r

R C k

m r

i
i i

i i

i i i

i i

=
+

=
+ −

1

1

1

1
                                                     (8.33)

                                             
This uses the evident fact that zi = Ci – ki . As i increases, the number of marked
animals released (Ri) eventually becomes equal to the number of marked animals
encountered in the ith sample (mi) because there are no more initially marked
animals that have not already been sighted for the first time. Similarly, ki becomes
equal to ri , giving:

                                      √ ƒp
C k

k

k

C
pi

i i

i

i

i
i=

+ − = =1

1

This then ultimately results in identical population estimates by the two methods for
“batch” marking.

In the case of “batch” marking, the total population size is estimated by
dividing the total number of animals seen (marked and unmarked) by the estimates
of proportion seen [Eqs. (8.29) and (8.30)]. Comparisons of the two methods thus
depend on eqs.(8.29) and (8.30), as the total number seen will be the same in both
cases.

When marking of previously unmarked individuals continues throughout the
study (“continued” marking), the Jolly-Seber method estimates total population size
as Seber (1982, eq. (5.8,p.200):

                                       √
√

N
M n

mi
i i

i

=                                              (i  =  2,3,…,s-1)

When there are no losses at capture, the number released is equal to the
number seen, so:
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√ [ ]N R

R z

m ri i
i i

i i

= +1                                                 (8.34)

For the Manly-Parr method with continued marking:

                                                 ƒN
RC

ki
i i

i

=                                                          (8.35)

  Again, as RI approaches mI and ki approaches rI with zi = Ci – kI we have
equivalence of the two methods.

Example 8.6.     Manly-    Parr     method.

Example 8.5 illustrated the Jolly-Seber method and the same data set is
used here to demonstrate calculations for the Manly-Parr method. Ci and ki are
calculated just as illustrated above (page 8.21), with the data of Table 8.1
rearranged below in the same manner as on page 8.21.

1 1 0 0 0 0
2 1 0 0 0 0
3 1 0 1 1 1
4 1 1 0 0 0
5 1 0 0 0 0
6 1 0 0 0 0
7 1 1 0 0 0
8 1 0 1 1 1
9 1 0 0 1 1

10 1 0 0 1 1
11 1 1 1 1 1
12 1 1 1 1 1
13 1 1 0 0 1
14 1 1 1 1 1
15 1 1 1 0 1
16 1 1 0 0 1
17 1 1 0 1 0
18 1 1 1 0 0
19 1 0 0 0 0
20 1 0 0 0 0
21 1 1 1 0 1
22 1 0 0 0 1
23 1 0 0 0 0
24 1 0 0 0 0
25 1 0 0 0 0
26 1 0 0 0 0
27 1 0 0 0 0
28 1 1 1 1 0
29 0 1 1 1 1
30 0 1 1 0 1
31 0 1 1 0 0
32 0 1 0 0 0
33 0 1 0 0 0
34 0 1 0 0 1



                                                                                                                                                    8.24

35 0 1 0 0 0
36 0 1 0 1 1
37 0 1 0 1 0
38 0 1 0 1 1
39 0 1 1 1 1
40 0 1 0 0 1
41 0 0 1 0 0
42 0 0 1 0 0
43 0 0 1 0 0
44 0 0 1 0 0
45 0 0 1 1 1
46 0 0 1 0 0
47 0 0 1 0 0
48 0 0 1 1 0
49 0 0 1 0 0
50 0 0 1 0 0
51 0 0 1 1 1
52 0 0 0 1 1
53 0 0 0 1 1
54 0 0 0 1 0
55 0 0 0 1 0
56 0 0 0 1 0

Calculations for the above table:

C 15 22 21
k 10 11 13
n 63 43 41 42 58
p-tilde 0.667 0.500 0.619
N-hat 64.5 82.0 67.8

 Here, p-tilde is calculated with eq.(8.30) and N-tilde uses eq. (8.31). A
program (JSMP)to do the calculations is in the Appendix. It can be  used for
both the Jolly-Seber and Manly-Parr methods. A sequence longer than that of
this example is required before the two sets of estimates converge. Even with
this short sequence, the estimates are in fair agreement. Bootstrapping can be
accomplished with the program, and the results f0r 1,000 bootstraps appear in
the following table:

95% CONFIDENCE INTERVALS
JOLLY SEBER

i 2 3 4
LOWER 48.2 63.5 51.5
UPPER 107.5 214.9 114.4
MANLY-PARR
LOWER 47.8 58.6 51.9
UPPER 103.2 143.5 105.0

ORIGINAL DATA COMPARED  TO BOOTSTRAP MEANS
i 2 3 4

JOLLY-SEBER
N-hat 65.6 100.5 71.0
BOOTSTRAP MEANS 68.2 109.9 74.0
MANLY PARR
N-tilde 64.5 82.0 67.8
BOOTSTRAP MEANS 67.0 86.9 70.8
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The limited amount of data results in wide confidence limits, with only the
upper estimates for the 3rd period being much different for the two methods,
likely as a consequence of the different estimates for that period from the
two methods.

For an example based on a much larger sample, some data on Hawaiian monk
seals used by Eberhardt et al. (1999) have been processed with the same
program. The results from the “Original data” worksheet follow:

Here we see that the estimates p-hat (Jolly-Seber) and p-tilde (Manly-Parr)
are virtually identical. Bootstrapping (B =1,000) gave the results of Fig.
8.2.

Figure 8.2. Bootstrap confidence limits for census data on Hawaiian monk seals
collected on Laysan Island.
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The “estimates” in Fig. 8.2 are actually the bootstrap means, but the actual
estimates were virtually the same as the bootstrap means, being within 1 or 2
individuals. The original data for this site and for another (Lisianski
Island)are on sheets attached to the program (JSMP) described and attached to
the Appendix.

8.6. Tests of assumptions

As has been emphasized in previous sections, the crucial assumption i n
capture-recapture studies is that of equal probabilities of capture among t h e
individuals comprising the population. Two major categories of failure of t h i s
essential assumption are:

(1) The probability of capture inherently varies among individuals.

(2) The probability of capture changes with exposure to the capture method.

The first class can be subdivided into two obvious groups, one being based on t h e
frequent observation of behavioral differences between sex and age classes. This is a
prospect most investigators will have in mind in designing a study, and one w h i c h
can normally be dealt with by doing the necessary calculations for such g r o u p s
separately. No doubt there will be other, more subtle, differences among ind iv idua ls
that will result in non-uniformity of response to the capture method, but, as w i t h
most features of free-living populations, such "second-order" differences can b e
neglected for many purposes.

The second sub-division of the first category constitutes the prospect of n o n -
uniform application of the capture method. One of the most likely prospects is t h e
occupancy of a "home-range" or "territory" by many terrestrial species. Unless t h e
capture methods can be uniformly (or randomly) applied to the area under study o n
each sampling occasion, it is very likely that individuals will have rather d i f f e r e n t
probabilities of capture. Live-trapping provides one example. If traps fall we l l
within a heavily-used part of an individual's home range, clearly that individual c a n
be expected to have a higher probability of capture than would be the case if the t r a p
falls outside the periphery of the usual home range. One obvious precaution is to u s e
a high density of traps relative to home range size; another is to move traps abou t
during the study. Some work has been done on apparent effects of trap density, b u t
very few efforts have been made to study the effect of shifting trapping p a t t e r n s
during the course of a study.

The second category is well-known, usually being labelled "trap-shyness" o r
"trap-proneness". Certainly there is little doubt that individuals of some spec ies
become very skilled at avoiding traps. Trap-proneness needs to be viewed with a l i t t le
more caution. This is because a uniform probability of capture may n o n e t h e l e s s
result in what appears to be an excessive number of captures for some ind iv iduals .
More explicitly, with probability of capture P and n sampling periods, the p robab i l i t y
that a given individual is caught x times follows the binomial distribution, which i n
turn, if P is small and n large, may be closely approximated by a Poisson d is t r ibu t ion .
Samples from a Poisson may well give the impression that some individuals a r e
caught unduly often, that is, randomness usually doesn't look "random".

An immediate test to use on recapture data is to compare the frequencies w i t h
which individuals are captured with those expected under the hypothesis of a
constant probability of capture: either a binomial or the corresponding Poisson
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approximation. The simplest such test is the chi-square goodness of fit test. If there i s
evidence of appreciable gains to or losses from the population during the study t h e n
it is not appropriate to apply the test to all of the data. One must instead limit the tes t
to a group of individuals known to be in the population during the period used. Th is
means taking a set of individuals caught early in the study, and again before i t s
conclusion. One thus has a group of individuals caught two or more times and k n o w n
to be alive in some fixed time interval. Ideally, one would deal with a set of animals a l l
caught on one of the first sampling periods, and then all caught again in the s a m e
period near conclusion of the study. In practice it may be necessary to g r o u p
adjacent periods to obtain enough individuals to make the test worthwhile. A n
alternative test, suggested by Leslie(1958), is to apply the "binomial dispersion" test.
This test compares the observed variability in frequencies of capture with t h a t
expected on theoretical grounds if the binomial distribution applies. Lesl ie(1958)
suggested that at least 20 individuals should be available for the test, with 3 or m o r e
intervening recapture periods. Very likely the binomial dispersion test is to b e
preferred over the chi-square goodness of fit test.

Before applying any test to detect a violation of the underlying assumpt ions
one needs to have a rather explicit notion as to what is being tested for, and w h a t
alternatives exist. Thus the above test assumes a constant probability of c a p t u r e
throughout the study, and may give an indication as to prospects for i n h e r e n t
differences in "catchability". Those problems associated with "trap-shyness" and i t s
converse may be mainly associated with the first capture (or first few captures) a n d
thus may not be detected in these tests. Also, if there are individuals in the popu la t ion
with essentially zero probability of capture, then no test based on recapture data c a n
detect that problem (unless the true population size is known or otherwise est imated;
even so very substantial numbers of recaptures may be required, s e e
Cormack(1966)).

Various tests for the second category of violation of the basic assumption o f
constant probability of capture are given by Seber(1962,1965), Darroch(1958,1959),
Leslie (1952), and Leslie, Chitty, and Chitty(1953). Little use seems to be made of t h e s e
tests in practice, perhaps as a consequence of the complexity involved in t h e i r
derivation and description. It is also unfortunately true that none of the tests a r e
very "sensitive", i.e., they do not detect anything but extreme departures f r o m
equality of capture probabilities. The program “MARK” referenced in Section 8.4
above provides a wider range of tests, along with a criterion (AIC) for c h o o s i n g
among candidate models.

8.7 Exercises

8.71 Plot y(i) and x(i) of Example 8.2 and comment on validity of the underlying
model.

8.7.2 Carry out the calculations for a Schnabel estimate on the data of Example 8.3.
Plot y(i) and x(i) and comment on validity of the underlying model.

8.7.3 Do a  chi-square calculation on the observed and expected frequencies of
capture calculate in Example 8.3. The actual population in the pen was 135 rabbits
giving 135-76=59 in the not-captured category. Use chi-square to check this against
the expected number and comment on your results.
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8.7.4 Mean Petersen method.
Calculate the mean Petersen estimate described in Example 8.4 on the data of Example
8.3. Plot the data and compare with a plot of the Schnabel estimates obtained in
Exercise 8.7.2. Discuss your results.

8.7.5  Testing for constant probability of capture

In Example 8.2 (Schnabel), frequencies of capture were:
             Number of                           Number of
             times caught                      squirrels                                     

1 3 3
2 1 6
3 1 0
4 4
5 2
6 3

                                                                 _____
6 8

if the probability of capture is constant, these frequencies should be approx imated
by a Poisson distribution. Use a chi-square test to check the goodness of fit.

8.7.6  Interpenetrating sampling

When animals are tagged in groups and tend to stay that way (i.e., clumped) until t h e
recapture period, then it is essential that recaptures yield a random sample of t h e
population, or at least that the probability of recapture not depend on whether or n o t
a given individual is tagged. Sometimes this can be accomplished by taking a r a n d o m
sample of locations for recapture. If the recaptures come in groups, then eq.8.3, o r
any equation based on the assumption of random sampling of individuals, is n o t
realistic. For an example of the bias that may result, students should refer to Example
4.8 and compare the variances obtained there with interpenetrat ing sampling w i t h
what would be obtained by combining all of the recaptures and using equation 8.3.

8.7.7 Double-tagging

Tag loss can be a major source of bias in many circumstances. One way to improve the
situation is to apply two tags to each individual. When this is done, then the
probability of loss can be estimated from:

         p̂   = 
ms

m s +  2md
    where ms and md refer respectively to the number of

recaptures carrying only one tag (ms) and retaining both tags (md). A variance
estimate is:

                                          v(p̂  ) =  p̂  2 (1 -  p̂  )2 [
1

ms    + 
1

md
  ]

and the appropriate Petersen estimate then becomes that of eq.8.1:

                               N
^

  d = 
Mn

m~
            where m~    = 

( m s +  2md)2

4md
  

with approximate variance:
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                                           v(N
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  d) = 
N
^

d2
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p̂

( 1 - p̂) 2
    +   

N
^

d2

m~
   

Data for calculations are taken from a fur seal double-tagging study (Abegglen et a l .
1958), in which 34,923 male fur seal pups were single-tagged and 5,000 double- tagged
on St. Paul Island off Alaska. In 1961, 48,458 three year old males were ha rves ted ,
yielding the following returns:

2,098 originally single-tagged
258 double-tagged (md)
140 single-tagged (ms)

Students should estimate: (1)  p̂  , (2) v ( p̂  ), (3) m~   , (4) v (N
^

  ) , and, (5) calculate an

adjusted estimate from the single-tagging using  p̂  , i.e.:

            N
^

  adj = 
Mn

m~
  (1 -  p̂)  

with variance:

                                             v(N
^

  adj) = (1 -  p̂  )2v ( N
^

  ) + N
^

  2v ( p̂  )

8.7.8 Models for double-tagging

The underlying probability model for double-tagging is quite simple, and s tudents
should work out the basis for the above equations. Note that the probability of loss o f
each of the two tags is assumed to be the same. If the tags are of different kinds ( o r
location, etc.) this assumption should be checked (with chi-square) and sepa ra te
corrections may be required.

8.7.9 Survival estimation in a three-point census

The simplest census method for an open population requires observations on 3
occasions (an initial marking, a recapture period in which any unmarked are
marked and a final capture period). Survival from tagging to the first recapture time
is simply estimated as:

               Φ̂  01 = 
M1
M0

 
m0 2

( m 1 2  +  1 )         with  v(Φ̂  01) = Φ̂   012  (
1

m0 2   + 
1

m1 2
  )

Data for southern hemisphere fin whales (17th report of International Whaling
Commission) are:
                                     Number

            Season              marked*                          m02                m12            Φ̂                      

1 9 5 3 - 1 9 5 4 1 1 8 1 4 4 2 0.64
1 9 5 4 - 1 9 5 5 2 3 1 4 0 4 8 0.77
1 9 5 5 - 1 9 5 6 2 1 7 3 5 1 2 1.60
1 9 5 6 - 1 9 5 7 1 2 9 9 3 6 0.28
1 9 5 7 - 1 9 5 8 1 5 1 1 6 1 4 0.74
1 9 5 8 - 1 9 5 9 1 0 5 7 4 0.75
1 9 5 9 - 1 9 6 0 5 6 3 1 4

             * Recoveries in the same season as the marking are not utilized.



                                                                                                                                                    8.30

Students should calculate Φ̂   01  and the associated variance estimates, which might b e
compared with a variance calculated from the 7 estimates (which are not, h o we v e r ,
i ndependen t ) .



  9.1 

  9.0 INDICES OF ABUNDANCE 
 
9.1 Introduction 

 In theory, ecologists and wildlife managers depend on a range of sophisticated 
methods for assessing population abundance. In practice, it is often necessary to rely on 
some sort of index to abundance, supplemented perhaps by occasional use of the 
technically more satisfactory methods on a few sample areas. Almost always the 
limitation is simply one of costs. If one must deal with large areas it simply is too 
expensive to use the better methods on a regular basis. Dice (1941:402) expressed the 
general idea very well:  

"The difficulty of obtaining accurate counts of the number of individual 
mammals present on a given area has led to attempts to develop indices of 
abundance for the species concerned. Such indices may or may not be 
convertible into terms of population density. For many practical uses, 
however, it is sufficient to know the relative abundance of a particular 
species in different areas or at different times without having an exact 
count of the population".  

Most of the experience in the 60 years since Dice's statement was published tends to 
show that exact counts are often not feasible. Estimates of some kind are about all that 
can be managed, and these are usually difficult to achieve. 

One of the risks in using an index is that it may not accurately reflect actual 
population trends. White-tailed deer (Odocoileus virginianus) pellet group counts provide 
one of the best examples of a useful index of abundance, yet Ryel (1971) found that drive 
counts on a fenced Michigan area yielded an inverse correlation between counts and 
index values over 11 years of data. He pointed out various reasons for failure of the pellet 
group count method used in this instance, and gave a good discussion of ways and means 
for maintaining quality and integrity of the method.  

Three approaches to using indices can be considered: (1) Direct conversion to a 
census method. The pellet group counts provide one of the better known examples, 
inasmuch as the counts, under proper circumstances, can be converted directly to an 
estimate of average numbers of deer present on an area. (2) Calibration through ratio and 
regression methods, including double sampling. A simple linear relationship between an 
index and an actual estimate of abundance is used to convert the index to an actual 
estimate of abundance. (3) Calculation of an improved index or a prediction equation. At 
times, supplemental information may be used to strengthen an index without converting it 
to a direct estimate. These aspects are summarized in Fig.9.1. 

Several sources of variability need to be considered in appraising an index 
method. One is stochastic in nature, arising from the variability of the chance fluctuations 
in the births and deaths that result in change in population size. These changes occur even 
in the presence of constant birth and death rates, diminishing in importance as the 
population increases in size. Theoretically, such effects can be neglected if fairly large 
populations are under study. However, we usually can only study part of large 
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populations, either through sampling the large population or by counts on relatively small 
sample areas. Stochastic effects may then become important. A second source of 
variability arises when birth and death rates are influenced by environmental fluctuations, 
such as an unusual cold spell or other environmental change during the reproductive 
season. Sometimes such changes are large enough to be labelled "catastrophic" and the 
results then are usually dramatic enough to attract attention to specific causes. Less 
dramatic changes may be difficult to detect. A third souce of variability is that 
engendered by the sampling or observational process through which data on the 
population are obtained. Trying to sort out these several  sources of fluctuations in 
numbers may be very difficult and deserves more attention than it usually gets. 

INDEX 
DATA

STATISTICAL 
ANALYSIS

MODELS AND 
ASSUMPTIONS

INDEPENDENT 
DIRECT POPULATION 
ESTIMATES ON SAMPLE 
AREAS

CALCULATION OF     
AN IMPROVED 
INDEX OR A  
PREDICTION 
EQUATION

CALIBRATION THROUGH 
RATIO AND REGRESSION 
ANALYSIS AND  
DOUBLE SAMPLING

DIRECT CONVERSION 
TO A CENSUS 
METHOD

(using auxiliary 
data on  
environmental and 
observational 
conditions)

COMPARISONS AND 
PREDICTIONS

ESTIMATING A TOTAL 
OR EVALUATING 
CALIBRATION

ESTIMATION AND 
COMPARISONS

Fig. 9.1 Aspects of the analysis of potential index data. 

Indices have received very little attention. The large and extensive reference on 
estimating animal abundance by Seber (1982) contains only a few pages on indices. This 
is not Seber's fault, but results simply because there is very little literature on the subject, 
whereas the stochastic models implicit in tag-recovery and survival data have received 
much attention in both theory and practice. The presentation here will thus start out by 
examining a number of sets of data on population trends, and then consider some specific 
techniques. 
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Example 9.1 The pellet-group count 

 
 One of the better-known wildlife management indices is based 
on the enumeration of accumulated fecal pellets of ungulates 
(sometimes politely known as "sign", although the term may also 
include other kinds of evidence of an animal's presence). Under 
favorable conditions the method may provide direct estimates of 
abundance. Such conditions usually depend on a substantial leaf-
layer deposited in the fall of the year (or other methods of 
separating "old" and "new" pellet-groups) plus the over-winter 
accumulation of groups. Even though many ungulates appear to 
produce nearly 13 pellet-groups per day (with surprisingly small 
variance), it is nonetheless true that even an assumption of 
random distribution of groups still results in the need for rather 
large numbers of plots being searched to give useful precision in 
estimation. Thus long accumulation periods are essential. Some 
workers have resorted to removing pellets from plots (or marking 
those initially present) in order to be assured of an accurate 
starting date. Unfortunately, this doubles the fieldwork required.  
 
 Although there is a variety of possible sources of error (a 
major one is simply failure to find all of the groups on a plot), 
some experience with pellet-group counts on areas where population 
density could be determined quite accurately by other methods has 
shown reasonable accuracy in estimating the actual number of deer 
present. For immediate purposes here, though, we will consider the 
method as an index. The model is simply: 
 

                                                    E(xi) =   βDi                                                                
 

or that the expected number of pellet-groups per unit area (xi) is 
directly proportional to the density (Di) of animals present on 

the ith area. The proportionality constant (β) depends on the 
defecation rate (essentially 13 groups per day), length of 
accumulation period, and units of measurement of the plots. One 
further complication is that, if the accumulation period is long 
(and includes winter conditions and perhaps a hunting season), 
then there may be an appreciable mortality over the period 
represented by the counts, so that the estimate obtained is really 
for an average density.  
 
 If independent direct estimates of deer density are 
available, calibration may be attempted by using ratio or 
regression methods to convert pellet-group counts to density 
estimates, i.e., we use a set of direct population estimates (yi) 
and a set of pellet-group counts (xi) on the same areas and turn 
the above equation around to as to have: 

 
                                                Di = E(Yi) = (1/β) E(Xi)                                                 
 

so that an estimate of 1/β is obtained from the comparisons. 
However, as remarked above, the pellet-group count can also be 
converted directly. If the mean number of pellet-groups on 1/50th 
acre plots on the ith area is xi, then a direct estimate is given 
by (Eberhardt and Van Etten 1956): 

 
                                  Di = 50(640)xi/12.7(days since leaf-fall)                               
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where Di denotes the estimated number of deer per square mile and 

1/β  is calculated from the several quantities on the right-hand 
side of the equation.  Hence, pellet-group counts can be used in 
all 3 of the ways suggested in Fig. 9.1; directly, by calibration, 
or by direct conversion. The latter two methods should give the 
same value for 1/β, within sampling error.  
 
 Pellet-group counts represent an excellent example, perhaps 
the best known, of an index method susceptible to exact treatment 
by statistical methods. This is because there is an exactly 
definable population (the total number of pellet-groups) available 
on a discrete area. In most cases, there will be a considerable 
advantage to be gained by using stratified sampling methods, and 
the costs of travel versus those associated with actual counting 
on plots are such as to dictate the use of a cluster of plots at 
each location (the individual plots cannot be very large due to 
the effects of plot size on counting errors).  
 
 Some experience has indicated that the negative binomial 
distribution provides a good fit to the observed frequency of 
pellet-groups per plot, and this finding may be useful in the 
efficient design of new surveys.  

 
Example 9.2 Conversion factors for pellet-group counts 
 
Part of the Michigan experience with pellet-group counts as a 
census method includes counts on two fenced areas in which deer 
numbers are supposedly known with some accuracy. Data from one of 
these areas (Cusino Enclosure) is as follows (Ryel 1971:124):  

 
            Mean number     Known number 
            of groups            of deer per 
Year     per plot               square mile 
. 
1953    9.403                     28.8 
1954    2.252                     25.0 
1955    1.778                     28.1 
1956    2.246                     29.3 
1958    2.943                     15.5 
           12.622                    120.7 

Using a ratio estimator, we obtain: ˆ b 1 =
yi∑
x∑ i

=12.622/120.7 = 0.105. 

Data for a direct estimate can be used to calculate:  b
^

 2= 
[211(19.56)]/[50(640)] = 0.089. Here, 211 is the average number of 
days since leaf-fall, and 19.56 is an average number of pellet-
groups per deer, adjusted for the sex and age composition of the 
known number of deer on the area. The direct conversion factor is 

the reciprocal of 2b  or 11.2, which is somewhat higher than the 

reciprocal of 2̂b  which is 9.5. One might thus expect to 

overestimate true deer density by using pellet-group counts,  

if 1b̂  and 2b̂  are indeed as different as suggested here. There are 

various other problems in comparisons on this and another such 
area (George Reserve) and these were described in detail by Ryel 
(1971).  
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Example 9.3 Roadside counts 
 
 Roadside surveys have been widely used in assessing the 
numbers of many species, and a useful model for such a survey is 
that used for pellet-group counts. However, β is not so readily 
defined in this case, being affected importantly by the behavior 
of the species, cover (habitat) conditions, along with the weather 
and various other factors such as time of day (many species are 
most active in early morning and in the evening). Quite a lot of 
effort has gone into attempts to standardize roadside surveys by 
taking counts during specified times and weather conditions. Very 
likely such standardization techniques are suitable for 
controlling most factors other than habitat differences. So far, 
little has been done to try to take into account the effect on 
visibility generated by different intensities of vegetative cover. 
One obvious prospect is to attempt to record distances from the 
observer for each individual animal seen, in the manner of line 
transects, but a suitable model is needed for use of such a 
correction.  
 
 The net effect of the several uncertainties about roadside 
and other visual counts (such as aerial surveys) is to make it 
likely that such methods may be reasonably satisfactory for 
comparisons from year to year on the same routes, but rather less 
useful for comparisons of routes in different cover types. 
Conversion will need to be accomplished by use of ratio or 
regression methods and independent direct estimates of density on 
a sample of areas, as there is presently no way to write an 
equation like that used for pellet-group counts for roadside 
surveys.  

 
 Well-known examples 0f calling counts are counts of crowing 
pheasants, or of the drumming of ruffed grouse, cooing of doves, 
etc. The usual technique is to make counts for a fixed period of 
time (typically 2 to 5 minutes) at each of a number of stations or 
"stops". Normally the counts are made along roads as a consequence 
of the need to cover sizable areas. As with roadside counts, time 
of day, weather, and seasonal effects are important. Often a 
degree of standardization is achieved by making frequent counts on 
a single route at different times of the season. If the population 
on that route is assumed to remain constant, curves of calling 
intensity against time of day (and time of season) may serve as a 
reference standard for adjusting the other counts.  
 
 Auditory counts bring in the hearing acuity of the 
individual observer as an important additional variable. A useful 
model may then be:  

                                                       E(xij) =  βri2 Dj                                                       
 
where ri represents the radius within which a call may be heard by 
an individual observer. Presumably such a radius may also depend 
on cover and weather conditions (plus interference from other 
sounds -- traffic noise being usually the main offender), so there 
may be a "regional effect" as well as an "observer effect" on the 
recorded counts.  
 
 
The following table gives results of hunting success and calling 
counts for Gamble quail in Arizona. 
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Hunting success and calling counts for Gambel quail in  Arizona (Smith and 
Gallizioli 1965).   
 
         Oracle Junction  Pinnacle Peak   Cave Creek   
 
            Quail           Call     
Year   per trip     count       
                y                x          y       x          y       x   
 
1958    3.81             61       3.53    83       --      --  
1959    2.70             24       1.37    10       --      --  
1960    6.40            103      3.74    94      2.96    72  
1961    2.57             25       1.20    22       0.64    8  
1962    6.09             75      2.83    59       2.55    64  
1963    4.84             62       1.70    25       1.82    36  
1964    2.91             41       1.60    15       1.38    26   
_____   _____       _____  ____ ____ ____  _____  
Totals  29.32           391    15.97   308     9.35    206   

 
  b1

^   =ΣY/ΣX  =       .075                   .052              .045   

 b2
^   = ΣYX/ΣX2 =     .070                   .044               .043   

Regression         
 slopes                     .054                    .030               .034   
Reg.  
intercepts              1.200                   .94                .45    

 
 
 
 Example 9.4 A pocket-gopher example. 
 
Reid et al.(1966) gave an interesting example in which an index  
(mounds and earth plugs) of pocket-gopher (Thomomys talpoides) 
abundance  is compared with actual abundance, as established by 
trapping-out  gophers on sizable plots. They concluded that the 
relationship between  number of gophers present and the index was 
curvilinear, but did so  by plotting the number of gophers per 
unit area against the number  of signs. Such a plot does indeed 
suggest a nonlinear relationship.  However, there were 2 areas 
(Black and Grand Mesas) studied in 3  years (1962 to 1964).    
 
 If we assume the trap-outs to measure absolute abundance, without  
sampling error, and adopt the model of simple proportionality, 
E(xI)=βDi, then the appropriate  plot is of signs (Y) against gophers 
per acre (X). Also, if the areas  and years are plotted separately 
(or distinguished by individual  symbols), then it seems that the 
apparent curvilinearity may really  be due to differences in β 
between years and/or areas. It is further  evident that 
variability increases with increasing density of gophers.  Hence, 
we adopt the model:  xij = bij Dij eij, where xij denotes number 

of signs in the ith year and jth area, Dij is actual density of 
gophers, bij  is the proportionality constant between gophers and 
sign, and eij is a proportional "chance" error. Since Dij is 
assumed to be measured without error (or with negligible error), 
we can arrange the equation in terms of signs per gopher, i.e., 
consider:  

                                         yij =
xij
Dij  = bij  eij 
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and take logarithms: 
  
                      log yij = log xij - log Dij = log bij + log eij 
 
Then the data  can be subjected to a simple one-way analysis of 
variance. The results indicate that there are significant 
differences and, using a multiple-comparison test (Scheffe 1959) 
shows that Grand Mesa in 1963 is significantly different from its 
1964 value and from Black Mesa in 1962. We are thus fairly 
confident that the main factor in the apparent curvilinear 
relationship is really a difference between areas and years, but 
could not, of course, exclude a behavioral difference as a 
possibility at low densities. The conclusion here, as with the 
quail example above, is that it will very likely be necessary to 
include both spatial and temporal data in any initial efforts to 
calibrate an index.  
 
Abundance of pocket-gopher sign (mounds and earth plugs  on one-
acre plots) expressed as logarithm (base e) of signs per  gopher 
(Reid et al. 1966).    

 
         Black Mesa                   Grand Mesa   
 
  1962    1963    1964          1963    1964         
       
     1.91    2.76     2.01           2.03    1.82          
      2.32    2.23    2.02           1.99    2.06         
      2.05    2.16    2.18           2.17    1.41         
      2.02    1.92    2.54           2.24    1.69          
      1.86    2.36    1.55           2.07    1.54          
      1.31    2.48    1.40           2.88    1.76          
      1.58    2.65    1.61           2.18    2.27          
      1.80    1.88    1.83           2.63    2.12          
      2.05    1.93    1.43           2.42    2.09          
      2.04    2.14    2.24           2.54    2.04         
      1.70               2.20        
      1.74          
      2.07          
      _____  _______ _______ _______ ______ 
x-   =  1.882   2.253   1.910       2.316   1.880  
ni  = 13      10         11            10      10  

s2 = 0.0670  .0947   .1395   .0865   .0780 

 

9.2 Trends in abundance 

 For at least the larger vertebrates, there are few occasions when data on the full 
course of the growth of a population are available. Usually only a relatively short 
segment of the record of population size is at hand. A conceptual model of the overall 
possible course of events is nonetheless useful for interpreting these shorter segments of 
data. Ecology textbooks describe long-term population growth by the logistic model. 
Further details of this model appear in the chapter on population models, but the general 
shape is illustrated by the trend of an elephant seal population (Fig. 9.2). The logistic 
curve is characterized by rapid initial population growth that slows down over time, with 
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the curve ultimately approaching an asymptotic level (often denoted as K). The approach 
to an asymptotic value may be erratic with large year-to-year fluctuations. Slowing-down 
of the growth rate usually is associated with resource limitations of one sort or another, 
often food or space. Such restrictions make populations highly susceptible to year-to-year 
weather fluctuations. 

 The logistic curve assumes a constant decline through time of the rate of increase. 
Although data are limited, evidence for large mammals (Eberhardt 1977b, Fowler 1981) 
suggest that a different model may be appropriate, with the rate of population growth 
virtually constant over much of the range, and then slowing down sharply as the 
asymptotic value (K) is approached. A simple exponential growth curve may then be 
adequate to to describe the initial stages of growth. The essential feature for present 
purposes, however, is the overall sigmoid shape of the curve -- concave-upwards in the 
early stages, and concave-downwards as growth slows down. 
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Fig. 9.2. Growth of an elephant seal population (Stewart et al. 1994) with a logistic curve fitted by non-linear least-
squares. Data are number of births tallied on colonies on Ano Nuevo Island and the adjacent mainland. 

 

 If one accepts generality of the sigmoid curve illustrated in Fig. 9.2, then the 
analysis of a shorter series of observations will obviously be influenced by the position of 
the data segment on the overall curve. A basic criterion is simply whether a curve drawn 
through the data segment is concave-upwards (initial growth stages) or concave-
downwards (approaching the asymptotic level). If the early growth segment essentially 
follows an exponential curve, then plotting logarithms of the counts against time should 
yield a straight line. An example appears in Fig. 9.3. 
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Fig. 9.3. Growth curve for muskox (upper panel) with an exponential curve fitted to 
numbers counted and a straight line fitted to logarithms of number counted below Data 
from Spencer and Lensink (1970). 

 
 Many sets of population trend data are much more variable than that of Fig. 9.3, 
and we thus need to consider statistical tests. A simple test for curvilinearity appears in 
Section 1.7. Various monte carlo simulations were conducted by Eberhardt (1992) in an 
attempt to determine whether a segment of population trend data could be demonstrated 
to be above or below the inflection point on a curve like that of Fig. 9.2 (the inflection 
point divides a growth curve into 2 segments; the slope of the curve increases up to the 
inflection point and decreases beyond it). A two-stage test was developed. The observed, 
untransformed, numbers of the trend index are checked for curvilinearity in the first 
stage. If this test is non-significant, then the data are log-transformed and the test again 
applied. The first stage examines data of the form of the left side of Fig. 9.3. The basis 
for the second-stage test is the fact that the exponential curve becomes a straight line 
under log-transformation (lower graph of Fig. 9.3), so should not show a significant 
departure from linearity in the test. However, the right-hand limb of Fig. 9.2 remains 
curved under the log-transform.   

9.3 Testing significance of trend lines 
 
 In exhibiting curves like that of Fig. 9.3, the exponential curve was used. Growth 
of large vertebrates may better be described by a closely related curve, the geometric (see 
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Fig. 1.10 and the accompanying discussion). Either curve can be represented by the 
model of eq.(9.1) by letting λ = ert or λ = (1+r)t, as discussed in Section 1.10, so we use 
the following simple model for a population growing at a constant rate.  
 
                                                                                    Nt = Noλt                                                      (9.1) 

 
where Nt represents abundance at time t, and λ is a measure of the rate of change of the 
population. Taking natural logarithms converts this model to a linear equation, so we 
expect the trend to be a straight line if the index used is the logarithm of observed 
numbers:  
 
                                                                         loge Nt = logeNo + t loge λ                                         (9.2) 

 
We thus tend to plot logarithms of observations of abundance, and to do various kinds of 
linear regression analyses in exploring the data. In the present section, we will examine a 
number of sets of data on actual populations and try to infer something about trends from 
simple regressions. 

To study trend, we fit eq.(9.2) by linear regression methods, rewriting it as y = a 
+bx, where y = loge Nt, x = t, and b = logeλ. For purposes of calculation, t will be used 
here as the sequence of years, 1,2,3,... We are mainly concerned with the slope (b) and 
variance about regression, so that the observed sequence of dates might serve equally 
well, i.e., we could use 1967, 1968, 1969, etc. in regression calculations. However, this 
should not be done in practice due to the prospect of introducing "roundoff" errors in the 
regression calculations when the x-values are sizable numbers (i.e, one should use the 
sequence 1,2,3.. for calculations and later plot data against the actual years, 1967, 1968, 
1969). A key measure of variability is the "regression mean square", or variance about 
regression, often written as MSreg. It can be calculated by fitting the linear regression 
and calculating: 

 
                                          MSreg = {Σ [yt - (a + bt)]2}/(n - 2)                                           (9.3) 

 
In most instances, it will be desirable to check to see whether there is evidence that the 
logarithms of the index data do not appear to change linearly with time, suggesting a 
constant rate of change in the population is not tenable. An easy way to do this is to fit a 
curve to the data, and test for a significant change in the variability around the fitted line. 
The simplest such curve is the "quadratic" or second degree polynomial. We now fit the 
function: 
 

                                                                                      Y = a + bt + bt2                                           (9.4) 

 
and calculate a variance as in eq.(3): 
 
                                                             MSquad =  {Σ [yt - (a + b1t + b2t2)]2}/(n - 3)                 (9.5) 
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In this instance, we use n-3 "degrees of freedom", because another constant (b2) has been 
estimated from the data. Actual fitting of eq. (9.4) is readily done by multiple regression. 
Many computer programs are available to do the fitting, and most of the spreadsheet 
programs will provide such fits. An F-test of significance can be calculated from the F-
ratio: 
 

                                                                    F = 
SSLIN - SSQUAD

 MSquad
                                              (9.6)  

 
where SSLIN = (n-2)MSreg and SSQUAD = (n-3)MSquad, and significance of the F-
ratio is checked in tables of the F-distribution with 1 and n-3 degrees of freedom. These 
procedures are described in more detail in Chapter 1.  
 
 The test of eq.(9.6) can be applied with other alternative curves. For example, a 
third degree polynomial can also be fitted to the data by multiple regression.  The 
equation is: 
 
                                                                      yt = a + b1t + b2t2 + b3t3                                                   (9.7) 

 
Because this is a more flexible curve than eq.(9.4) it will often appear to give a better fit. 
However, once a departure from linearity is established, one really needs more 
information than can be derived from the curve alone in order to assess the situation. 
Estimates from eq.(9.3) for a number of species appear in Fig. 9.4. Cases where eq.(9.6) 
gave statistically significant results are denoted by an asterisk (0.05 level of significance) 
or two asterisks (0.01 level of significance). A very high regression mean (0.250) square 
for elephant seals results from the nonlinearity evident in Fig. 9.2, and that value is not 
shown in Fig. 9.4 because of the clear evidence that a different curve is appropriate. 
 



  9.12 

G
R

IZ
ZL

Y 
B

EA
R

S
SO

A
Y 

SH
EE

P
G

EO
R

G
E 

R
ES

ER
VE

 D
EE

R
PE

A
R

L 
&

 H
ER

M
ES

 M
O

N
K

 S
EA

LS
FF

S 
M

O
N

K
 S

EA
LS

C
R

YS
TA

L 
R

IV
ER

 M
A

N
A

TE
ES

LI
SI

A
N

SK
I M

O
N

K
 S

EA
LS

LA
YS

A
N

 M
O

N
K

 S
EA

LS
SA

N
 M

IG
U

EL
 S

EA
 L

IO
N

S
W

O
O

D
 B

U
FF

A
LO

 N
.P

. B
IS

O
N

B
LU

E 
SP

R
IN

G
S 

M
A

N
A

TE
ES

B
EA

TY
 H

O
R

SE
S

G
R

A
Y 

W
H

A
LE

S
SE

N
EC

A
 D

EE
R

A
LE

 E
LK

FU
R

 S
EA

LS
 (D

EC
R

EA
SI

N
G

)
K

U
R

E 
M

O
N

K
 S

EA
LS

B
R

O
W

N
 B

EA
R

S
LO

N
G

H
O

R
N

 C
A

TT
LE

YE
LL

O
W

ST
O

N
E 

EL
K

R
ED

 D
EE

R
B

IS
O

N
M

U
SK

O
X

SE
R

EN
G

ET
I B

U
FF

A
LO

C
A

LI
FO

R
N

IA
 S

EA
 O

TT
ER

S
G

R
A

Y 
SE

A
LS

C
U

SI
N

O
 D

EE
R

FU
R

 S
EA

LS
 (I

N
C

R
EA

SI
N

G
)

PR
YO

R
 H

O
R

SE
S

0.00
0.01
0.02
0.03

0.04
0.05
0.06
0.07

*
**

*
**

* *
* ** ** ** *

Fig. 9.4. Regression mean square values computed from eq.(9.3) for various species. A 
single asterisk indicates significance at the 0.05 level for the test of eq. (9.6) and a double 
asterisk indicates significance at the 0.01 level. Sources and scientific names appear in 
Table 9.1. 
 
 
9.4 Assessment of trend data 
 

 Fig. 9.4 shows a wide range of regression mean squares, and indicates that the 
evidence of curvilinearity does not seem to be associated with variability. Some of the 
likely sources of differences among species can be identified as follows. The mean 
square for grizzly bears has been assumed to result from the effect of environmental 
conditions on counts. In wet years, bears can find sufficient food without spending much 
time in the open and thus are very difficult to find. In especially dry years, they forage 
widely, and counts tend to be higher in those years. The data used for Fig. 9.4 come from 
the study reported by Knight et al. (1995). Further analysis of the data yields an improved 
index and thus a smaller mean square. The variability in the Soay sheep regression 
evidently results from environmental conditions. Boyd (1974) described the pattern of a 
build-up for several years, followed by heavy mortality under stress from weather and 
nutritional conditions. Only 7 years of data are available for the George Reserve deer 
data set, so it is mainly of interest for the overall observed high rate of increase, and the 
curvature does not seem to have a recognizable pattern. 
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Table 9.1 Sources and nature of data and scientific names for data used in Fig. 9.4 
NAME NATURE OF COUNT SCIENTIFIC NAME SOURCE 
ELEPHANT SEALS Births Mirounga angustirostris Stewart et al. 1994 
GRIZZLY BEARS Females with cubs Ursus horribilis arctos Knight et al. 1995 
SOAY SHEEP Total count Ovis sp. Boyd 1974 
GEORGE RESERVE 
DEER 

Total Odocoileus virginianus McCullough 1983 

 MONK SEALS Beach counts Monachus schauinslani Gilmartin and Eberhardt 1995 
MANATEES Totals Trichechus manatus Eberhardt and O'Shea 1995 
SEA LIONS Pup counts Zalophus californicus DeMaster et al. 1982 
WOOD BUFFALO N.P. 
BISON 

Total population estimate Bison bison Carbyn et al. 1993 

FERAL HORSES Total counts Equus caballus Eberhardt et al. 1982 
GRAY WHALES Population estimates  Eschrichtius robustus Breiwick 1994 
SENECA DEER Reconstructed pop. Odocoileus virginianus Hesselton et al. 1965 
ALE ELK Total counts Cervus elaphus Eberhardt et al. 1996 
FUR SEALS (DEC.) Total counts Callorhinus ursinus 
BROWN BEARS Spawning stream counts Ursus horribilis R. A. Sellers, pers. comm. 
LONGHORN CATTLE Total counts Bos bos Fredin 1984 
YELLOWSTONE ELK Aerial counts  Cervus elaphus Houston 1982 
RED DEER Total counts Cervus elaphus Clutton-Brock et al. 1982 
BISON Total counts Bison bison Fredin 1984 
MUSKOX Total counts Ovibos moschatus Spencer and Lensink 1970 
SERENGETI BUFFALO Population estimates Syncerus caffer Sinclair 1977 
CALIF. SEA OTTERS Total counts Enhydra lutris 
GRAY SEALS Births Halichoerus grypus Bonner 1975 
CUSINO DEER Total Odocoileus virginianus Ozaga and Verme 1982 
FUR SEALS (Inc.) Total counts Callorhinus ursinus Kenyon et al. 1954 
PRYOR HORSES Total counts Equus caballus  Garrott and Taylor 1990 

 
 The monk seal counts at Pearl and Hermes Reef are highly variable because the 

seals occupy a number of small islets spread over a sizable area there and thus are 
difficult to reach and to count. Curvilinearity in the French Frigate Shoals data likely 
result from incomplete tallies in the early years. Evidence of curvilinearity in the 
Lisianski monk seal data (Fig. 9.5) seems to be characteristic of many of the declining 
populations, including bison in Wood Buffalo National Park, and the decreasing fur seal 
population. In many such populations, the causes of decline are unknown or imperfectly 
understood, and likely vary over time, whereas an increasing population often is doing so 
in consequence of ample food and other resources, and thus is likely to exhibit a smooth 
pattern. 
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Fig. 9.5. Logarithms of beach counts of monk seals on Lisianski Island. 
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Somewhat erratic growth patterns may, however, also be evident in increasing 

populations, as is the case with manatees (Fig. 9.6). Very likely some of the fluctuations 
result from conditions under which the counts were made, inasmuch as the counts may be 
made by divers and at times in turbid water (Crystal River).  
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Fig. 9.6. Logarithms of counts of manatees at Crystal River (upper data  set) and Blue 
Springs (lower data points). 

 
 It seems quite possible that data on the right side of Fig. 9.4 may approach the 
circumstance where the fluctuations may largely be associated with the stochastic 
behavior of the underlying birth and death processes. In several instances (muskox and 
bison, fur seals (increasing), and Seneca deer), there is a suggestion of an oscillatory 
pattern in the deviations from linearity. Such oscillations may be a consequence of a 
changing age structure (Keyfitz 1968 gave the theoretical basis) and are suggested by 
simulations of longer sequences of observations (Eberhardt 1981). Detection of such an 
oscillatory pattern is aided by plotting deviations from fitted curves as in Fig. 9.7, which 
shows the pattern for the muskox data of Fig. 9.3. 
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Fig. 9.7. Deviations from the exponential curve fitted to muskox data in Fig. 9.3. 
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9.5 A test for significant deviations from regression using replicate points. 

The test for significant deviations from linearity used in Section 9.3 depends on 
fitting a curve and testing to see whether the improvement in fit might simply be due to 
chance. In some cases, replicate counts may be available, so that one can use the 
variability within years to test significance of deviations from linearity. The test was 
introduced in Section 1.6 using data on monk seals. The advantage here is that we do not 
need to specify an alternative model like the quadratic or cubic (which may very well be 
the wrong model). Some counts of brown bears at spawning streams provide another 
example (Fig. 9.8). In this case, the test consists of making the usual analysis of variance 
to test for significance of the linear regression (Table 9.2), and then using the pooled 
variance of individual observations within years to estimate "pure error" (Draper and 
Smith,1998). The data for calculation of pooled error appear in Table 9.3. A sum of 
squares of deviations from the mean is calculated for the data in each year where there 
are two or more observations and these values are summed to give an overall sum of 
squares, which is subtracted from the "residual" sum of squares in Table 9.2 to yield the 
"lack of fit" sum of squares (i.e., the variability not accounted for by "pure error"). The 
degrees of freedom used to calculate pure error (32) is similarly subtracted from the 
degrees of freedom for residual error to get the degrees of freedom used to calculate a 
mean square for "lack of fit". An F-ratio as shown in Table 9.2 would be used to test 
significance of the lack of fit, but the F-test for regression (1.14) is not significant, so 
there is no real point in going on to test lack of fit, other than to illustrate the method. 
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Fig. 9.8 Logarithms of counts of brown bears on salmon spawning streams. 

Table 9.2 Test of significance for deviations from regression 
      
  df SS MS F 
 Regression 1 0.02415 0.02415 1.14655 
 Residual 39 0.82140 0.02106  
 Total 40 0.84555   
 Lack of fit 32 .4753 0.01485  
 Pure error 7 0.3461 0.04944  
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Another example of variability of individual counts is provided by some gray 
whale data (Breiwick 1994). In this case, replicate counts over time could not be made, as 
the whales are counted as they migrate past a shoreline counting station. However, 
estimates of sampling error are available (Table 9.4) and can be used to assess the mean 
square error obtained in log-linear regression analysis of the data. Because the standard 
errors of individual estimates were calculated in terms of number of whales, a 
transformation needs to be used to change to variability on the logarithmic scale. Using 
the delta method (Section 3.9), we find: 

                            V(ln x) = V(x)(
1
x )2 = Coef. var.2(x) 

Plotting the coefficients of variation against the estimates shows little evidence of 
correlation, so the average coefficient may be a reasonable estimate of overall variability. 
The squared value (0.0027) is substantially smaller than the mean square about 
regression (0.0170) so it seems quite evident that there is a significant departure from 
linearity, even though the quadratic and cubic mean squares are little different from the 
mean square from linear regression (Table 9.4). Inspection of the data (Fig. 9.9) suggests 
the possibility that the population might have reached an equilibrium level. More recent 
counts reinforce this prospect. 
 
Table 9.3 Data for computation of "pure error" for brown bear counts 

    Logarithm Sum of Deg. of 
  Year Bears/hour bears/hr squares freedom 
  3 33.85 3.5219   

  3 64.04 4.1595   
  3 61.88 4.1252   
  3 61.2 4.1141   
  3 55.24 4.0117 0.2819 4 
  4 68.7 4.2297   
  4 59.3 4.0826   
  4 67.9 4.2180   
  4 65.3 4.1790 0.0134 3 
  5 49.4 3.9000   
  5 51.4 3.9396   
  5 61.6 4.1207   
  5 47.4 3.8586   
  5 52.45 3.9599 0.0400 4 
  6 51.88 3.9489   
  7 45.14 3.8098   
  7 62 4.1271   
  7 48.13 3.8739   
  7 49.58 3.9036   
  7 51.21 3.9359 0.0572 4 
  8 62.06 4.1281   
  8 66.59 4.1986   
  8 62.32 4.1323   
  8 66.88 4.2029   
  8 65.03 4.1748   
  8 64.58 4.1679 0.0051 5 
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  9 54.17 3.9921   
  9 67.49 4.2120   
  9 66.67 4.1998   
  9 62.8 4.1400   
  9 61 4.1109   
  9 62.42 4.1339 0.0311 5 
  10 48.68 3.8853   
  10 51.47 3.9410   
  10 58.51 4.0692   
  10 57.65 4.0544   
  10 54.08 3.9905 0.0238 4 
  11 61.12 4.1128   
  11 55.15 4.0101   
  11 68.29 4.2238   
  11 61.52 4.1194 0.0229 3 
  Sums 2386.0800 166.2194 0.4753 32 

 

Table 9.4. Estimate of total numbers of gray whales along with standard errors of 
estimate and coefficients of variation. 

 
YR ESTIMATE S.E. COEF. 

VAR. 
LN ESTIMATE

1 12921 964 0.075 9.4666 
2 12070 594 0.049 9.3985 
3 12597 640 0.051 9.4412 
4 10707 487 0.045 9.2787 
5 9760 524 0.054 9.1860 
6 15099 688 0.046 9.6224 
7 14696 731 0.050 9.5953 
8 12955 659 0.051 9.4692 
9 14520 796 0.055 9.5833 

10 15304 669 0.044 9.6359 
11 16879 1095 0.065 9.7338 
12 13104 629 0.048 9.4807 
13 16364 832 0.051 9.7028 
18 21443 1182 0.055 9.9732 
19 20113 927 0.046 9.9091 
21 20869 913 0.044 9.9460 
26 17674 1029 0.058 9.7798 
27 23109 1262 0.055 10.0480 
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Fig. 9.9 Logarithms of counts of gray whales. Data from Breiwick (1994). 
 
9.6 Studying linearity with the lowess method 
 
 The test for deviations from linearity based on fitting a quadratic curve to the data 
uses the difference between sum of squared deviations about the loglinear regression line 
and that about the quadratic curve, and tests this difference against the regression mean 
square about the quadratic, using an  F-test. Such a test can also be used with the cubic 
equation (or any suitable alternative), with the only change being that of reducing the 
degrees of freedom to adjust for the extra parameters fitted. An alternative is to consider 
curves fit with a "locally weighted regression" technique introduced in Section 1.12. 
Weighted linear regressions are fit at each point on the graph (e.g., if the data span 30 
years, then such regressions are fit at each of the 30 years) by selecting data points in the 
immediate neighborhood of each point on the x-abcissa. The number of points in each 
such neighborhood is usually taken to be about 30% of the total number of observations. 
Weights diminish by a cubic function, so points very near to the selected point get by far 
the most weight. The  individual fitted regression line determines only the y-value for the 
selected abcissal value. In effect, the technique behaves much like a moving average, but 
has various advantages.  
 
 In principle, one might extend the test of linearity to the lowess technique, but the 
fitting procedure is such that there is no way to calculate an effective number of degrees 
of freedom. However, the method can be bootstrapped (Efron and Tibishirani 1993, 
Chapter 7) and may thus be  used to study more complex departures from linearity.  
 
9.7 Confidence limits from bootstrapping 
 
 The usual linear regression model assumes a normal distribution of deviations 
about the regression line as a basis for calculating confidence limits and tests of 
significance. The logarithmic transformation does seem to result in a symmetric 
distribution of deviations from regression, but it may be worthwhile to use bootstrapping 
to obtain confidence limits that do not depend on the assumption of normality.  
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 Efron and Tibishirani (1993) describe two approaches to bootstrapping in 
regression. One depends on fitting the usual regression model to calculate individual 
deviations from regression, and then taking random samples of these deviations with 
replacement (same sample size as the original data) and adding this set of deviations to 
the y-values predicted by the original regression equation to generate a new set of 
"bootstrap data". A regression line is fit to this data and the parameters recorded. Doing 
this, say, 1,000 times provides the basis for calculating confidence limits on the 
parameters. For 95% limits we use the 25th and 975th ordered value of a parameter. The 
original set of x-values is used throughout. This approach thus apparently makes it 
feasible to work with small data sets. A disadvantage is that the method assumes that the 
linear model is exactly true. Also, monte carlo simulations of the type described in 
Section 3.8 indicate that “coverage” of the method based on bootstrapping deviations is 
appreciably less than the expected 95%, being approximately 85-90% for simulations 
using normal errors and n = 10. Until more is known about bootstrapping in regression 
with small samples, the best course appears to be to use ordinary regression for 
confidence limits on samples below n = 10. 
 
 An alternative “bootstrapping pairs” takes n random samples with replacement of 
the x,y pairs and computes new regressions. The disadvantage is that, in small data sets, 
the sample observations may pile up on a few x-values, yielding strange results. The 
advantage is that the method does not assume the linear model holds exactly. The two 
methods were tested on a number of data sets from increasing and decreasing 
populations, and compared with confidence limits obtained from the usual regression 
equation. The approach using deviations gave confidence intervals (Fig. 9.10) that were 
much narrower than the usual 95% regression limits on slope of the loglinear regression 
line. Most of the samples had n > 10, but two feral horse populations had only 5 and 8 
observations, respectively (Table 9.5).   

 
 
Fig. 9.10 Comparison of 95% confidence intervals on the regression slope (b) calculated 
by ordinary regression methods to those obtained from bootstrapping deviations. 
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  Loglinear regressions of population growth data are not likely to conform to the 
assumption of normal distribution of deviations needed for setting confidence intervals 
by the usual regression approach. Consequently, when sample sizes are 10 or larger one 
should consider bootstrapping pairs for confidence intervals. Thus far we have mainly 
used the simple “percentile” intervals. Efron and Tibishirani (1993) recommend a better 
method, the “BCa” method of Section 3.6. The method was tested on 14 data sets, with 
smallish samples (n = 11 to n = 35), and gave confidence interval widths that were 
essentially identical to those produced by the percentile method. Using the improved BCa 
method as standard, it turns out that the regression intervals are appreciably narrower 
than those from bootstrapping pairs (Fig. 9.11).  

Fig. 9.11 Comparison of 95% confidence interval widths on the regression slope (b) 
calculated by ordinary regression methods to those obtained from bootstrapping pairs 
with the BCa corrections of Section 3.6.  
 

When sample sizes are, say, 10-15 or larger, a worthwhile approach is to compute 
confidence limits both by bootstrapping pairs, and by the usual approach (readily 
available in EXCEL). If they agree, then there should be little reason for concern.  Both 
of the bootstrap methods support the notion that regression estimates of population rate 
of change are unbiased. Efron and Tibishirani (1993) indicate that close agreement 
between the mean of bootstrapped data and the value obtained from the original approach 
indicates an unbiased estimate. Table 9.5 shows that the 3 methods give essentially the 
same values for rate of increase.  
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Table 9.5 Slope estimates from log-linear regression compared to those from bootstrap 
samples using deviations and those using x,y pairs. The close agreement indicates 
unbiased estimation (Efron and Tibishirani 1993).  
 

 REGR DEV PAIRS 
SPECIES SLOPE MEAN MEAN 
OTTERS 0.0521 0.0523 0.0524 
GRAY WHALES 0.0257 0.0259 0.0259 
CRYSTAL R 0.0968 0.0971 0.0975 
BLUE SPGS 0.0793 0.0791 0.0793 
SENECA DEER 0.4115 0.4151 0.4138 
MUSKOX 0.1463 0.1461 0.1465 
GRAY SEALS 0.0741 0.0742 0.0743 
BISON 0.2068 0.2068 0.2064 
FUR SEALS 0.0824 0.0825 0.0833 
BEATY HORSES 0.2447 0.2438 0.2438 
LISIANSKI -0.0260 -0.0260 -0.0257 
PRYOR HORSES 0.1854 0.1855 0.1854 
BROWN BEARS 0.0167 0.0165 0.0159 
FUR SEAL DEC -0.0263 -0.0264 -0.0261 
 
9.8 Alternative estimates of rate of population change 
 
 In Chapter 12 two very simple models (Section 12.4) are proposed for  evaluating 
populations from which known numbers of individuals are removed at various times. The 
log-linear approach of the previous sections (eq. 9.2) is not useful in such circumstances, 
so it is worthwhile to consider alternative ways to establish rates of change. These make 
use of ratios of successive observations. We first consider using the methods for data 
without removals, and thus can compare them with the regression approach. The basic 
idea comes from the simple relationship (eq. 9.1): 
 
                    Nt = λNt-1 
 
where λ is the multiplier needed to project a population at time t-1 to time t (we assume 
an interval of one year, with observations taken at the same time each year). If we want to 
estimate λ from a sequence of years, we can consider 3 ratio estimates (Eberhardt 1987) 
where xi represents population size in one year and yi the size in the next year: 
 

The mean of individual ratios                                           λ̂  = 
Σ(yi/xi)

n                                            (9.7)  

Ratio of sums                                                                       λ̂  = 
Σyi
Σxi

                                                    (9.8)  

Regression through the origin                                         λ̂  = 
Σyixi
Σxi2

                                                 (9.9)  

 
 Because the individual observations other than the first and last appear twice in a 
sequence of years, one can get spurious results in statistical analysis of such data 
(Eberhardt 1970). We thus resort to bootstrapping here. Using the data previously used to 
evaluate the regression approach (Table 9.5), 1,000 bootstraps were used with the 
estimates of eqs. (9.7) through (9.9). Bootstrap bias calculations were made, along with 
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comparisons with the rate of change from the regression method (using λ = eb, where b is  
slope of the loglinear regression). All 4 sets of estimates were highly correlated (Table 
9.6).  
 
Table 9.6. Correlations between four methods of estimating rate of increase. 
 

 LOGLINEAR MEAN SUMS REGR 
LOGLINEAR 1    

MEAN 0.992 1   
SUMS 0.983 0.986 1  
REGR 0.957 0.961 0.990 1 

 
 The mean of the individual ratios had the smallest relative bias.  and deviated the 
least from the loglinear regression estimates. Relative bias was calculated  as: 

                    Bias = 
λorig - λboot

λorig
                                               (9.10)  

where λboot is the mean of 1,000 bootstrap estimates and λorig is the estimate from log-
linear regression. The average of absolute values for relative bias was 0.020 for the 
method of means [eq.(9.7)], 0.107 for method of sums [eq.(9.8)], and 0.130 for the 
regression method [eq.(9.9)]. 
 
 Confidence intervals (95%) were also calculated from bootstrap results, but were 
much wider than the regression estimates and poorly correlated with those estimates (Fig. 
9.12). Excluding the Beaty horse data (n = 8), the ratio of confidence intervals (Fig. 9.12) 
was about 3.5 to 1, i.e., confidence intervals from the mean of individual ratios [eq.(9.7)} 
were nearly 4 times wider than those from log-linear regressions. This raises an issue that 
needs further attention. Why should the bootstrapping confidence intervals be so much 
wider than those from linear regression? The answer appears to lie in the fact that 
bootstrapping is based on random samples with replacement of individual   observations. 
In this case, we have to deal with successive pairs of observations in order to get the 
ratios, so the pairs were bootstrapped, and this gives unsatisfactory results, as shown in 
Fig. 9.12. 
 

 
Fig. 9.12. Relationship between confidence interval widths (95%) calculated by log-
linear regression and those from a ratio method [Eq. (9.7)}. 
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Example 9.5  A census using ratio estimation 
 
  An example of ratio estimation in an actual census is provided  by 
studies of the abundance of the sea otter (Enhydra lutris) along  the 
California coast. Sea otters then occupied about 150 miles of the  
California coastline, and are almost always found swimming or resting  
(in kelp beds, usually) just off the shoreline. A number of aerial  
censuses were conducted by employees of the California Department  of 
Fish and Game. Since only a fraction of the otters present are  observed 
in aerial counts, an ingenious use of auxiliary counts  (devised by 
D.J.Miller) was used to correct the aerial counts by  what amounts to 
ratio estimation. On a sample of shoreline areas,  observers on vantage 
points (well above sea level, where possible)  made counts on well-
defined areas. These were then used to correct  aerial counts of the 
same areas.    
 
  In later development of the method, aerial photos were made in 
advance  of the census to map kelp beds. Using the maps, shoreline 
("ground truth")  counters located animals in a well-defined and readily 
visible area,  and made a record of those animals present in the sample 
areas at the  time the aerial observers passed the counting site. The 
aerial observers  also plotted all otters seen on identical maps. As 
soon as a day's flight  was completed, the aerial and ground observers 
went over the maps  together to establish which animals were seen by 
both air and ground  observers, and which animals were not seen from the 
air. Aerial  counts were made over the entire coastline occupied by 
otters, so  the data can be used in a ratio estimate (Sec. 4.12).    

 
 The estimated total otter population is:   

                                                                        
where YR is the estimate of total otter population, and XT is the  total 
aerial count. The ground counts (yi) are summed over the sample  (n) of 
ground-truth areas, and divided by the sum of the aerial counts  (xi) on 
the same areas. If it is assumed that the ground counts are made without 
error (an assumption that needs further checking), then  the data 
conform to the standard conditions for ratio estimation with  the 
exception that XT (the total aerial count)  is subject to sampling 
error. Calculations are otherwise straightforward, and as given in Ch.4. 
Table 9.5 gives data from the 1974 survey.  A total of 897 otters were 
counted from the air, so we estimate the total  population from the 
equation given above as:    

                                                            YR
^   = 332

202  897 = 1474 
and find the squared coefficient of variation to be:    

 

 CV2(YR
^  ) = (1-f)

n   [cyy + cxx - 2cyx] = 1
31  [1.966 + 1.216 - 2(1.4229)] = 0.0109 

 
where we take f = 0, since an accurate value is not available.  However, 
an appreciable segment of the coast was included in the  ground counts, 
so that use of f would be appropriate here, if it could be calculated.    
 
 Confidence limits are readily calculated by computing a standard  error 
as (.0109)1/21474 = 159.89, and using Z05 = 1.96  giving:    

                              YR
^   =  -+  Zo5 s(YT) = 1474  -+  1.96(159.89)  or, 

                                         1172 < YR < 1776 sea otters.     

ˆ Y R =
Σyi

Σxi

XT
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Aerial survey (xi) and ground counts (yi) of sea otters along the California coast.    

 
 .      June 25      June 26       June 27   

 .      xi       yi       xi     yi      xi       yi  
 
         2       4       1       6       1       1     
         1       1       9       10      6      14     
         0       4       0       19      5       7        
        0       6       13      19      1       6      
       37      50      12      8       4       5        
        6       9         5       8       2       8        
        9       10       6       6       2       1       
        3       3         5       9      37     47     
        1       1         0       5       
        8       13      1       1          
        0       8      11     14         
                         14      29         
 _____________________________________ 
       67   109    77      134     58      89   

 
9.9 Criteria for regression fits 
 
 Testing for curvilinearity in regression lines was discussed in some earlier 
sections (Sec. 9.3, Sec. 9.5). When one fits a regression line like those summarized in 
Fig. 9.4, it is important to have other ways to evaluate the fit. Regression mean squares 
provide a useful measure of variability about the line, and can be supplemented by the 
widely-used R2 criterion. For a simple regression line with one independent variable, the 
square root of this quantity gives the well-known correlation coefficient, and R2 is 
perhaps better known when used in the multiple regression analyses that will be 
described in a later section. However, the simple linear regressions serve to illustrate the 
interplay between regression mean square and R2. The R2 criterion is: 

where yi is the independent variable, y
_
   is the mean of the yi and ŷ  is the "predicted" 

value from the regression equation. Often, R2 is described as the proportion of the 
variance in the independent variable "accounted for" by the fitted regression line. The 
two expressions in eq.(9.11) are connected by the basic identity in the analysis of 
variance in regression, i.e., 
                                Σ(yi - y

_
 )2  = Σ(ŷ i - y

_
 )2        +     Σ(yi - ŷ i)2 

                                Total S.S.   = regression S.S. + Residual S.S. 
 
 In eq.(9.11), the left-hand form is that commonly used (Draper and Smith 
1998:138). The equivalent right-hand expression was recommended by Anderson-
Sprecher (1994) because it provides a convenient interpretation of R2 written as: 
 

R2 =
Σ(ˆ y i − y )2

Σ(yi − y )2 = 1−
Σ(yi − ˆ y i )

2

Σ(yi − y )2                               (9.11)
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              R2 = 1 - 
RSS(full)

RSS(reduced)  

 
where RSS(full) denotes the regression sum of squares for the full model and 
RSS(reduced) can be interpreted as the sum of squares for the model reduced to its 

minimal form, i.e., the expected value of y is βo, estimated by y _.  One advantage of this 
expression is that it emphasizes that model comparisons using R2 should be made with 
nested models, i.e., a series of regression equations with two or more independent 
variables so that the number of parameters p = 2,3,4, ... . Another advantage is that  
 

                                        1 -  R2 = 
RSS(full)

RSS(reduced)  

 
states the fraction of variability not accounted for by regression. Because at least 
stochastic fluctuations are always present in trend data, this expression serves as a 
reminder that R2 cannot become unity.  
 
 When R2 is large, it is evident that the regression line does a good job of 
predicting the counts. This does not necessarily demonstrate validity of the index as some 
extraneous factor may be exerting a major influence on the counts. Usually, however, a 
high R2 is reassuring. A key element in demonstrating validity of an index is an 
independent estimate of the trend. Such an estimate may be available from reproductive 
and survival data. Thus if two sources, trend index and reproductive and survival data 
produce much the same estimate of λ, that result is particularly reassuring. 
 
 Confidence intervals on parameters and on predictions from regression lines 
depend on the assumption of a normal distribution of deviations from the regression line 
with constant variance about regression. When population data are being considered, this 
may be an uncertain assumption. It is thus desirable to resort to the bootstrapping 
technique as a check on confidence intervals generated by regression theory, as discussed 
in Section 9.7. If bootstrapping is used, it furnishes an estimate of bias for the estimator 
of concern from the equation (Section 3.2): 

                  bias^  B = θ̂ * (.)  -  t(F̂ )                                  (9.12) 

Here, θ̂ * (.) is the mean of the bootstrap estimates of the parameter of interest (often λ) 
and t(F̂ ) denotes the same parameter estimated from the original data. Results from this 
criterion may thus yield an indication of problems with the trend index.  
 
 How should R2 and the regression mean square be used? An interpretation of R2 
was given earlier as: 
 

          R2 = 1 - 
RSS(full)

RSS(reduced)  

 
Here RSS denotes a regression sum of squares. The numerator pertains to the fitted 
model, while the denominator consists of the variance about the mean of the observations 
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(thus "reduced" to a minimum). Usually the sample size is large enough so that the ratio 
amounts to comparing the variance of the fitted model to that in the data (i.e., the degrees 
of freedom are not different enough to matter much). Hence it is clear that R2 and the 
regression mean square are closely related. The relationship can be examined by plotting 
(Fig. 9.13) R2 and regression mean squares for the data of Fig. 9.4. 
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Fig. 9.13. Relationship between R2 and regression mean square for data used in Fig. 9.4. 
Various sets of points described in text. 
 
The solid points show what seems likely to be the expected relationship between R2 and 
the regression mean square. The cluster at the right top contains  those data sets where 
there is a significant curvature which inflates the regression mean square. The points 
represented by open circles represent cases where there appears to be a pattern in the 
deviations which is quite dramatic in some instances. Plotting deviations from regression, 
as recommended earlier (see Fig. 9.7 and Fig. 9.14), will usually make the non-
randomness of the deviations evident. All of the cases shown here are based on simple 
log-linear regressions. Very likely a detailed investigation of the underlying 
circumstances might turn up significant auxiliary variables. Considering the solid points 
at the left of the figure, it appears that most of the variability is accounted for by the 
simple regression. R2 thus appears most informative in this situation. 
 
 Evaluating the pattern in deviations from regression can be aided by the Durbin-
Watson test (Draper and Smith 1998). This simple test depends on the fact that the 
squared difference between successive deviations will approximate the variance of the 
deviations if the pattern of deviations is random. The test is: 
 

             d = 
Σ (eu - eu-1)2

Σ eu2                                                     (9.13)  

 
where the summation in the numerator runs from u = 2 to n, and that in the denominator 
runs from 1 to n. It can be shown that the ratio, d, has an expected value of 2 under a 
random pattern. Draper and Smith (1998) note that 0 < d < 4, and give tables of 
significant deviations from the expected value of 2 for different sample sizes. Various 
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statistical packages produce the Durbin-Watson test on residuals, but the test is easy to 
compute and thus worth calculating directly once one has the residuals from regression 
(readily available with the spreadsheet regression calculations). Three of the sets of data 
in Fig. 9.13 show significance at the 1% level from the Durbin-Watson test. The pattern 
of deviations for these three species appears in Fig. 9.14, where the correlation of 
successive observations is quite evident.  

26242220181614121086420
-0.3

-0.2

-0.1

0.0

0.1

0.2

YEAR

D
EV

IA
TI

O
N

S

RED DEER

242220181614121086420
-0.6

-0.4

-0.2

0.0

0.2

0.4

YEAR

D
EV

IA
TI

O
N

S

SOAY SHEEP

32302826242220181614121086420
-0.2

-0.1

0.0

0.1

0.2

0.3

YEAR

D
EV

IA
TI

O
N

S

FUR SEALS (DECREASING TREND)

Fig. 9.14 Pattern of deviations from loglinear regression for 3 species. All 3 sets of data 
are significant at the 1% level with the Durbin-Watson test for serial correlation. 
 
 The results above thus suggest several steps in appraising loglinear regressions of 
trend data: 
1) Test the data for curvilinearity. 
2) Compute the regression mean square and R2. 
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3) Examine the pattern of deviations from regression over time, and calculate the Durbin-
Watson test. 
 
 It may be helpful to compare the results with the data of Fig. 9.13. Most of the 
data points there conform to the above steps, but not all. Three of the open circles (Kure 
monk seals, San Miguel sea lions and gray whales) do not fit in, but plotting the residuals 
suggests that the data are quite erratic, and that there may be some other factors involved 
that need to be further investigated. Significant curvilinearity (3 points on the upper right 
of Fig. 9.13, Crystal River manatees, French Frigate monk seals, and George Reserve 
deer) also indicates a need to look further at the data, inasmuch as the curvilinearity may 
well indicate a significant change in trend. Table 9.7 gives the data on species shown in 
Fig. 9.13. The very high R2 values shown by a number of the data sets suggest that the 
variability is mainly a function of stochasticity. Bison, musk oxen, Cusino deer and Pryor 
wild horse populations were essentially counted in their entirely, while the Seneca deer 
population was reconstructed from removals that were known almost completely. 
 
Table 9.7 Data on loglinear regressions used in Fig. 9.13. Data ordered by regression 
mean squares. Population sizes are rough estimates in a number of cases. 
 
SPECIES NUMBERS 0BSNS SLOPE Lambda MSreg R-sq 
GRIZZLY BEARS 400 18 0.039 1.040 0.068 .409 
SOAY SHEEP 1000 20 0.026 1.026 0.062 .295 
GEORGE RESERVE DEER 70 7 0.488 1.629 0.061 .956 
PEARL & HERMES MONK 
SEALS 

150 16 0.050 1.051 0.052 .606 
FFS MONK SEALS 600 22 0.062 1.064 0.048 .882 
CRYSTAL RIVER MANATEES 150 21 0.097 1.102 0.043 .912 
LISIANSKI MONK SEALS 300 35 -0.029 0.971 0.036 .714 
LAYSAN MONK SEALS 300 34 -0.034 0.967 0.028 .812 
SAN MIGUEL SEA LIONS 8000 15 0.064 1.066 0.025 .603 
WOOD BUFFALO N.P. BISON 5000 19 -0.052 0.949 0.021 .849 
BLUE SPRINGS MANATEES 40 19 0.079 1.082 0.021 .92 
BEATY HORSES 400 8 0.245 1.277 0.018 .959 
GRAY WHALES 15000 18 0.026 1.026 0.018 .718 
SENECA DEER 400 11 0.411 1.508 0.017 .992 
ALE ELK 70 11 0.165 1.179 0.015 .956 
FUR SEALS (DECREASING) 180000 24 -0.026 0.974 0.013 .851 
KURE MONK SEALS 100 12 0.026 1.027 0.013 .443 
LONGHORN CATTLE 20 7 0.302 1.353 0.010 .981 
YELLOWSTONE ELK 7000 8 0.191 1.210 0.009 .964 
RED DEER 1600 22 -0.010 0.990 0.008 .354 
BISON 160 14 0.207 1.230 0.008 .99 
MUSKOX 120 15 0.146 1.157 0.004 .991 
SERENGETI BUFFALO 50000 11 0.064 1.066 0.003 .969 
CALIFORNIA SEA OTTERS 1600 13 0.052 1.054 0.003 .94 
GRAY SEALS 1200 16 0.069 1.072 0.003 .975 
CUSINO DEER 80 5 0.370 1.448 0.002 .995 
FUR SEALS (INCREASING) 130000 12 0.082 1.085 0.002 .984 
PRYOR HORSES 120 5 0.185 1.204 0.000 .99 
9.10 Using auxiliary variables with trend data 
 
 In some cases, the use of auxiliary variables may serve to reduce the regression 
mean square, i.e., we add independent variables other than time and use a multiple 
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regression equation. One such model was used to study trends in manatee numbers by 
Garrott et al. (1994,1995). They represented the expected number of manatees counted at 
any given site under average conditions at time t as M(t), and assumed M(t) remains 
constant over the annual counting period (given average conditions) and denoted it as Mi 
for the ith year. Mi is assumed to be proportional to the true population level. C[t,X(t)] 
then represents the expected number of manatees counted at time t, given conditions X(t), 
where X(t) is a vector of covariate values prevailing at time t, leading to the model: 
 
           C[t,X(t)] = Mi R[t,X(t)]                                                    (9.14) 
 
where the function R( ) is a rate function that takes the value unity when conditions are 
average. Under good counting conditions R( ) > 1 and under poor conditions R( ) < 1. If 
the rate function is assumed to be of the form  
 
           R[t,X(t)] = exp[x(t)'β]  
 
where x(t) is the vector of covariates and β is a vector of regression parameters, then 
taking logarithms (base e) gives: 
 
       ln C[t,X(t)] = ln Mi + x(t)'β  
 
One can then use multiple regression to study the effect of various covariates (auxiliary 
variables). The general formulation is widely used in survival studies as "Cox's 
proportional hazards model" (Cox 1972) and has also been used to take auxiliary 
variables into account in population estimation procedures. The main interest in eq.(9.14) 
is for studying population trend. In order to do so, Mi needs to be expressed as a function 
of time, usually as Mi = N0λt so that the final equation becomes: 
 
                                                                     ln C(t) = ln N0 + t ln λ + x(t)'β                                           (9.15) 
 
Compare this with eq.(9.1) and (9.2). The underlying model is thus assumed to have the 
form: 
 
                                 y = βo + β1x1 + β2x2 + β3x3 + . . . + βp-1xp-1                            (9.16) 
 
where y = ln C(t), x1 = t, βo = ln No, β1 = ln λ, x2 .... xp-1 are the auxiliary variables, and there 
are p parameters to fit with multiple regression.  
 
 The use of regression mean square, R2 and a bias criterion were discussed in Sec. 
9.9. Two further criteria have been used for evaluation of models, Mallow's Cp for 
multiple regression models (Draper and Smith 1981) and Akaike's Information Criterion 
(AIC) for models where likelihood ratio tests are appropriate (Lebreton et al. 1992, 
Burnham and Anderson 1996). The Cp statistic is calculated as (Draper and Smith 
1998:332): 
 
                                                                    Cp = RSSp/s2 - (n-2p)                                                       (9.17) 
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where RSSp is the residual sum of squares in a multiple regression model based on p 
parameters, n is the number of observations and s2 is the residual mean square from the 
equation with the largest number of parameters in the set of equations evaluated. The 
method thus depends on having a range of auxiliary variables available for study and 
essentially assumes that this set of variables includes those involved in the "true" 
underlying regression model. Draper and Smith (1998:331) suggested plotting residual 
mean squares against the number of parameters (p) for a sequence of regression models 
as a way to estimate an asymptotic value that may approach the "true" value σ2, which is 
then used as s2 in eq.(9.17). They noted that large samples and a sizable number of 
candidate variables should be available for this approach to be valid.  
 
 Burnham and Anderson (1996) gave the Akaike (AIC) criterion as: AIC = -2(log-
likelihood) + 2p where p is again the number of parameters and the log-likelihood ratio is 
calculated from the maximum likelihood estimates of parameters in two candidate 
models. In theory, the method requires that a "global" set of models be identified and that 
this set contains the "true" model according to Burnham and Anderson (1996). A series 
of applications of AIC for survival analysis was provided by Lebreton et al.(1992) and 
Burnham and Anderson (1996) provided a further example. Because regression models 
are used here for analysis of indices, the Cp statistic seems useful. Burnham and 
Anderson (1996) discuss the analogous features of AIC and Cp. Much more detail is 
available in the book by Burnham and Anderson (1998) where it is claimed that the set of 
models considered does not need to include the “true” model. 
 
Example 9.6 Trend indices with auxiliary variables. 

 
 Two examples of trend indices of the use of auxiliary data 
illustrate the approach of the previous section. One uses the data on 
manatees studied by Garrott et al. (1994, 1995). The other considers 
data on the Yellowstone grizzly bear population. Background data for 
both species appear in the Case Histories. 
 
 Garrott et  a. (1994, 1995) evaluated a sizable number of 
potential auxiliary variables, but it appears that year and DD10 
(cumulative heating days summed for 10 days previous to the aerial 
counts of manatees in warm-water refugia) may serve as well as larger 
sets of temperature variables (Eberhardt, Garrott and Becker1999). The 
model assumed for the study was the "proportional hazards" model of 
eq.(9.15), fitted by multiple regression [eq.(9.16)]. R2 was about 0.60 
for several versions of the overall multiple regression analyses. A 
difficulty with the results is that the estimated rate of growth of the 
manatee population exceeded that believed likely (Eberhardt, Garrott and 
Becker 1999), and estimated from reproductive and survival data 
(Eberhardt and O'Shea 1995). An alternative approach used regression of 
repeated counts within years on DD10 for a covariance adjustment 
(Snedecor and Cochran 1967), as detailed by (Eberhardt, Garrott and 
Becker 1999).  
 
 The alternative approach suggested that the population remained 
relatively constant over recent years, in accord with the conclusion of 
Eberhardt and O.Shea (1995). Plotting deviations from the multiple 
regression fit (Fig. 9.15) suggests that some factor not accounted for 
in the model may have influenced the trend. As a check on the use of 
ordinary multiple regression, a nonparametric bootstrapping study was 
conducted. There were 103 data points in the manatee data set. These 
were randomly sampled by taking n = 103 random samples with replacement 
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and calculating a multiple regression on each such sample. Doing this 
2,000 times yielded estimates and percentile confidence limits 
essentially the same as those given by ordinary multiple regression. The 
usual regression program gave an estimate of 0.0958 for the regression 
slope with a 95% confidence interval of 0.074 to 0.118 while 
bootstrapping produced a mean estimate of 0.0953 with 95% confidence 

interval of 0.076 to 0.115. The bias estimate of eq.(9.12) is thus bias
^

 
B = 0.953- 0.0958 = - 0.0005, so there is no evidence from the 
bootstrapping about problems with the regression approach. 
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Fig. 9.15 Deviations from a multiple regression model fitted to manatee data. 
 
 

 The Yellowstone grizzly bear data  yielded higher values of R2 and 
used 3 auxiliary variables: year, frequency of sighting of given family 
groups, and April snow depths in the previous year. The index variable 
was counts of "distinct families", i.e., of females with cubs-of-the-
year seen in the summer (Knight, Blanchard and Eberhardt 1995). The 
model thus was: 
 

       ln(count)=βo+β1(year)+β2(frequency)+β3(snowpack)                    (9.18) 
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Fig. 9.16. Observed (solid points) and predicted values (open circles) of 
logarithms of counts of "distinct families" of grizzly bears in Yellowstone 
National Park and environs. Aberrent 1985 value is circled. 
 

 This model yielded an R2 of 0.75 using data from 1976 to 1997. 
Comparison of values calculated from the regression equation and 
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observed counts (Fig. 9.16) suggests that the observed value in 1985 was 
somehow aberrant. Without this value, R2 = 0.85.  A variety of 
additional variables were examined in multiple regressions, including 
squared terms for year and frequency of sighting as used in the manatee 
studies of Garrott et al. (1994, 1995). None of these additional 
variables appeared to provide useful fits. Mallow's Cp [eq.(9.17)] was 

calculated (Table 9.8) by plotting s2  against number of variables 
included in the regression as recommended by Draper and Smith 
(1998:331). This suggested a value for s2 (0.03) from the trend of 
calculated regression mean squares. Table 9.8 also includes 1 - R2 as a 
measure of the proportion of variance not accounted for by the 
regression lines. The three measures show essentially the same trend 
with the number of parameters estimated (p). Another reassuring aspect 
of the revised index is that there is now little evidence of 
curvilinearity in the residuals (Fig.9.17) in contrast with an earlier 
index calculation using only year and frequency of capture (Eberhardt, 
Garrott and Becker 1999). There were no significant correlations between 
the independent variables.  

 
Table 9.8. Variation in three measures of regression model adequacy with 
increasing number of parameters (p) included in the model. Data for a 
Yellowstone grizzly bear trend index fitted to models of the general form of 
eq.(9.18). 
 
 p  s2  1 - R2  Cp 
 
 2  0.053  0.36  15.6 
 3  0.039  0.25  7.6 
 4  0.039  0.23  7.2  
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Fig. 9.17. Deviations from regression for the grizzly bear data of Fig. 9.16. 
 

 Bootstrapping was used to check the multiple regression 
calculations, with essentially the same results as for the manatee data. 
The year coefficient was 0.0287 with a 95% confidence interval of 0.017 
to 0.040, while the mean of the bootstrap calculations (2,000 
replications) was 0.0291, with 95% confidence interval of 0.018 to 
0.040. The bias estimate of eq.(9.12) is thus 0.0291- 0.0287 = 0.0004, 
so there is again no evidence from bootstrapping of problems with the 
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regression approach. As with the manatee data, the bootstrap frequency 
distribution was symmetric about the estimate.  
 

Example 9.7 An alternative approach to index models. 
 
 A different prospect for assessing trend data can be illustrated 
by using data on wolves and moose from Isle Royale (Peterson 1995), and 
a difference equation model used by Eberhardt (1998). The model is: 

 

 Vt = [1 + r1] Vt-1 - [
r1
Kz ]Vt-1z+1  - cHt-1                                   (9.19) 

                                  
Where Vt denotes ungulate prey abundance at time t, and Ht-1 denotes 
predator abundance the previous year, K is the asymptotic population 
level of prey, z is a constant for the generalized logistic equation 
(Eberhardt 1987), r1 is the maximum rate of increase of prey, and c is 
the predation rate (prey taken per wolf per year). The above model can 
readily be fitted by multiple regression, giving the results of Fig. 
9.18. DelGiudice et al. (1997) indicated that the moose population on 
Isle Royale was importantly affected by an epizootic of the winter tick 
(Dermacentor albipictus) in 1989, so only the data series through 1988 
is used here. R2 for the regression fit is 0.91, suggesting a good fit. 
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Fig. 9.18. Fit (solid line) of eq. (9.19) to observed data on moose (solid points) 
and wolves (broken line) on Isle Royale.  
 

 Bootstrapping was again applied to try to check validity of the 
approach. However, the structure of the model forces use of 
bootstrapping the deviations in which deviations from the fitted model 
are randomly sampled with replacement, attached to the model fitted to 
the original data, and refitted. This was done 2,000 times. Using 
bootstrapping pairs here poses problems, because the model is fit to 
observations taken sequentially. Results of the bootstrapping study 
appear to support the model, giving mean values for the 3 coefficients 
close to those from the original fitting. The original fit estimated λ = 
1 + r1 as 1.309, and bootstrapping gave 1.314. The second coefficient in 
the model was -0.00126 from the original data while bootstrapping 
yielded an average of -0.0013. The third coefficient (c) was -7.626 in 
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the original fit, while bootstrap data averaged -7.651. Frequency 
distributions of the bootstrapped data gave wider 95% confidence 
intervals than might be desired. Those for λ were about 1.19 to 1.44, 
and the interval for the moose kill per wolf (c) was -3.78 to -11.80. 
The interval on R2 was somewhat more satisfactory, being 0.88 - 0.96. 
The Durbin-Watson test on residuals was 2.01, indicating virtually no 
deviation from randomness. A plot of the deviations (Fig. 9.19) does, 
however, emphasize the variability evident in the fit to the later years 
evident in Fig. 9.18. 
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Fig. 9.19 Residuals from the multiple regression fit of eq.(9.19) to Isle Royale 
moose and wolf data. 
 

One might thus be inclined to suppose that the model of eq. (9.19) may 
give a useful representation of the data. Unfortunately, the 
bootstrapping exercise may be of uncertain utility here, inasmuch as 
Efron and Tibshirani (1993) point out that results of bootstrapping of 
deviations depend on the assumption that the underlying model is 
correct, and this may not be true here. One problem is that the model 
may induce correlations, by virtue of the fact that all but one of the 
observations appears both in the dependent variable (Vt), and in the 
first independent variable (Vt-1).   
 
 The same kind of problem exists in other analyses of the data, but 
arises in a different way. Mech et al. (1987) used linear regression to 
relate snow accumulation to moose abundance on Isle Royale. Their 
results were critiqued by Messier (1991), followed by a response by 
McRoberts et al. (1995). The data were again studied by Post and 
Stenseth (1998). The difficulty is that these analyses depend on the 
ratio of successive population sizes (see, for example, eq.(1) and (2) 
of Post and Stenseth, 1998). Using such a ratio can induce correlations, 
as was pointed out by Watt (1964,1968) and further illustrated by 
Eberhardt (1970). Consequently, analyses should somehow use only the 
current observations as the dependent variable, and should not include 
the population index as an independent variable in the regressions. 
Further study is thus needed to determine just how to proceed. Mech et 
al. (1987) show various correlations between reproductive parameters and 
snow depth, so the question is not one of whether winter conditions have 
an effect, but is rather one of the impact on population trend. 
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9.11 Catch-effort methods 
 
 The catch-effort methods have been developed as a way to use information gained in the course of 
exploiting a population. By far the main use has been in connection with commercial fisheries. The 
methods have had very little use in appraising either sports fishing or hunting, although presumably 
suitable data has been increasingly available from surveys of hunting and fishing. Very much the same 
techniques are also encountered under the title of "removal methods", mostly in situations where animals 
are killed by traps, or removed from the study area for some reason.  
 
 Use of catch-effort methods in studies of exploited populations depends on the prospect for 
obtaining large volumes of data in return for a relatively small investment of research or management 
funds. Complications are, however, introduced by the nature of commercial operations. Times and places 
of sampling are largely not controlled by the investigators (which has led to increasing use of research 
vessels that can be operated in specified patterns). The exploitation is usually continuous within the 
seasons set by regulations, but the amount of effort may vary substantially in time, and may also be 
correlated with past success and local population densities. These and other difficulties have led research 
workers to incorporate tagging programs with catch-effort studies. Such tagging programs are almost 
always of the "single-recovery" type inasmuch as there is no prospect of releasing tagged individuals 
caught in large scale commercial operations.  
 
 In many fisheries situations, there may be more emphasis on estimating rates of exploitation than 
on population size. For the most part, exploitation rate is measured by estimating survival rates, and this 
almost always brings in the complications involved in separating fishing and non-fishing mortality rates.  
 
 A serious problem in using catch-effort methods is that the "catchability" may change as 
exploitation continues. One obvious prospect is that the vulnerability of several age-classes to exploitation 
may differ. As the more vulnerable age-groups are removed, catchability will appear to decrease. Normally 
such an effect can be studied by examining data pertaining to different age groups separately.  
 
 In sports hunting there may be two facets of changes in catchability. One is the higher 
vulnerability of younger animals, which leads to an apparent decrease in catchability as the season 
progresses. The other is that heavy hunting effort usually occurs early in the season. In some situations this 
may mean that hunters tend to interfere with each other and thus reduce the effective catchability early in 
the season. An additional factor may be that inexperienced hunters tend to give up after a few days; in 
combination these two factors increase catchability as the season goes on. This plus decreases in 
vulnerability could make for marked changes in time. However, there are also circumstances, such as deer-
hunting in heavy cover, where the higher levels of effort may actually be  more efficient in finding and 
harvesting the available animals.  
 
 Apparent changes in catchability may also be due to other circumstances. With relatively short 
seasons and high effort, sports hunting studies may be conducted as though the population were "closed" to 
other losses with the exception of "crippling" loss whereby animals are killed but not recovered. For the 
most part, such losses tend to be proportional to the recovered kill so that the recorded catch per unit of 
effort is less than actual, and the population size is underestimated. In any case, the effects of changes in 
catchability and other uncertainties have largely limited application of catch-effort methods to commercial 
fisheries. The approach should, however, be considered as a potential index method in other situations, so 
that the main features are discussed here.  
 
9.12 Models for catch-effort data 
 
 The basic model for catch-effort studies is one developed by Leslie and Davis (1939) for animal 
trapping studies and by DeLury (1947, 1951) for fisheries work, and is thus sometimes called the Leslie-
DeLury model. Work by Moran (1951), Zippin (1956), Ricker (1958), Chapman (1954), and Hayne (1949) 
has led to their names also being attached to various versions of the equations.  
 
 The population is assumed to be closed to all losses other than the source under study, and to any 
form of recruitment. One simple and useful way of approaching the method is to visualize random sweeps 
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of a net through a fixed unit of volume in some large region containing N animals. If the sweeps are of 
fixed size and are randomly executed, then the prospect that an individual animal is caught in one sweep 
can be regarded as a binomial-type situation, with the probability of capture (P) depending on the fraction 
of the total volume swept by the net. It is assumed, of course, that the animals are unable to escape the net 
and that the sweeps all constitute the same fraction of the total volume. If the sweeps are randomly located, 
there is no need to assume that the animals are distributed in any particular fashion -- the probability that 
any given individual is caught does not depend on position of the others if the sweep is done "at random". 
Such an argument does, of course, have to encompass the very unlikely prospect that all of the animals 
present could be accomodated in one sweep. 
 
 Assuming that the sweeping is done at random, we can determine the probability that a given 
individual is caught on the ith trial very simply as P(1-P)i-1, that is, the animal escapes i-1 sweeps, each 
with probability (1-P) and is caught (with probability P) on the ith trial. Again this pertains only to the fate 
of a particular individual. If, however, it is postulated that the chance that any one individual is caught does 
not depend on the fate of the other individuals, then the expected value of the total catch, Ci, in the ith 
sweep can be written as: 
                                                          E(Ci) = NP(1-P)i-1                                            (9.20) 
and the equation can be converted to a model relating number of captures in each sampling unit (sweep of 
the net) to the accumulated units, i.e.: 
                                               log Ci = log(NP) + (i-1)log(1-P)                               (9.21) 
and this equation can be fitted to data by ordinary regression methods. This is the form in which the 
equation has been used to describe "removal" trapping.  
 
 DeLury used a "catchability coefficient", k, rather than P, and considered results in terms of the 
catch per unit of effort, rather than as catch per sweep of a single net, as above. This is a change 
necessitated by the continuous nature of a commercial fishery, in which there may be a large number of 
nets or other fishing "gear" in use simultaneously, and in which the records may be in terms of summaries 
for fixed lengths of time. It is thus necessary to assume that the various units of effort (which may be, for 
example, several vessels fishing for a week) are independent (i.e., vessels do not interfere with each other's 
success) and write the relationship as: 
                                            Ct = kN(1-k)Et 
where Et represents the cumulated units of effort up to the time when measurement of Ct began; that is, Et 
is made as nearly analogous to (i-1) in eq.(9.6) as possible. Also, when k is small and Et is large, the 
equation can accurately be approximated by:  
                                                                  Ct = kNe-kEt                                              (9.22) 
and written in logarithmic form as: 
                                                         log Ct = log(kN) - kEt                                       (9.23) 
which can be fitted by simple linear regression of logarithms of catch per unit of effort on cumulative 
effort. It should be noted that the same regression fit can be used for eq.(9.21), with the main difference 
being in how one interprets the regression slope. In the present equation, the slope estimates k, the 
catchability coefficient directly, while in eq.(9.21) it estimates log(1-P). Of course, if P is small (as it will 
be when large populations are involved) there may be no practical difference, since log(1-P) is susceptible 
to series expansion in which the main term is -P. Seber(1982:302-303) calls eq.(9.21) Ricker's method, and 
eq.(9.23) DeLury's regression model.  
 
 A serious theoretical limitation on eq.(9.20) is that the successive Ci are by no means independent, 
a fact emphasized by Moran(1951). If the capture of any individual animal is assumed to be independent of 
that of any other individual, then a binomial model for the capture of X out of N individuals can be used: 

Pr[capturing X individuals in one trial]  =  (
N
x  ) Px (1 - P)N-x 

and the model can be extended to cover n trials in which each of Ci individuals are caught. Estimating 
equations were obtained by Moran(1951) and various approximate solutions and methods for obtaining 
sample size and so on were obtained for these "removal" methods by Zippin (1956,1958).  
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 Another way to approach the problem of non-independence of successive catches is to consider 
each such catch in terms of a "conditional" model. If the probability of catching a given individual is 
regarded as k (as in DeLury's development) then on the ith trial the expected catch is that of the binomial 
expectation: 
                                                                          i-1 
                                                    E(Ci) = k[N -  Σ  Cj] 
                                                                          j=1 
where the term in brackets represents the number of individuals surviving in the population up to the time 
of the ith sampling. DeLury generalized this model to represent an average catch per unit of effort, Ct and 
used Kt to represent cumulative removals up to the time period being considered so that: 
                                                           Ct = kN - kKt                                                    (9.24) 
This equation can also be fitted to data by simple linear regression methods. We thus have two elementary 
models, eq.(9.20) and eq.(9.22), that can be applied to data from populations that are "open" only to the 
removal method being used to estimate population size. Applications mostly have to be limited to rather 
short time periods and conditions where some other form of loss quite surely does not apply. In the great 
majority of cases, one has to assume losses from other causes, and often to account for various forms of 
recruitment to the population under exploitation. These problems, plus uncertainty as to the constancy of k, 
the "catchability coefficient", may require special auxiliary studies, often accomplished by tagging a 
number of individuals in the population being studied. Those facing such problems should consult the book 
by Ricker(1975) and the recent fisheries literature.  
 
Example 9.8 Calculations for catch-effort models   
 
 There are a number of ways to estimate variances and confidence  limits 
for the catch-effort models. These are summarized by  Seber (1982: 
Ch.7). Most current usage is based on regression calculations, where the 
models are represented as:   
                            y = a + bx    
 where y is either catch per unit effort (eq.9.21) or log C(t) as  in 
eq.9.23, while x is cumulative kill or cumulative effort.  We then 
recall that simple linear regression can be viewed as  a straight line 
passing through the means of the observations:    

                                                             y -  y-  = b(x -  x- ) 
or,    
                                                    y = (y- - bx- ) + bx = a + bx 

and that b is estimated by:    

                                                        
In both of the equations (9.21 and 9.23) k is estimated by b,  while a 
is either kN or loge(kN). Confidence limits for k  can be calculated 
directly, as in the usual linear regression  calculation for b. However, 
the regression intercept (a) estimates  the product kN, or its 
logarithm, so that an approximation is  required for a variance estimate 
of N, which is estimated from:    

                                                           N̂  = 
a
b  = 

kN
k     

 or by solving for N in:    

                                                        loge (kN) =  y-  - x-  
i.e.,    

                                                     N̂  = 
exp(y- -  bx- )

b   
(students should remember that b will be negative in the present 
situation).    

 

b =
Σ(yi − y )(xi − x )

Σ(xi − x )2
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 Seber (1982:Ch.7) gives an approximate variance estimate  for N 
appropriate for the logarithmic form (eq. 9.21) as:    

                                     
and for eq. 9.23 he gives:    

                                               
 To use these equations in practice, we substitute the "variance  about 
regression" for s2. It will be recalled that this  is estimated as the 
"mean square" of the deviations of the observation  from the regression 
line, i.e.,    

 

The numerator can be rearranged by using a =  y-  - bx- , grouping  terms, 
and then writing out the squared terms:  

   

    Σ[(yi -  y
- ) + b(xi -  x

- )]2 = Σ(yi -  y
- )2 -2bΣ(yi -  y

- )(xi -  x
- ) + b2Σ(xi -  x

- )]2 

 
Substituting the estimated form of b reduces this to:  

   
                                          Σ(yi -  y

- )2 - b2Σ(xi -  x
- )]2 

 
and the two "sums of squares" on the right can be calculated from,  for 
example,    

 
                                      

Variances of a and b are calculated as:   

 
 That for v(b) can be used directly to obtain approximate confidence  
limits on k, as:    

                                         k -+  tn-2[v(b)]1/2 
 
Example 9.9  Variable-effort models 

 
 In the variable-effort models described above, the fishing  mortality 
rate, F, was assumed constant. When this is an  unrealistic assumption, 
an alternative is to consider mortality due to  exploitation to be 
proportional to the effort, so that Fi = kEi  where Ei is the effort in 

the ith time period and k is  a constant "catchability coefficient" (as 
used in eq.9.23 and 9.24).    

 
 In generalizing the model, one may as well also permit time  intervals 
of varying length, so instead of a constant time  period, t, we now use 
intervals ti - ti-1, where i = 1,2,3,...,  and to denotes the beginning 

V[ ˆ N ] = s2 ˆ N 2[
1
n

+{
bx −1

b
}2{

1
Σ(xi − x )2 }]

V( ˆ N ) =
s 2

b2 [
1
n

+
( ˆ N − x )2

Σ(xi − x )2 ]

s 2 =
Σ(yi − a − bxi)

2

n − 2

Σ(yi − y )2 = Σyi
2 −

(Σyi )
2

n

v(b) =
s2

Σ(xi − x )2   and  v(a) =
s2Σxi

2

nΣ(xi − x )2
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of exploitation. Thus where  eq.9.25 contains a term si-1 as the product 
of constant  survival rates through the i-1 previous intervals, it now 
needs to be a product like s1s2...si-1, which would then be replaced  
by:  

  

                                                   si = e-(kEi + X)(ti - ti-1)  
 

and the equivalent of eq. 9.27 becomes:   
 

    kEi = [
kEiN

kEi + X ][exp(-S(Ej + X)(tj - tj-1)][1 -exp{(kEi+X)(ti-ti-1)}] 

 
This new equation is not so readily treated by regression methods. One 
approach  is to consider the ratio Ci+1/Ci, which, after taking 
logarithms (to base e) and rearranging gives a complicated equation that 
can be replaced by an approximate solution by dropping the second 
logarithmic  term and rearranging the result so that a single linear 
regression  equation (y=a+bx) results with:   

                           y =  
1

ti-ti-1   loge [
CiEi+1
Ci+1Ei ] , and a=X, b=k, and x=Ei 

 
 Estimates of the slope (b) and intercept (a) provide approximate values 
of  the unknown quantities X and k. An improved estimate is then 
obtained by  substituting these trial values of X  and k in the second 
logarithmic  term, and then using the entire right-hand side of the 
equation as y  in a new regression calculation. The resulting estimates 
of k and X  can be again substituted and the regression calculated again 
to check  whether the estimates change enough to justify another cycle.  
Readers familiar with the series expansion of e-x will note that  one 
might start with y values as:  
   

                                         y =  
1

ti-ti-1   loge [
CiEi+1[ti+1-ti]

Ci+1Ei[ti+1 -ti-1] ] 

 
to give a somewhat improved first approximation.    

 
 A fault in the above procedure was noted by Chapman(1961), in that the  
successive y values will be correlated, again violating the essential  
assumptions for ordinary linear regression. To see this, one can examine  
the first 3 values of y:    

                                 y1 =  
1

t1-t0   loge 
C1E2
C2E1    

                                 y2 =  
1

t2-t1   loge
C2E3
C3E2   

                                 y3 =  
1

t3-t2   loge 
C3E4
C4E3  

from which we see that successive terms contain common elements,  e.g., 
E2/C2 appears in y1 and again in y2 (inverted).  One way to avoid this 
is to restrict the regression calculations  to every other data point; 
one could thus do two separate regression  calculations and average the 
resulting estimates.    

 
 Evidently the above calculations will be somewhat involved and tedious.  
When effort varies markedly from period to period, an approach like this  
one seems to be the only realistic answer. Readers should note that when  
effort is constant from period to period, the basis for this procedure  
collapses. In fact, other things being equal, the wider the range of  
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effort  encompassed by the study, the more information one gets about  k 
and X. 

 
 

Example 9.10  Catch-effort data  on an "open" population 
 

 Some data on a population of tagged juvenile cottontail rabbits  may be 
used to study the effects of natural mortality (Eberhardt  et al.1963). 
The data apply to the 1955-56 hunting season, and  were selected from 7 
years of similar data as giving the best fit  to a regression line. 
Hence the variance about regression (or correlation)  should not be 
regarded as typical of such data. In the first 3 weeks  of hunting, 32 
tagged individuals were harvested, but the effort  data are not usable, 
since this period encompassed heavy hunting for  pheasants.    

 
 Weeks of      Tagged       Effort     
 season          animals      in                   y                    x  
                      shot          gun-hours      log(C/E)        E(t)           
                         Ci                Et   
        
 4-6                  23           984                 9.151               0  
7-9                   22           1167               2.936                .984  
10-11               13           1042               2.524    2.15 
12-15                9            1059               2.140    9.193   
 

 A total of 230 tagged juvenile rabbits constitute the  pre-season 
population. Regression calculations gave the line:   y = 9.196 -.3213x   

 
One would thus estimate the initial population  size as:   

                                                 
kN
k   = a/b = 9.196/.321 = 99    

If we add in the 32 rabbits killed in the first 3 weeks ("pheasant  
season") this gives 131 rabbits as compared to the 230 tagged  before 
hunting began.    
 
 Turning to eq. 9.28, we see that the intercept and slope now represent  
a more complicated expression:   

                                                  a = log[
FN
F+X(1-exp[-(F+X)] ) ]   

                                                  b = (F+X)t 
 

From this we can estimate: 
 

  
FN
F+X  = 88.92.    

 
 Some other data yield an estimate of the instantaneous  rate of natural 
mortality of 0.089 (calculated on a monthly basis).  Using this rate and 
assuming the above periods to be uniformly  two weeks long, and 4 weeks 
in a month, students should estimate  N. To compare the outcome with the 
initial population (230), assume  4 weeks of natural mortality between 
tagging and the beginning  of "pheasant season" (which was 3 weeks in 
length).    

 
 

9.13 Catch-effort models with non-harvest losses 
 
 Sources of mortality have commonly been divided into two categories, one due to exploitation and 
the other due to other causes, operating concurrently with the harvest, and usually described as "natural" 
mortality. When tagged individuals are included in the analysis it seems best to refer to rates due to 
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exploitation and to "other" causes in order to be able to provide for the additional mortality due to tagging, 
and the possible effects of loss of tags and non-reporting of tags.  
 
 The elementary model can be introduced by considering survival over some fixed period as a 
constant rate, s, and supposing that harvest takes a fixed fraction, f, of the population available during the 
interval. Letting the initial population size be N, we then have the first catch (C1) as: 
                                                                 C1 = f(1-s)N 
which can be interpreted as saying that, of the proportion dying in the period, a fraction (f) are taken by the 
harvest method. The number surviving  up to the next period is just sN (since (1-s)N died in the first 
period), so that:  
                                                                 C2 = f(1-s)sN 
and, since s2N survive to the third period: 
                                                                 C3 = f(1-s)s2N 
and, in general: 
                                                                 Ci = f(1-s)si-1N                                          (9.25)                  
 
 The notion of "competing risks" (see Ricker 1975), or instantaneous rates, leads to defining: 
 
 

where F denotes the rate of exploitation (F for fishing) and X the "other loss" rate. When the other losses 
are assumed due only to natural mortality, the symbol M is commonly used rather than X. Since the rates 
are "instantaneous" and thus are independent of length of the time period, it is necessary to define an 
arbitrary interval length, t, and write equation (9.25) as:  
 

                                                Ci = [
FN

F + X ] e-(F+X)t(i-1) [1 - e-(F+X)t]                 (9.27) 

 
If t is now defined in terms of a "unit of effort" then equation (9.27) serves to replace eq.(9.22) in 
circumstances where the population is "open" to other sources of loss. In effect, units of effort are regarded 
as operating sequentially on the population, so that we have the effect of i time intervals, each of length t 
during which the losses take place. In practice, many units of effort are applied simultaneously to the 
population. The model may nonetheless be satisfactory, but the effect will be one of making estimates of F 
and X differ from year to year or place to place, depending on how the effort is applied (how it is 
distributed in time and space).  
 
 A number of schemes have been devised to estimate the parameters of eq.(9.26) from actual data. 
One of the simplest is to take logarithms (using natural logs) giving: 

                                   log Ci = log[
FN

F+X   {1 - e-(F+X)t}] - (F+X)t(i-1)                     (9.28) 

and letting y = log Ci, a = log[
FN

F+X {1 - e-(F+X)t}], b = (F+X)t, and 

x = i - 1, which gives a simple linear regression model: 
                                                          y = a + bx.  
This can readily be fitted to data on catch per unit effort and time (or cumulative effort). Since t is 
presumably known, the regression slope (b) gives an estimate of F+X. and interest then centers on 
estimating F, and possibly N, from the regression intercept (a).  
 
 When a tagging or marking study is used, N is a known quantity and the regression intercept can 
be written as: 

                                     a = log F + log N + log[
1 - e-(F+X)t

F+X  ]                                 (9.29) 

s = e−(F + x)t      and       f =
F

F + X
                               (9.26)
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so that an estimate of log F can be obtained by subtracting log N and an estimate of the quantity in brackets 
calculated from the slope estimate (b) of (F+X) and t. An immediate problem with estimation from 
eq.(9.28) is that the conditions of such a study do not conform very well to the assumptions required by a 
simple linear regression estimate.  
 
 In many situations, it is unrealistic to regard F as being constant from time unit to time unit, 
because of substantial variations in the effort expended in each time unit. Although grouping of units of 
effort has been used to produce new units of roughly equal size, such a practice is not very satisfactory if 
X, the "other loss" rate, is constant over time.  
 
9.14  Sampling for indices 
 
 The various uncertainties about interpretation of indices, combined with conditions of their use, 
do not make it any less important to conform to good sampling practice in the use of indices. By and large, 
most index methods are applied on rather large and heterogenous areas so there is generally a prospect for 
considerable gains in efficiency (and the concomitant reduction of effort required) through the use of 
standard methods, like stratification. Since indices are usually rather tightly tied to seasonal conditions, a 
sampling design needs to be arranged to permit study of seasonal effects, too.  
 
 Specific sampling methods need to be tailored to each index, and this is best done by writing a 
model of the kind already described but containing parameters relevant to the  major factors that must be 
considered in the particular instance at hand. Where possible, it seems desirable to arrange the design in 
two or more stages. The first stage should be constructed in terms of those factors that are fairly well 
understood, so that the effects of uncertainties about a particular index are most likely to crop up in the 
second (or lower) stage. In nearly all cases, one might expect to do a reasonably efficient job of 
stratification by area and time, and to restrict the effect of other factors on an index to subsampling within 
the strata.  
 
 Stratification very likely will need to be more nearly of the kind generally described as 
"analytical" in view of the hazards of getting area effects entangled with strata. That is, generally one 
would make an individual stratum out of as many contiguous units as possible, and try to avoid having 
scattered units belonging to the same stratum. However, if calibration is attempted, one cannot usually 
have more than a few strata, or costs of the requisite independent density estimates become too high.  
 
9.15 Transformations 
 
 Most of the few statistical analyses of index data done so far have employed transformations. The 
stated purpose of the transformation usually is to attempt to achieve normality. There are, however, other 
requirements for the analysis of data of this kind. One arrangement is: 
 
        (1) additivity 
        (2) constancy of error variance 
        (3) normality of distributions 
        (4) independence of observations.  
 
The usual goal in making a transformation is to carry out an analysis of variance. Thus one might have 
results of, say, roadside counts carried out over several years and in a number of different areas, and wish 
to know if there are statistically significant differences in the underlying population levels between areas 
and among years. Nearly all of the published analyses of index data have been so handled. An example of 
the analysis of variance on index data appears in Example 9.4.  
 
 Securing independence of observations is largely dependent on how the observations are taken. 
Constancy of variance and normality of error distributions are often taken as one feature, while additivity 
implies that the underlying model is linear, that is, of the form: 
                                                           xij = Ai + Bj + eij                                             (9.30) 
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so that an index value in year i and area j depends on an effect due to years (Ai), one due to areas (Bj) and 
a "random error component" (eij) which should be normally distributed with E(eij) = 0 for analysis of 
variance purposes. The usual analysis of variance table gives components associated with the elements of 
eq. (9.30) and uses the estimate of V(eij) as a basis for tests of significance of the "contributions" of year 
and area terms to the total variability.  
 
 Most of the available analyses of ecological data seem to proceed along the lines of seeking a 
transformation that tends to normalize the data, and then assuming that eq.(9.30) is satisfied. This is a 
dangerous course, if the investigator is really interested in sorting out the various effects influencing his 
data. In that case, the essential need is to achieve linearity (additivity) in the model. From the form of 
equations (9.22), and (9.27) it is evident that a logarithmic transformation will often be required. If the true 
relationship of index and density is as postulated in these equations, taking logarithms effectively converts 
them to additive (linear) models like eq.(9.30). If the results are to conform fully with the analysis of 
variance requirements, then one must also assume that an error component is multiplicative, i.e., for a 
roadside count conducted in the same area for a number of years and areas one would write the model as: 
                                                            xij = Bj Dij eij 
so that: 
                                               log xij = log Bj + log Dij + log eij                              (9.31) 
and investigate the prospect that there are area effects on the proportionality coefficient (Bj) as well as 
assessing population differences. If the error component is assumed to be multiplicative, and it is further 
assumed that taking a logarithm converts it to a normal distribution, then those two assumptions imply that 
the original distribution was lognormal in form. However, such assumptions may be somewhat fictitious as 
evidenced, for example, by the previous remark that pellet-group data follow the negative binomial 
distribution reasonably well. However, the difference between negative binomial and lognormal 
distributions may not have much of an effect after log transformations.  
 
 Use of the analysis of variance technique on index data calls for rather more detailed study than is 
possible here. The major point to be made is that blind use of a transformation seems extremely unwise. In 
most practical cases, the experienced investigator really has little interest in some of the tests of 
significance. He will have long since concluded that there are real differences in population density 
between areas, and will largely be concerned with year to year changes on individual areas, and with 
studying the magnitude of differences between areas. He will also want to look for effects due to observer, 
as might be identified in Example 9.3 in logarithmic form (where i pertains to observer and j to area):   
       
                            log Xij = log Bi + 2 log rj + log Dj + log eij  
 
 Analysis of some of the other equations might be considered in similar terms, but, as already 
noted, the usual approach is through regression methods. Regression equations were previously mentioned 
here as tools for estimating some parameter (e.g., population size) in the model, but they can also be 
studied in an analysis of variance format.  
 
 One further aspect of transformations is that investigators tend to be somewhat uncomfortable 
about presenting results of an analysis in terms of the transformed variable. For the roadside count 
example, one may originally have a variable expressed as so many animals seen per mile of driving (or per 
hundred miles, hours of observation, etc.). The logarithmic transformation yields an "unnatural" kind of 
datum. The usual advice is to transform back to the original scale, neglecting the prospect that such a 
transformation will introduce a bias. Sometimes this may be the best procedure, particularly if the results 
are to be used extensively for administrative guidance. However, it should be remembered that we are 
really considering the use of an index and there should not be any special disadvantage to using an index in 
logarithmic units. In fact, the behavior of the index (additivity) may be much more suitable on the 
transformed scale. Consequently, It is often not desirable to transform back to the original scale. Staying in 
the transformed scale is particularly desirable if several indices are combined, as described in the next 
section.  
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9.16  Combining indices 
 
 The problem of combining population indices has not been investigated in any detail in ecological 
studies as yet. Related problems exist in econometrics, but the results obtained there have not been applied 
in ecology as yet. We will assume that several independent indices are available, and that the need is to 
combine them to construct a single, overall index. Independence here means derived from different and 
unrelated sources, and thus refers largely to the sampling methods.  
 
 Part of the problem is that the individual indices will generally have different scales of 
measurement, in consequence of the kinds of information on which they are based. One possible structure 
for an index value is: 
 
                                                      X1i  =  β1Di + e1i                                                    (9.32) 
where Di represents the true density and β1 represents a "scale factor" or a "proportionality constant", 
while e1i represents a random error component. We thus assume that a given index value is proportional to 
the true density, but has associated with it a randomly selected fluctuation, due presumably to a variety of 
influences on the observational process. The usual approach in problems of this type is to assume that 
E(eij) = 0.  
 
 Equation 9.32 can be used to indicate what results when correlation or regression techniques are 
applied to indices. Supposing we have a second index, with structure: 
                                                        X2i =   Di + e2i 
Then an indication of the behavior of the correlation and regression coefficients, assuming large samples, 
can be given as follows: 

                                                E(s
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where  σ
2
D  refers to the true variation in population density over the set of areas being investigated. Then 

the sample correlation coefficient (r) is approximately:  
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so that r approaches unity only if   σ
2
e1  and  σ

2
e2   are nearly zero. Consequently, a very high correlation 

between two indices might be taken to mean that both are nearly directly proportional to true density. 
However, this depends on the indices being obtained from independent sources (otherwise the two indices 
may simply have highly correlated errors), and on the correctness of equation 9.32.  
 
 The regression coefficient (b) is approximately: 
 

                                                            b = 
sx1x2
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β1β2σ D

2

β2
2σD

2 + σe 2
2

)

                                                     (9.34) 
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so that it is necessary for   σ
2
e2  = 0 before the regression coefficient will reflect the true ratio of the two 

coefficients. This is the situation where one index is exactly proportional to true density, and one that is not 
likely to be encountered in practice. It is also the usual condition for regression analysis (i.e., that the 

independent variable be measured without error). If the ratio of  σ
2
D  and  σ

2
e2   is somehow known, then 

the regression coefficient can be estimated without bias. In the usual circumstances, one does not know the 
ratio, and the problem becomes difficult to handle.  
 
 In many cases, the investigator will have at least a rough idea of the sampling effort that went into 
each index. Such information can serve as a source of weights for combining indices -- usually just by 
converting the "sample sizes" to proportions and multiplying the transformed index values by these 
weights. Before doing so, it is necessary to convert the indices to the same scale. It also seems essential to 
have roughly the same spread of values for each index. One simple way to achieve this result is to 
transform the several indices to have about the same mean and variance. If the mean and variance are 
selected as some convenient values, say Z and S2, then the coefficients A and B for the transformation of 
the ith index:  
 
                                                                Zi = BXi  + A 
are obtained by noting that the variance of the transformed index should be equal to the original index 
adjusted by a constant:  

                                                     
Σ(z - z

_
)2

(n-1)  =  S2  = 
B2Σ(x-x

_
)2

(n-1)    

so that:  
                                                                    B = S/s,                                                     (9.35) 

and since   Z = Bx-  + A  we have: 

                                                               A = Z -(S/s)x- .                                              (9.36) 

A new set of coefficients (A,B) has to be calculated for each set of index data. The transformed index 
values are then combined by weights obtained as suggested above:  
                                                 Y = W1z1 + W2z2 +  ...  + Wnzn                               (9.37) 
where there are n indices and the weights (Wi) sum to unity. A transformed value will, of course, be 
obtained for each area and time period under study, so that the y of eq.9.37 might be written as yij to 
pertain to the ith area and jth time period. Then the index values would have to be written as xijk (k for kth 
index), and so on.  
 
 All of the above pertains to a model (eq.9.32) which assumes that the errors are additive. In 
Sec.9.12 it was pointed out that the logarithmic transformation implies that the model really is: 
 
                                                                 Xi =  β Di ei 
and the logarithmic transformation presumably makes it possible to investigate index behavior over a set of 
areas. Combining different indices will then partly be conditioned by the results of the statistical analysis of 
individual indices, and clearly can become quite complicated.  
 
9.17  Converting indices 
 
 It has already been noted here that there are circumstances where an index value is not suitable for 
management purposes. This suggests a need for ways to convert an index to an estimate of actual density -- 
or for "calibration" of an index. If a set of areas exists on which true population density can be estimated, 
then an apparent solution is just to compute the regression of true densities on index values. However, it 
seldom is possible to measure true density without error -- ordinarily some sampling process is involved. 
This then puts us in exactly the same position as led to eq. 9.34, except that it may now be assumed that   
β1 = 1, so we have: 



  9.46 

                                                                  b =
1

β2 +
σe 2

2

β2σ D
2

                           (9.38)  

and a knowledge of the ratio of the two variances is required to obtain an estimate of 1/ β2 for conversion 
or calibration purposes. Some elements of strategy for planning calibration work are evident from the 

above relationship, though, i.e., keep  σ
2
e2   as small as possible and choose the set of population densities 

used to have as wide a range as possible. Very likely these may be conflicting aims, since the choice of low 

densities may tend to increase  σ
2
e2  . 

 
 When the regression relationship can be assumed to go through the origin, and if the variance of y 
increases proportionately with increasing x, then the ratio estimate (cf.Cochran 1977) is known to be 
optimum and unbiased. Using the same model as above, we have: 
                                                       E(Σyi)/E(Σxi) = 1/ β2  
so this estimate is approximately unbiased. In most real-world situations, these are the more likely 
assumptions than those of linear regression, so ratio methods are to be preferred to regressions, here.  
 
 As mentioned before, there are reasons to doubt the accuracy of the usual approximations to 
variance estimates (and hence confidence intervals) arising from the presence of errors in the independent 
variable (X). Very possibly there should be another component of variance in the equations. A related issue 
has to do with the distinction between ratio estimators (total of the Xi assumed known) and double 
sampling (only a sample of the Xi assumed known). With measurement errors in the Xi, one can have an 
observation on Xi on every study unit and still not "know" the total. That is, were a new survey possible, it 
would not give the same total.  
 
 A somewhat pessimistic view of what is known about double sampling with errors in the 
independent variable can be tempered, however, by another look at eq.9.33. As remarked there, the sample 
correlation coefficient (r) approaches unity only if measurement errors in X and Y are nearly zero. Hence 
observing sample correlations on the order of 0.9 or better with index data, gives one some considerable 

encouragement to think that the measurement errors are small, at least in relation to σ
2
D . Hence, there are 

some grounds to suppose that the bias in eq.9.38 may not be unreasonably great, supposing β2 is not very 
small.  
 
 
9.18 Comments on the use of index data 
 
 Although Fig. 9.1 suggests a variety of ways to approach the use of indices, a great deal of 
research may be required before really suitable methodology is available for dealing with indices. Some of 
the problems may be worth mention here. One very important issue is selecting a model for the analysis. 
Using a simple multiplicative model has several advantages. One is the log-transformation which tends to 
"normalize" the data. The second is that it produces a linear relationship with time, if the population is 
changing at a constant rate (e.g., growing exponentially). One very important question is whether 
prospective auxiliary variables do in fact have a multiplicative effect on the index, so that the log transform 
yields a simple linear model. Perhaps an even more important question is whether the actual population is 
changing at a constant rate. 
 
 At present, the main approach to dealing with a situation where a number of variables may be 
involved seems to be to identify any variables that may possibly be relevant (and, of course, that can be 
measured!). Because the underlying relationship may not be linear, a squared term is sometimes introduced 
in the set of variables to be studied. An effort is then made to find out which of the several variables 
considered may be worth keeping in a final model. One might, for example, want to consider 5 candidate 
auxiliary variables. Including squared terms for each, then yields 10 variables. The immediate problem is 
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one of reducing the set to some smaller number of "significant" variables. One approach is to compute all 
possible regressions with each of the candidate variables left out in turn, and with that variable included, 
and to use one or more criteria to see whether inclusion of a given variable is worthwhile. Three such 
criteria are frequently considered, one being the regression mean square, the second R2 [eq.(9.11)] and the 
third Cp [eq.(9.17)}. 
 
 With as many as 10 variables, this approach gets out of hand, insasmuch as there are 2r equations 
to study (210 = 1024). An alternative is to start with an equation containing all 10 variables and use a pre-
determined procedure to work back through the list and to eliminate those variables that do not meet 
certain criteria. A third procedure is stepwise regression, sarting with the "best" variable (most highly 
correlated with the index) and work through the set, adding a new variable if it meets a significance 
criterion, and stopping when there isn't a significant improvement.  
 
 Because a lot of computing is involved, these procedures generally depend on a computer 
program. Different results may be obtained from different procedures, and depending on the order in which 
variables are introduced, and opinions on how to proceed may differ from reference to reference. One 
should always examine (plot) the residuals from regression to see whether they provide any hints as to 
possible improvements.  
 
 The Cp criterion seems to me unlikely to be very useful for index studies. As described by Draper 
and Smith (1998), it may be most useful in situations where there is some reason to believe that most of the 
variables relevant to the process being studied are included in the set to be analyzed. Cp may then serve in 
picking out sets that are somehow "adequate" to describe the process. It is unlikely that one can hope to 
measure most of the variables that influence a population index.  
 
 The likely situation can be suggested for the bear data of Example 9.6. Fig. 9.20 shows the data of 
Fig. 9.4 with the regression mean square of the adjusted bear index [eq. (9.18)] added. The inclusion of 
auxiliary variables has reduced the regression mean square to about 40% of that of the unadjusted index, 
and thus presumably yields a better index of population trend. However, there are a lot of smaller 
regression mean squares in the data set of Fig. 9.4, presumably because these populations were more 
accurately enumerated. Using the delta method to aproximate the variability of the bear population 
(assuming survival rates and population sizes suggested by Eberhardt et al. (1994) and Eberhardt and 
Knight (1996) gives roughly the "true" variability shown at the far right side of the figure. Clearly a good 
deal of the variability in the index is unaccounted for. Sampling or measurement error in determining two 
of the auxiliary variables (frequency of sighting and snow depths) may account for some of the difference, 
but certainly not all. 
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Fig. 9.20. Data of Fig. 9.4 with adjusted bear index and estimates of actual population variability added. 
 
 One may thus be inclined to doubt the utility of Cp in ecological index studies. Because it utilizes 
RSSp, the regression sum of squares, it will likely follow the trend indicated by the regression mean 
square. Also, RSSp for the model with all significant parameters included is the same as RSS(full) of R2. 
Hence, it may be best to use regression mean square and R2 as criteria for studying potential indices by 
multiple regression. One can interpret the resulting regression mean square by comparison to other values 
plotted in Fig. 9.4. It might also be noted that an earlier comment (Sec. 9.9) that "R2 cannot become unity" 
is strictly true, but the very low value of estimated population variability for bears (Fig. 9.20) suggests that 
R2 will become very close to unity when variability in regression mean squares is mainly from 
stochasticity. A number of such examples are present in the data used for Fig. 9.4, as shown in fig. 9.13. 
 
9.19  Exercises. 
 
9.19.1 Plot the data of Example 9.2 and suggest how one might go about trying to determine whether the 
two estimates of b given in the example are different. 
 
9.19.2 Plot the data on Gambel quail from Example 9.3 and the ratio and regression lines. Which of the 
two lines appears to fit the data best? Why? 
 
9.19.3 Conduct the analysis of variance described in Example 9.4 
 
9.19.4 Data for counts of bison and for muskox (Fig. 9.3) are given below. Using natural logarithms of the 
data fit a straight line and the “quadratic” of eq. (9.4) and use the F-test of eq. (9.6) to test for 
curvilinearity. Discuss the difference in results between bison and muskox. Plot the residuals to see if they 
help in explaining the difference.  
 

YEAR NO. OF MUSKOX YEAR NO. OF BISON 
1950 61 1909 37 
1951 76 1910 48 
1952 77 1911 70 
1953 90 1912 85 
1954 100 1913 104 
1955 116 1914 130 
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1956 126 1915 164 
1957 143 1916 194 
1958 181 1917 240 
1959 206 1918 295 
1960 256 1919 367 
1961 293 1920 420 
1962 353 1921 479 
1963 406 1922 554 
1964 467   

 
9.19.5 Using the data on brown bears of Table 9.3 without year 6 (only one point) conduct a one-way 
analysis of variance for differences among years using untransformed data and then using a log-transform. 
Which seems to be the best approach? Why? 
 
9.19.6 Estimate lambda for the gray whale data of Table 9.4 using eqs. (9.7), (9.8), and (9.9). Compare the 
resulting estimates with the rate obtained from log-linear regression on the data. 
 
9.19.7 Calculate the Durbin-Watson test  [eq.(9.13)] on the residuals from log-linear regression from the 
gray whale data of Table 9.4. Report the value of d and comment on its meaning. What is the mathematical 
relationship between the slope and lambda for Table 9.7? 
 
9.19.8 Repeat the calculations for Example 9.5 (sea otter census). Estimate the ratios for each day from 
eqns. (9.7), (9.8), and (9.9) and compare with the ratio estimates obtained by pooling the data from all 3 
days. Do they suggest some differences? How might you test for significant differences between days? 
 
9.19.9 Data for the counts of Yellowstone grizzly family groups (Example 9.6) appear below (note that the 
snowpack data have been “centered”—deviations from the mean are shown).. (1) Compute R2 and s2 for 
loglinear regression on the original counts. (2) Then compute R2 and s2 for the full data set, i.e., using the 
two auxiliary variables along with year. (3) Extend the computations to include t2 (year-squared) as an 
auxiliary variable. Discuss your results. What is the effect of t2?  
 
LNCOUN
T 

YR FREQ SNOPAK 

2.833 1 1.64 7.568
2.565 2 1.5 10.368
2.197 3 1.28 -18.432
2.565 4 1.08 3.868
2.485 5 1.4 1.568
2.639 6 1.58 -4.432
2.398 7 1.62 -9.832
2.565 8 1.2 9.568
2.833 9 2.29 2.868
2.197 10 2 -4.332
3.219 11 3.12 -0.632
2.565 12 1.64 3.568
2.944 13 2.12 -15.732
2.773 14 1.86 -3.132
3.219 15 1.95 8.968
3.178 16 2.65 -4.732
3.135 17 1.65 0.468
2.996 18 1.67 -6.332
2.996 19 1.47 3.268
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2.833 20 1.47 -5.332
3.497 21 1.96 12.668
3.434 22 2.95 8.168

 
 
9.19.10 Do part (2) of Exercise 9.19.9 but use the actual years (1967, 1968, 1969,…) instead of 1,2.,3 and 
compare the results. Some references recommend “centering” the data. That is, instead of using 1967, 
1968, 1969,… find the mean of this column and use the deviations from the mean as the x-variable. Try 
this and compare your results.  
 
9.19.11 Note that (Fig. 9.16) the observed count for 1985 differs considerably from the predicted value.  
Do you think that value should be dropped from the index? Can you justify your answer statistically? 
How? 
 
9.19.12 Compute Cp and AIC for the grizzly bear data using all of the auxiliary variables in the table. To 
compute AIC you need to know that the log-likelihood value for a linear model with normal errors is just 
the usual s2., but calculated with n as divisor rather than n-p. That is, compute the sum-of-squares and 
divide by n. The assumption of normal errors is not strictly defensible statistically, but the log-transform 
seems to result in quite symmetrical distributions from regression given reasonably large samples.  
 
9.19.13 Lobster catch data 
 
 DeLury (1947) gave the following catch data for lobsters:    
 
 Date        C(t)    K(t)    E(t)   
 
 May 23    82       0        0  
        24     75       7        8  
        25     94      13      16  
        26     80      16      19  
        27     83      22      27  
        29     89      25      32  
        30     70      32      40  
        31     58      37      48  
June 1       64      40      53  
          2     55      45      61  
          5     52      50      69  
          6     45      53      76  
          7     45      54      77  
          8     49      55      79  
          9     45      57      85  
        10     48      60      90  
        12     43      62      96   
 
 Using eq.9.23 he estimated k = .008348 and N = 112.34, using  simple linear regression as outlined above. 
From eq.9.24,  he obtained k = .007984 and N = 116.33, also by linear  regression. Students should repeat 
the calculations, and calculate  variances and confidence limits.   
 
9.19.14 Apply the expression for confidence limits given at the end of Example 9.5 to the 2 values of k 
obtaiend in the lobster catch data of Exercise 9.19.3. Report your results. 
 
Exercise 9.19.15 Removal trapping  
 
 Zippin (1956) illustrated removal methods by assuming catches of  165, 101, and 54 animals were caught 
and removed in 3 nights of  trapping. Calculations for eq. 9.21 are then based on the following  data:    
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  i         Ci     yi= loge(Ci)    xi = i-1 
 
 1       165     5.1060            0  
 2       101     4.6151            1   
 3        54      9.9890            2   
 
 Regression calculations will then proceed just as in the  examples above, but we now have b = log(1-p). 
When p is  small, we can represent log(1-p) by -p and the calculations  are essentially those already 
described.  However, in this case, p is clearly not small, so that  eq. 9.21 is appropriate. Students should 
carry out the  regression calculations and compare the estimate of N  obtained by assuming b = p and b = 
log(1-p). Improved  methods of estimation are available (Zippin 1958; Seber  1973,1982:Ch.7) but require 
an iteritive solution or the  use of graphs (given in both references). Variance calculations  are similarly 
complicated, and should be approached through  the references cited.    
 
 Attention to variability is important in designing a study based  on removal trapping, as a substantial 
fraction of the population  must be caught in order to obtain a reasonably precise estimate.  If we let q = 1-
p, then the following equation (Zippin 1956:171)  approximates the variance:    

                                    V[N] = 
N(1-qn)qn

(1 - qn)2 qn-1  

 Students should try this equation for a few values of p, n, and N.  Increasing n (beyond 3) doesn't do much 
to reduce the variance, which  means that p has to be increased (by using more traps). This has a  
considerable practical significance, in that it usually isn't  sensible to run a removal trapping program very 
long, since  immigrants will soon show up, violating the assumption of a closed  population. Tagging some 
animals before the study starts is always a  wise precaution, if feasible.    
 
Exercise 9.19.16  Combining and comparing indices   
 
 In section 9.16 it was suggested that several different indices  might be combined by: (1) transforming the 
individual indices  to a common scale, and (2) weighting the transformed values by  some independent 
measure of their variability. An example was  given by Eberhardt (1960), portions of which are reproduced 
here  to exhibit calculations. Four individual indices were used:  (1) Accidental highway kills (recorded by 
Conservation Department staff.  (2) "Camp kill" (estimates of deer taken on a special "camp" license,  
obtained through a mail survey of hunters).  (3) July deer counts (a roadside tally by Conservation 
Department personnel.   (4) Archery kill (deer taken on a special "bow and arrow" hunting license,  
estimated from an independent mail survey of those hunters).    
 
 An arbitrary transformation to a variance of 9.0 and mean (Zi) of 4.0  was used as given by eqs.9.35 and 
9.36. An example of the calculations  appears in the second table below. Students should check their 
understanding of  the equations by repeating the calculations. The transformed data were  then combined 
into a single index as in eq.4.15, by using a set of weights,  Wi  that summed to unity. One possible choice 
of weights was the sample  sizes for the various indices:   
  
                                                              Average 
                                                              number   
 Index                 Units used               per year        Square root     Weight    
 
 July count       Number of deer seen     5000                  70             .409  
Archery kill    Number of hunters       
                           in samples                       2000                  44.7           .258 
Camp kill          Number of parties           200                  14.1           .081 
                           in samples 
Highway kill   Number of deer          
                           tallied                              1900                  49.6           .252  
                                                                                                             _______ 
                                                                                                             1.0000   
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Transformation of roadside deer counts to standardized  values   
 
                                    Deer seen per 100 hours   
 
   District        1952    1953    1954    1955    1956    1957    1958  
      1                18.4    16.4    29.5      19.3      20.7    17.6     17.1  
      2                29.9    29.4    34.8       29.5    37.0     30.9     40.3  
      3                30.9    35.1    37.1       35.2    39.9    32.8      35.5  
      4                27.8    27.4    42.5       26.5    37.0    30.1      30.5  
      5                49.6    32.8    28.1       30.4    29.8    32.9      35.0  
      6                39.7    11.3    16.6         8.5    19.7    11.5      19.2  
      7                71.4    78.6    77.8       58.2    38.1    49.2      59.7  
      8                20.6    19.1    14.2       14.0    18.9    16.9      24.8 
      9                15.0    12.2    19.2        9.9     16.8    22.1      16.7   
 
                                         Transformed values   
 
       1              7.93     7.54    4.09   8.10    8.38    7.77    7.68 
       2             9.00     4.07   11.12   4.09   11.55   4.36   12.19 
       3             4.36   11.18   11.57   11.20   4.95   4.73   11.26  
       4             9.76     9.68   12.62   9.50    11.55   4.21   4.28 
       5           12.83     4.73     9.82    4.26    4.15   4.75   11.16 
       6           12.08      6.54    7.58    6.00    7.01    6.58    6.92  
       7           18.25    19.65  19.49   15.68   11.76  12.76 15.97 
       8             8.36       6.90    7.11    7.07    8.02    7.64    9.17  
       9             7.27       6.72    6.92    6.27    7.62    8.65    7.60   
 
               Data for transformation                            Check on transformation   
 
s2 =237.315                      n=63                                           s2=8.9991       
 s=15.405                           B=S/s=9.000/15.405=.1947               z=10.0002  
x=29.041                          A=10-.1947(29.041)=4.3457  
 
Several checks on behavior of these weights were used, including:  (1) error mean square in an analysis of 
variance of the index (compared  as coefficients of variation),  (2) mean square deviation from regression 
(against pellet count data),  and,  (3) correlations among the 4 indices.  Since none of these analyses 
provided a measure that would be independent  of the index observations, they were only used to check on 
behavior of  the weights, i.e., to show that the weights were roughly correct.    
 
 Execution of a transformation to the same scale and appropriate  weighting does not provide much 
evidence about validity of the combined  index. In the present example, there were two independent 
measures that  could be used for this purpose. One was the pellet group counts (already  described here), 
and the other a population estimate based on sex  composition, age structure, and kill (harvest) data, 
labelled the  S-A-K method. Correlations between the 3 sources were:  
 
               Combined index   S-A-K        
S-A-K                   .934              --        
Pellet counts      .954             .951      
 
There is thus independent evidence that the index did indeed  provide a good measure of population levels.    
 
 In a Wisconsin study, McCaffrey (1976) introduced another index,  a count of deer trails intersecting 0.4 
km transects. Correlations were:   
 
 .                     Trail index       S-A-K        
  S-A-K                  .94                 --           
Pellet counts       .89                .781     
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It thus seems that this index is also well-correlated with independent  measures of deer population size.    
 
 The question of how one uses a "good" index once it has be analyzed and  shown to be well-correlated 
with direct measures of abundance is one  needing further research. In broad outline, it has been suggested 
here  that, when the direct estimate is available for only portions of the  study area, while the index is 
available for the entire area, then  one might use double sampling (ratio method) to use the index to  arrive 
at an estimate for the entire study area. Presumably predictions  of population levels might be made for 
sub-areas from the same  relationship. These will, however, be quite variable, and just how  confidence 
limits on these predictions might be obtained seems to me  to be an unresolved question as yet. In areas 
where both index and  direct measure are available, it does not seem feasible to use the  index, unless it is 
converted to an estimate on the basis of prior  (not current) experience. The current estimates should, 
however, be  used in checking to see that the index is still "in calibration".    
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10.0 ESTIMATING SURVIVAL

10.1 Introduction                                

There is a considerable variety of ways to estimate survival.  Many o f
the available methods come as by-products of methods designed primarily f o r
measuring population size (Chapter 8), and are thus best discussed i n
reference to that problem.  However, knowledge of survival is su f f i c i en t l y
important to justify specific studies without special reference to d e t e r m i n i n g
population size. Such efforts are usually dependent on some form of ma r k i n g
or tagging.  Since marking is almost always a very expensive and t i m e -
consuming operation, it should, wherever possible, also result in estimates o f
population numbers. However, we will here be concerned mainly w i t h
measuring survival.

A survival rate is necessarily defined for some unit of time, thus:

                       Survival rate =  
N u m b e r  a l i v e  a t  e n d  o f  p e r i o d

 N u m b e r  a l i v e  a t  s t a r t  o f  p e r i o d  

            = proportion surviving the period.

When dealing with populations exploited by hunting or fishing it i s
frequently necessary to consider two components of mortality, one due to t h e
exploitation and the second to all other causes of death ("natural" mor ta l i t y ) .
When the two different forces of mortality exist at the same time, only one c a n
actually result in a given death, so it is customary to speak of "compet ing"
sources of mortality or "competing risks."

If a population is "closed", that is, has no gains or losses f r o m
immigration, births, or emigration, the simplest model for mortality o r
survival is just the binomial distribution.  If N represents initial popu la t ion
size, and p the proportion dying during some interval, then the expected
number of deaths is simply Np, and the probability of various numbers o f
deaths is given by terms of the binomial distribution.  Similarly if f r ac t i ons
can be assigned to exploitation and to natural mortality, then the model
becomes a multinomial distribution.

In practice it is necessary to be cautious in using a simple model.
Mortality seldom operates as a simple random variable as required by t h e
model. In exploitation in particular, there is usually a tendency for e v e n t s
resulting in deaths to come in "bunches", violating the postulate o f
independence. Furthermore, mortality almost always varies seasonally, a n d
exploitation usually is restricted to particular seasons.  Also, when animals a r e
tagged in groups, they are likely to stay clustered to some extent.

Another point is that we rarely know the total population size or t h e
total numbers of deaths, and must estimate survival or mortality through some
sampling process.  In spite of all of this, the binomial model fr e q u e n t l y
provides a useful starting place (but usually not with total population as a
parameter).  Certain special populations do fulfill many of the r e q u i r e m e n t s
for the binomial and multinomial models.  These are normally expe r imen ta l
populations being subjected to, e.g., chemicals to determine lethal effects o f
various dosages ("bioassay").
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The principal methods for estimating survival or mortality may be
categorized as follows:

I . From tagging or marking

A. Multiple recoveries of marked individuals

1. Capture-recapture methods.  As mentioned above, estimates o f
survival or mortality are usually auxiliary to population estimation.  These
methods usually involve a series of captures and releases of individuals.

2. Multiple recoveries of individuals all tagged at the same time. Not a
commonly used technique.

B. Single recovery of a marked individual.  Normally the tag recovery comes
coincident with death of the individual.

1. Recovery effort variable.  For the most part, this pertains t o
exploitation, and the effort expended in hunting or fishing is that cons idered
as devoted to recovery.

2. Constant recovery effort.  Very often this is a necessary, but un tes ted
assumption.  It may be reasonably acceptable where tag recovery depends o n
accidental death of individuals.

a. Exact time of death known.  This is an area not much exp lored
in biological studies, but well known industrially under the heading of " l i fe -
testing", where the survival of interest is that of some manufactured p roduc t
(e.g., light-bulbs).

b. Time of death not known exactly.  This is the category i n t o
which the bulk of methods in current use fall.

II. Other methods

A. Catch-effort methods.  In commercial fisheries studies, much attention h a s
been paid to assessing population size through measuring the rate of c h a n g e
in catch with accumulated effort.  It may also be possible to estimate mor ta l i t y
at the same time.

B. Change-in-ratio methods.  Also known as "dichotomy" or "survey- remova l "
methods, these depend on knowing the magnitude of a removal and o b s e r v i n g
a ratio before and after the removal.  Survival may be concurrently estimated.

C. Catch-curves or kill curves.  The age structure of animals taken in h a r v e s t s
may provide some notion of the year-to-year survival rate. It is usua l l y
necessary to assume constant population size and constant annual survival.

It is perhaps worthwhile to mention life tables here.  In the o r i g i n a l
application, a life table served to record survival information down t h r o u g h
the history of a particular group of individuals or to reflect the current s ta te
of survival rates in a population.  In ecological studies there has been a
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common tendency to arrange the returns from tagging in a life table, and t h i s
has led to some rather dubious calculations.

10.2 A single-recovery model                                                      

If a group of tagged individuals are released together and have a
constant survival rate thereafter, then a fairly simple model suffices a n d
permits various useful estimates.  What happens when the assumption o f
constant survival does not hold is not known in any detail, but some r o u g h
guidance is available. It should be noted that the frequent practice o f
estimating annual survival from tag recoveries may not be im p o r t a n t l y
influenced by seasonal changes in survival, so long as the annual r a t e
remains relatively constant.  The other major use of single-recovery data i s
for relatively short-term periods (usually in seasons of exploitation) w h e r e i n
it may reasonably be assumed that survival is approximately constant.

The most thorough analysis to date of the relevant model is one b y
Chapman and Robson (1960) which actually pertained to catch-curves, but a lso
applies directly to tag recoveries, as pointed out by Paulik (1962).  We w i l l
follow that analysis here.  Let:

No = initial population (number tagged or number alive at the t i m e
analysis starts -- this last assumption may be used to avoid effects of a h i g h e r
early mortality).

 s = constant survival rate (per unit of time)

 λ  = fraction of number currently alive that are caught and reported ( i n
a given time unit).  This may be the product of two constants, one b e i n g
"catchability" and the second, reporting rate. Note that λ  is used e l s e w h e r e
here as a rate of population change, but is used in this case to correspond t o
the paper of Chapman and Robson (1960).

nx  = number of tagged individuals recovered in xth time u n i t .
Confusion in notation can arise here, depending on how time units a r e
numbered. One naturally speaks of the "first" time unit, but it is useful to let x =
0,1,2,..., and to suppose that no represents those individuals who fail to s u r v i v e
through the first time unit. Under the above assumptions and definitions, i t
turns out that the probability of recovering a given individual in the xth t i m e
unit follows a geometric probability distribution:

                                               px = (1-s)sx                                   x = 0,1,2, ....          (10.1)

and the expected numbers of recoveries are:

                                             E(nx) = Noλsx                                 x = 0,1,2,...            (10.2)

This seems intuitively obvious, since if λ represents "catchability" the e n t i r e
population is available in the first year, but only survivors are "at risk" i n
subsequent years.
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The actual recoveries in any particular time unit constitute a b i nom ia l
random variable, with probability given by (10.1) above, so that:

             Pr{nx individuals recovered} = 



No

nx
 (λsx)  nx(1-λsx)No-nx               (10.3)

If one wants to consider the distribution of recoveries over a set of t i m e
periods, then it is possible to consider the conditional distribution as b e i n g
approximately a multinomial distribution.  That is, for a fixed total sample
n = no + n1 + ... + nk , the joint probability distribution
                                    Pr{ no,n1,n2, ... ,nk | n}
is a multinomial with the Pi  corresponding to equation (10.1) above.

Chapman and Robson (1960) have shown that the best estimate for s is:

                                                          s^   = 
T

n+T-1                                                       (10.4)   

w h e r e :
                                    n = no + n1 + n2 + ... + nk
                                    T = n1 + 2n2 + 3n3 + ... +knk
That is, n is just the total recoveries, and n + T is effectively the "total y e a r s
survived" after tagging.  An estimate of the variance is:

                                                        v(s^  ) =  ŝ ( ŝ  - 
T-1

n+T-2)                                     (10.5)   

It is important to note that the method assumes that essentially all t agged
individuals are dead when the analysis starts--a modified formula for pa r t i a l l y
complete recoveries will be described later.

The Chapman-Robson estimator is nearly identical to one generally
attributed to D. Lack, but first studied mathematically by Haldane (1955). It is:

so the two estimators will differ only for small samples.  The variance ob ta ined
by Haldane is (method of maximum likelihood):

a little algebra permits comparison of the two variance estimates:

                           
Chapman-Robson var iance
Lack -Ha ldane  va r i ance   = 

n (n+T-1)
(n-1) (n+T-2)                       (10.8)  

√s
T

n T
=

+
                                                        (10.6)  

v s
s s

n
(√)«

( )
( . )= −1
10 7

2
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which shows that the Lack-Haldane estimate will be a little smaller than t h e
"best" estimate, but not importantly so if the number of recoveries is at a l l
s izable.

A simple way to obtain the Lack-Haldane estimator is to use equa t i on
(10.2) and obtain expected values for n and T as follows:

                                E(n) = E(no) + E(n1) + ... = Noλ (1 + s +s2 + ....)

and summing the infinite geometric series, we have:

                     E(n) = 
Noλ
1-s           E(T) = E(Σxnx) = Noλ(0 + s +2s2 + ....) =  

N s

s
oλ

( )1 2−
If the "mean age at death" is defined as:

                                                                        x
_
   = 

T
n   

then substituting expected values for T and n:

                                                  
E(T)
E ( n )   = 

s
1 -s         and   ŝ   = 

T
n+T                                (10.9)   

Example 10.1 Chapman-Robson survival estimate

As an example of the use of equations (10.4) and (10.5) we
consider some data on band recoveries from adult Canada geese
(Rutherford, 1970:27) banded as adults in the Arkansas Valley of
Colorado in the 1950-51 season.  A total of 344 geese were banded, with
recoveries in subsequent years as follows:

             Year of recovery                 Number of
             following banding               recoveries                                                

x nx
o 4 5
1 2 3
2 1 9
3 1 0
4 7
5 1 2
6 5
7 3
8 3
9 2

1 0 2
1 1 0
1 2 1
1 3 1
1 4 0
1 5 1                                                                             

                                         Total recoveries (n) 1 3 4

                         T=23+2(19)+3(10)+4(7)+5(12) + ... +15(1) = 332
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                                     ŝ   = 
T

n + T - 1    = 
3 3 2

1 3 4 + 3 3 2 - 1    = 0.714

                         v(ŝ  ) =  ŝ( ŝ  - 
T - 1

n + T - 2)   = 
3 3 2
4 6 5 (

3 3 2
4 6 5 - 

3 3 1
4 6 4)   = 0.0004401

so that the standard error of the estimated variance is

(.0004401)1/2 = 0.021 and approximate 95 percent confidence limits on
the survival estimate are given by .714   +   2(0.021) or 0.672 to 0.756.

10.3 Further estimators                                           

One very simple procedure is to consider the fraction no /n, w h i c h
represents the fraction dying in the first time interval and thus estimates a
mortality rate.  Conversely, survival can be estimated as:

                           so' = 1 - 
no
n    = 

n-no
n    = 

n 1  +  n2  +  . . .  +  nk
n o  +  n1  +  n2  +  nk                            (10.10)   

 where nk  represents the oldest group from which any recoveries a r e
obtained (we again assume all tagged individuals are dead before ca lcu la t ions
begin, so no new recoveries can be expected).  The above estimate is a t t r i bu ted
to Heincke (1913) and a minor modification (dropping nk  from t h e
denominator of the right-hand expression) yields an estimator proposed by C.
H. N. Jackson (1939).

The Heincke estimate can readily be treated statistically, inasmuch as,
for a given total number of recoveries (n), the probability that a p a r t i c u l a r
individual is recovered in the first year is just p = l-s so the distribution of t h e
number of first year recoveries (no) is binomial:

                       Pr{no recoveries in 1st year} =  



n

no  (1- s)  no sn-no              (10.11)

so that the expected number is:
                                                          E(no) = n(1 - s)
which gives the estimate of equation (10.10).  The usual binomial estimate of a
variance of a proportion then gives a variance as:

                                                        v(s'o) = 
s(1 - s)

n                                               (10.12)  

The importance of this result arises by comparison with equation (10.7).  T h e
ratio of the two variances is:

                                                            
v(s'o)

v ( ŝ)
   =  

1
1

10 13
− s

                                             ( . )

which amounts to a rather remarkable state of affairs, if one stops to cons ide r
the substantial costs involved in tag and recovery studies.  Supposing a n n u a l
survival to be on the order of 50 per cent, equation (10.13) shows that t h e
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variance obtained from the Heincke method will be about double that ob ta ined
from the preferred methods (Chapman-Robson or Lack-Haldane).  This t h e n
says that choice of the wrong equation amounts effectively to throwing a w a y
half of one's hard earned information, and the older literature abounds w i t h
examples where the Heincke estimate is used when the better estimate i s
ava i lab le .

10.4 Analysis of incomplete data                                                           

In many applications it is necessary to estimate survival from only p a r t
of the data.  Perhaps the most frequent case is when the investigator c a n n o t
afford to wait until nearly all recoveries are back, but must proceed w i t h
results from the early recovery periods.  Calculations depend on an equa t i on
analogous to (10.9) which is:

                                              
T
n     = 

s
1  -  s    - 

(k+1)sk+1

1 -  sk + 1                                           (10.14)    

in which k represents the last recoveries available, and
                                                   n = no + n1 + n2 + ... + nk
                                                   T = n1 + 2n2 + ... + knk
If only two years of recoveries are available k=1, and

                                          
T
n     = 

n1
no  +  n1

    =  
s

1  -  s    - 
2s2

1  -  s2     = 
s

1  +  s  

 and this gives an estimate of s as

                                                                s^   = 
n1
no

                                                       (10.15)   

which is what one might intuitively expect--that recoveries in two success ive
years differ only by s (or this can be obtained by use of equation (10.2)).

If k=2 a somewhat more complicated equation can be obtained f o r
estimating s directly (Robson and Chapman, 1961:188), but for larger values o f
k one must resort to trial and error (iterative) methods or to tables (Robson
and Chapman, 1961).  Hand calculations are not too awkward, and a s t a r t i n g
value can quickly be obtained from equation (10.15).

An estimate of the variance of the estimate is obtained from:

                                       v s n

s s

k s

s

k

k

( *)

( )
( )
( )

( . )=

−
− +

−

−

+

1

1
1

1
1

10 16

2

2 1

1 2

                                           

An examination of equation (10.16) shows that as k becomes large, the t e r m
involving k tends to become very small, so that the equation reduces t o
equation (10.7), as it should.  With these results, the investigator can d e t e r m i n e
approximately what the effect will be of estimating survival from only part o f
the recoveries, as opposed to waiting until all tagged individuals are q u i t e
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surely dead.  If s is not quite small, there may be a substantial difference in t h e
variability between the two situations.  An estimate of the reduction i n
variability resulting from using all of the recoveries can be obtained b y
dividing equation (10.7) by (10.16):

                                                        
v ( ŝ)
v ( s * )  =

.
   1 - 

(k+1)2sk (1 - s)2

(1-sk+1)2                  (10.17)     

Some selected values are as follows:

                                                                   k

s               1                     2 3         4                6            8              10

0.10 0.669 0.927 0.987 0.998 1.0 1.0 1.0
0.20 0.444 0.766 0.918 0.974 0.998 1.0 1.0
0.30 0.290 0.581 0.785 0.900 0.982 0.997 1.0
0.50 0.111 0.265 0.431 0.584 0.806 0.921 0.970
0.70 0.031 0.081 0.145 0.219 0.384 0.544 0.680
0.90 0.003 0.007 0.014 0.022 0.043 0.071 0.104

Inspection of the above table shows the advantage of basing survival est imates
on as many periods of recovery as possible.

Example 10.2 Analysis of incomplete data

For an example of "segment" calculations (Eq. 10.14), we again use
Rutherford's data, and suppose that only the first 4 classes are
available for estimation.  Then:

                                                       n = 45+23+19+10=97

                                                       T = 23+2(19)+3(10)=91

                                                           x
_

   = 
T
n   = 

9 1
9 7   = 0.9381

and we enter the tables given by Robson and Chapman (1961) and
Seber (1982:584). In the column corresponding to k = 3 (4 classes) and
find 0.938 to correspond to s = 0.62. A convenient alternative is to use
SOLVER in EXCEL. A variance estimate (Eq. 10.16) is:

                                   v(ŝ  ) = 

1
9 7

1

0.62(0 .38)2 -
16 (0 .62 )2

( 1 - ( 0 . 6 2 ) 4 )2

    = 0.003816

which is much larger than the variance for the complete set of data
(0.00044).

10.5 Testing assumptions                                             

The assumption of constant survival and recovery rates is one likely t o
be violated in many actual situations.  We will look briefly at some of t h e
effects of changing rates in a later section.  Here we consider ways of l ook ing
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for bias.  Probably the most useful technique is to have a thorough know ledge
of the circumstances in which the data were obtained, and to examine t h e
prospects for any major change that might influence either survival o r
recovery rates.  Another considerable help is to have a rather long series o f
comparable data to examine for any persistent trends.  Most b i r d - b a n d i n g
experience, for example, shows that juveniles have a markedly lower s u r v i v a l
than do adults. Hence one either tries to band mostly adults or deals w i t h
juveniles separately.

Some statistical tests may also be considered.  One is just the o r d i n a r y
chi-square goodness-of-fit test, wherein the expected values are computed

from nx = nŝ  x and compared with the observations (no,n1,n2,...).  Substant ia l
departures from constant survival may show up in this test, but it isn't v e r y
sensitive, and failure to obtain a significant chi-square needs to be regarded a s
a necessary condition for use of the estimate but should not be regarded as a n y
substantial evidence against bias.

Fortunately there is a test for one of the major sources of error, i.e., a
difference in survival rate between the first recovery - class and s u b s e q u e n t
classes.  It thus serves very well to examine the effects of, for example, t a g g i n g
young animals.  The test is due to Chapman and Robson (1960) and is a c h i -
square with one degree of freedom:

                                                    X2 = 
( ŝ-s'o)2

T(T-1)(n-1)

n(n+T-1)2(n+T-2)

                                        (10.18)   

where ŝ   is obtained from the Chapman-Robson estimate of equation (10.4) a n d
s’o is the Heincke estimate of equation (10.10).

Example 10.3 Testing compatibility of first recoveries

The chi-square test for compatibility of the first recovery-class
with the remaining classes (Eq. 10.18) is readily illustrated on the
data of Example 10.1.  It requires Heinke's estimate of survival (Eq.
10.10):

                                            s'o = 
n - no

n    = 
1 3 4  -  4 5

1 3 4    = 0.6642

The chi-square test then is:

                              X2 =      

(0.714-0.6642)2

3 3 2 ( 3 3 1 ) 1 3 3

134 (465 )2 4 6 4
     = 

0.00248
0.00109   = 2.28

which is well short of the 95 percent significance level of chi-square.

The above test is "two-tailed", that is, operates so as to protect
one against either over- or under-representation of the first age-class.
If the investigator has good grounds for expecting a departure to be in
only one direction (e.g., if mesh size of nets is known to be the
critical factor, or greater vulnerability of young game animals), then a
one-tailed test may be in order.  This can be obtained just by
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considering the ratio of  ŝ   - s'o  to the square root of the
denominator of Eq. (10.18), and referring to tables of the normal
distribution for significance levels (the critical level for a one-
tailed) test at the 95 percent level of significance is 1.65 rather than
the 1.96 used for two-tailed tests).  If there were grounds to support
doing a one-tailed test here, one could calculate:

                                               z = 
0.714-0.6642

( 0 . 0 0 1 0 9 ) 1 / 2   = 
0.0498
0.033    = 1.5

which is again short of the 95 percent level (1.65).

The above are "large-sample" tests.  Chapman and Robson (1960:364)
point out that the appropriate "exact" distribution is the
hypergeometric, but also that for all practical purposes one may
substitute a table of binomial confidence limits, using the statistic
T(=n1+n2+n3+...) as "sample size" and T-n+no as "number of successes".
If the selected confidence interval (corresponding to chosen level of
significance) excludes s then one rejects the hypothesis of
compatibility of survival of the first age group with that of the
remaining recoveries. If the above tests suggest incompatibility of the
first recovery class, one simply drops that class and recodes his data,
so that no is now the first recovery-class retained, n1 the second, and
so on.  Calculations of survival and variance, etc., proceed just as
before, but its a wise precaution to repeat the above testing procedure
to make sure that the new initial recovery group is compatible with the
remainder.

Example 10.4 Combining years

In Example 10.1, a large number of geese were banded  in one year,
resulting in a substantial number of returns and quite a precise
estimate of the annual survival rate.  Often one must deal with much
smaller samples, and the question of combining a series of estimates may
then come up.  When all, or, virtually all, of the recoveries are in,
the procedure is very simple -- just add up the recoveries, and proceed
as before (Chapman and Robson 1960:357).  Some data on adult Canada
geese banded in Washington (Hanson and Eberhardt, 1971) provide an
example:

                                         Recoveries during subsequent years                                                          
Year        Number                                                                                          Recov.
banded    banded            no n1 n2 n3 n4 n5 n6 n7 n8 n9 Tot. Rate           
1950      43 1 2 1 1 1 6 .14
1951      40 2 2 2 1 7 .18
1952    133 1 4 8 7 6 1 2 1 1 4 0 .30
1953      13 1 1 .08
1954      25 3 2 2 1 8 .32
1955      30 3 2 1 6 .20
1956      49 1 2 3 1 1 1 9 .18
1957      38 2 1 2 2 1 8 .21
1958      45 5 2 2 2 2 1 3 .29
1959      34 1 1 1 1 1 1 6 .18
1960     18 2 1 3 .17

_________________________________________________________
     468 3 1 2 3 1 7 1 2 4 7 5 3 3 1 1 0 7 .23
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  T = 23 + 2(17) + 3(12) + 4(4) + 5(7) + 6(5) + 7(3) + 8(3) +9(1) = 228

                                                   ŝ   = 
T

n  +  T  -  1    = 
228
334

= 0.683

                                          v(ŝ  ) = 
228
334

[ 
228
334

-  
227
333

] = 0.0006506

We thus obtain an estimate of annual survival of .684 + 2(0.0006506)1/2

or confidence limits of 0.634 - 0.735 on the combined estimate.

When several years are combined, as above, it seems prudent to
examine the band recovery rates to see whether there is any evidence to
suggest a change that might invalidate the underlying assumptions (e.g.,
a change in reporting rates).  One simple procedure is just to do a chi-
square test against the overall recovery rate.  The calculations here
are:

                        Number           Number                       Recovery
Year                banded                    recovered           (qi)             rate                 (pi)       

1 9 5 0 4 3 6 0.1395
1 9 5 1 4 0 7 0.1750
1 9 5 2 1 3 3 4 0 0.3008
1 9 5 3 1 3 1 0.0769
1 9 5 4 2 5 8 0.3200
1 9 5 5 3 0 6 0.2000
1 9 5 6 4 9 9 0.1837
1 9 5 7 3 8 8 0.2105
1 9 5 8 4 5 1 3 0.2889
1 9 5 9 3 4 6 0.1765
1 9 6 0 1 8 3 0.1667
               _______             _____                     _______

4 6 8 107 (A) 0.2035 = p
_

   

and a handy formula for chi-square is (Cochran and Snedecor, 1967:240):

                      χ 2 26 5809 21 7738
0 1621

29 66=
−

= − =∑ p a pA

pq
i i . .

.
.

with 10 degrees of freedom, indicating strong evidence of a departure
from chance fluctuations in proportion recovered.

10.6 Life tables                            

The original and major use of a life table is to provide a c o n v e n i e n t
summary of survivorship data over the history of a given group of animals, a l l
born at nearly the same time (a "cohort" and hence a cohort table) or t o
provide a cross-section of current mortality experience in a population ( a
"current" life table).  As such, there should be no objection to life tables.
Unhappily many such tables have been constructed from band-recovery a n d
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age structure data in ways that may greatly reduce the value of the data.  Most
of this section will be devoted to life tables as constructed from band r e c o v e r y
data.

The basic structure of the table is quite simple, although a variety o f
modifications and extensions has to be derived for various special purposes .
The structure of a "cohort" table is obtained as follows.  Most life tables s t a r t
out with an arbitrary number of newly born animals (usually 1000, or 10,000),
and have 4 main columns.  The first (x) column lists age at the beginning o f
the time interval (normally a year), the second (lx ) gives the number alive a t
the beginning of the year, while the third (dx) gives the number of dea ths
during the year, and the fourth column (qx ) represents the mortality r a t e .
Entries in a particular table might thus be:

x l   x  d   x  q  x     

0 1000 620 0.620
1 380 167 0.439
2 213 85 0.399
3 128 51 0.398
4 77 32 0.416
5 45 19 0.422
6 26 14 0.538
7 12 6 0.500
8 6 4 0.667
9 2 2 1.000

 Since the table begins with an arbitrary number of animals, the o n l y
really important data are those contained in the qx  column, which summar izes
the available information on mortality by age.  Some cohort tables do start o u t
with the actual number of individuals in a real group, and thus provide m o r e
information than does the "standard" table.  "Current" life tables are usua l l y
constructed in exactly the same way, but depend on different sources of da ta
(i.e., on current mortality experience of a population).

Construction of a cohort life table (also known as a "time specific" l i f e
table) from the recovery of marked animals at their death rests on t h e
intuitively plausible concept that the recoveries constitute a r e p r e s e n t a t i v e
sample of the fate of the entire group initially marked.  The method i n
common use is to sum up the total recoveries (n) over the years, and to r e g a r d
this total as a cohort, or "number initially at risk".  Thus n may be the f i r s t
entry in the lx column -- unfortunately many workers convert it to 1,000 o r
10,000, making it impossible (without additional information) to r e c o n s t r u c t
the actual data from their table.  Those individuals recovered in the first y e a r
are then regarded as mortalities (appearing in the dx column) and the f i r s t
year mortality rate is estimated as no /n.  In the second year it is assumed t h a t
there are n-no survivors (l1 entry) and the recorded deaths in that year ( n1)
appear in the d1 position and become the numerator in the mortality (q1)
est imate:

                                              q1 = 
n1

n  -  no
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continuing the process yields mortality rates for each year up to the las t
recoveries (nk ) whereupon the last year's mortality rate becomes nk /nk  = 1.

It thus turns out that the first entry in the table corresponds to t h e
Heincke estimate of equation (10.10), and each successive entry corresponds t o
the same estimate, with previous recovery-class disregarded.  Thus t h e
estimates are not what they have been claimed to be, that is, age-spec i f i c
mortality rates.  They are instead estimates of a constant rate for the whole se t
of recovery data, and the supposed life table is not at all what it is n o r m a l l y
expected to be.  Furthermore, as we have seen from equation (10.13) using t h e
Heincke estimate amounts to discarding a sizable fraction of the available data.
Some workers did "combine" the several estimates by weighting each q x
estimate by the apparent sample size (nx ), giving:

                                       

no
n  n  +  

n1
n - no

 ( n - no )  +  . . .

no  +  2 n1 +  3 n2 +  . . .     = 
n

n  +  T                          (10.19)  

which is the Lack-Haldane estimate, and thus may well be the only r e a l l y
useful estimate in the whole table.  If the actual numbers recovered a r e
entered in the table (rather than converting to 1000 or 10,000 for the lo e n t r y )
then it is feasible to go back and use the chi-square test of equation (10.18) o n
the data.  Sometimes the total number of recoveries is given separately, so t h a t
it is possible to reconstruct the original data from the table, even though lo i s
1000 or 10,000.  At worst, one can look down the qx column to see whether t h e
apparent mortality rates do change -- but this is seldom a very h e l p f u l
practice in view of the substantial variability of the Heincke estimates.

Perhaps the best summary statement about cohort tables based o n
recovery data is that they should not be constructed in the first place.  If t h e 
basic assumption is fulfilled (constant survival) then each entry est imates
exactly the same quantity!  If survival rates are not constant over the yea rs ,
then the structure of the various estimates can be illustrated by writing o u t
the value for the first one:

        qo = 
no

n  -  no
    =  

pN(1-  s1)
pN(1-s2)s1+pN(1-s3)s1s2 + ... +pN(1-sk+1)s1s2...sk

   (10.20)   

where p = recovery rate, N = population tagged, and the si  are annual s u r v i v a l
rates.  Thus only if the si  are all equal to s, do we get conditions for a va l id
est imate.

When one uses data based on a group of animals all marked at the s a m e
time, the applicable life table concept is indeed that of a cohort.  However, t h e
data are nonetheless at times used to construct a current life-table (also ca l led
a "dynamic" table, and perhaps more accurately so in the present context).

The usual practice seems to be to regard the ratios of success ive
recovery- classes as estimators of current survival rates, so that:

                                                                     qx = 
nx

nx - 1
  

and using the notion of equation (10.20):
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                                qx = 1 - 
pN(1-sx)s1s2...sx-1

pN(1-sx-1)s1s2...sx-2     = 1 - 
(1-sx)sx-1

1-sx -1                 (10.21)  

so that, if survival is constant in two successive years, the method does p rov ide
a valid estimate.  The existence of changing survival rates evidently will r e s u l t
in a bias.  Perhaps a more serious drawback is that the samples usua l l y
obtained are so small as to result in substantial variability in the year to y e a r
estimates.  In the majority of cases, it is likely that only the first two or t h r e e
recovery groups are large enough to justify much confidence in the mor ta l i t y
est imates.

One technique used to reduce the effect of small samples is to c o m b i n e
the recoveries from a number of years of marking, producing what i s
commonly called a "composite" life table.  Sometimes this is done with pa r t i a l l y
incomplete data.  That is, there may be one (or more) sets where all of t h e
recoveries are available, plus several sets where banding was done r e c e n t l y
enough so that there is likely to be a number of marked individuals yet a l ive .
In such circumstances an adjustment may be introduced to compensate for t h e
incomplete nature of the data.  The adjustment takes the form of computing f o r
each year a "number of marked individuals available."  The trick is simply t o
add up the total number actually banded during the period of interest. Th is
total is regarded as the number "available", and the first year recoveries a r e
divided by that number to generate a "do" class.  If the most recent year o f
banding did not contribute to the second year recoveries then the n u m b e r
banded in that year is subtracted from the total banded, and the remainder i s
used as a divisor to generate "d1" from the second year recovery.  The p rocess
continues until the number banded in the first year is used as divisor for t h e
last recovery class.  Some better methods for calculating survival rates f r o m
incomplete data are available, and will be described below.

In summary, many of the methods for generating life tables f r o m
banding data are of very dubious utility.  The "cohort" method does not do w h a t
it is supposed to do at all, and the "current" method suffers seriously f r o m
small samples.  There is, of course, no reason to object to the construction o f
life tables from data obtained by recovery of banded animals. The point is t h a t
survival estimates should be obtained by the best methods available and t h e n
used to construct a life table.  The methods already described are quite s imp le
and should normally be less trouble to use than the supposed life table method.

10.7 Catch-curves and kill-curves                                                              

It was mentioned above that the Chapman-Robson analysis w a s
originally developed for catch curves but applies equally well for b a n d i n g
data.  It thus follows that there is little need to recapitulate the methods o f
estimation already described.  It is necessary, though, to note some pitfalls f o r
the unwary and changes in assumptions.  In band-recovery studies, o n e
usually has a known population (the total number banded) under study, a n d
obtains recoveries over a number of time intervals.  The essential assumpt ions
are that survival remains constant (or nearly so) and that recovery rates o f
dead animals also remain constant.  On the other hand catch-curves or k i l l -
curves usually depend on an age-classification of a group of animals ta k e n
nearly simultaneously (by fishing or hunting) and thus born over a n u m b e r
of years. Constant survival is again a necessary assumption, while t h e
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assumption of constant recovery rates is now replaced by one of e q u a l
"catchability" (vulnerability to the harvest method) for each age g r o u p .
Unfortunately a third assumption has also to be added in that it is also r e q u i r e d
that each age-group initially exist in equal numbers.

In fisheries studies there is often a problem with the second assumpt ion
- - younger fish may be less readily taken by the fishing methods (e.g., m e s h
size of nets).  This problem is usually dealt with by restricting the analysis t o
start with the first age group considered to be "fully vulnerable to the g e a r "
(which can be checked out with the chi-square test of equation (10.18)). Most
fish have a tremendously large reproductive potential so that it seems that t h e
link between size of mature stock and numbers of new recruits may at least b e
tenable for several years in a row.  This is not to deny, of course, t h e
importance of spawner-recruit relationships.  The major point is that c a t c h -
curves seem to be rather more useful in fisheries work than do kill- curves i n
studies of hunted populations, and it seems likely that the chief difficulty m a y
lie in the third assumption.  Most game populations do not appear to have a
sufficiently constant recruitment to permit use of survival estimates from k i l l -
curves for more than very rough estimates.

10.8 Combining estimates from several years                                                                                  

 In many cases the available recovery data will come from a number o f
years of banding.  There then may arise the need to combine several sets o f
data to produce a single survival estimate.  As always, one should not b l i n d l y
combine data from different years but should first examine the ind iv idua l
estimates (along with the standard errors), and review the prospects of a n y
major change between the years in question.  All too often recoveries from a
single year's banding constitute a very small sample, and they may have to b e
combined with other years.

The simplest situation arises when there are complete sets of r ecove r i es
for a number of years.  One then simply adds together the corresponding y e a r -
classes (i.e., numbers of recoveries 1,2,3,... years after banding) and uses
equation (10.6) to estimate survival, and (10.7) to estimate variance of t h e
est imate.

When the data are incomplete, as discussed in Section 10.4, t h e
calculations become somewhat more tedious.  The usual set of data may b e
represented by the following table:  

                                         "Age" at recovery                                 
Maximum age
at recovery 1 2 3 x Totals                                
k . . . . nk
3 d13 d23 d33 n3
2 d12 d22 n2
1 d11 n1
                               _____________________________________________________

Totals d1 d2 d3 dx Σnk = Σdx
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Here the rows are sets of recoveries from a given year of banding, with t h e
most recent year at the bottom -- hence the maximum "age" at recovery is o n e
year.  The row totals ( nk ) are thus the total number recovered from a g i v e n
year of banding, while the column totals reflect the total numbers that h a d
been "at large" for a given number (x) of years.  "Age" is necessarily r e c k o n e d
from banding, so that animals banded as adults may in fact be app rec iab le
older than implied by the terminology here.

Actual survival estimates from the above table are obtained from t h e
following equations (Gilmartin et al. 1993):
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where Tk is computed for each row in just the same way that T was obtained f o r
equation (10.6), i.e.;
                                                     T3 = d13 + 2d23 + 3d33

The solution of equation (10.22) depends on iteritive methods just as i t
did for equation (10.14), to which it is closely related -- in fact (10.22) may b e
obtained by summing equation (10.14) over the total number of years o f
recovery (i.e., sum on k).  Similarly, equation (10.23), stems from summing t h e
equation (10.16).

The method described above was obtained by Haldane (1955) and i s
fairly well-known as "Haldane method."  It may be repeated that a p r u d e n t
investigator will use equations (10.14) and (10.16) to investigate at least part o f
the individual years before settling on a combined estimate.  If no banding w a s
done in one or more years it is still feasible to use equations (10.22) and (10.23);
one just enters zeroes for the years of no banding. Gilmartin et al.(1993) used
monte carlo methods to study the variance equation and found that it g a v e
confidence limits that were too wide, so resorted to bootstrapping to es t imate
confidence limits.

Example 10.5 An example of Haldane's method

For an example of combining incomplete data, we use some band
returns data on Canada geese banded in Washington (Hanson and Eberhardt,
1971) as adults:
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Year            No.            Maximum age              "Age at recovery"
banded        banded                at recovery           0          1           2           3           4            5             6          Tot.                                                                                      

1 9 6 1 1 4 6 3      0     2      1   0   0      0            6
1 9 6 2 1 5 5            0      2     0      0     1     0                      3
1 9 6 3 28                     4              4      4      1     1     0                            10
1 9 6 4 4 5 3            3      2      2     6                                   13
1 9 6 5 10                     2              0      1      0                                            1
1 9 6 6 0                      1              0      0                                                     0
1 9 6 7 15                     0              2                                                             2

__________________________________
                                                          12      9      5      8     1     0      0             35

We first compute Tk and nk for each row in just the same manner as T was
computed before:

   T6 = 2(2) + 3(1)         =7        n6 = 6
                                       T5  = 2 + 4(1)             = 6        n5 = 3
                                       T4 = 4 + 2(1) + 3(1) = 9        n4 = 10
                                       T3 = 2 + 2(2) + 3(6) = 24      n3 = 13
                                       T2 = 1                                          n2 = 1
                                       T1 = 0                                          n1 = 0
                                       To = 0                                           no = 0

and s is estimated by solving equation (10.22) by trial and error. One
sets up the table above in EXCEL and computes the components of equation
(10.22) in two columns, sums these and varies s until the two column
sums are equal. If there are several examples to compute, the solution
might be obtained with SOLVER.

10.9 Regression methods                                             

Recalling equation (10.2):
                                                              E(nx) = Noλsx

If we take logarithms:
                                                log E(nx) = log(Noλ ) + x log s                               (10.24)

and ordinary linear regression methods might be used to fit observed data a n d
to estimate s as the slope of the regression of   log nx  on years since b a n d i n g .
Such a procedure has the additional merit that one can examine the p lot ted
data for any evidence of non-linearity, and hence for prospects of a change i n
survival with time.

A disadvantage of the regression method is that band recovery data do
not conform to the requirements for regression estimation.  Chapman a n d
Robson (1960) suggest an improvement in some cases may be obtained b y
u s i n g
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                                                              log nx - 
1

1nx +

as the independent variable (rather than just log nx ).  They f u r t h e r
recommend dropping all observations beyond the point where nx  is less t h a n
5.

It is important to realize that the regression equation estimates log s,
and not s.  If natural logarithms are used, the quantity
        
                                                            i = loge s

is the "instantaneous" rate of survival, and is rather widely useful in f i s h e r i e s
work as such.  A natural temptation is to antilog the estimate of log s for a
direct estimate of s; unfortunately this yields a biased estimate and t h e r e
doesn't seem to be much to do about it unless the samples are large. But w i t h
quite large samples the bias may not be important.

Paulik (1963) developed another regression-li ke method based on t h e
fact that recoveries in a number of years approximately follow t h e
multinomial distribution (this was mentioned in Section 10.2).  His results s e e m
to offer an improvement over the simple regression estimate (10.24).  His
estimate is:

                                    log ŝ   =  
Σ jn j y j  - [(Σnj y j )(Σ jn j )/Σnj

Σ j 2n j  -  [ (Σ j n j )2 /Σ nj ]
                               (10.25)  

where j = 1,2,3... denoted the year of recovery (with the first year's r ecove r i es
now numbered as n1 rather than no as before).  Also;

                                                            yj  = loge(
nj
N   )

which is the natural logarithm of the proportion (of N banded) in the jt h y e a r .
Paulik recommended deleting observations beyond the point where
nj = 10.

Since this method also estimates the logarithm of s and not s directly, i t
may be best applied in circumstances where interest is not so much i n
estimates of annual survival, but is rather directed towards components of t h a t
survival rate, expressed in terms of the instantaneous rates.  That is, f i s h e r i e s
workers customarily write
                                                                s = e-(F+M)

where F = mortality rate (instantaneous) from fishing and M = mortality r a t e
(instantaneous) from other causes (the "natural" mortality rate), and t h e
regression methods thus estimate the quantity F+M directly.  Any aux i l i a r y
information on the intensity of exploitation during the time periods when t h e
data were collected may potentially permit an estimate of the re l a t i ve
contribution of F to total mortality.

One other reason for considering estimates of log(s) rather than s i s
that log(s) may be roughly normally distributed.  This may be a cons iderab le
advantage in making tests of comparisons or in setting confidence limits.  I f
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log(s) is normally distributed, then the antilog elog s will be l ogno rma l l y
distributed (and thus have a skewed distribution -- awkward for m a n y
purposes . )

10.10 Effect of changes in survival                                                                

We recall that one of the key assumptions in the analysis of both b a n d
recovery and kill-curve data is that the survival rate remain constant over t h e
period of study.  In practice, survival undoubtedly does vary from year to y e a r .
If the annual fluctuation are not large and are more or less "chance" even ts ,
presumably the estimates may provide some sort of average value. Very of ten ,
though changes in survival rate may persist for several years. This i s
especially true for exploited populations, where shifts in m a n a g e m e n t
regulations may induce changes in survival.

Not a great deal is known about the effect of persistent changes on
estimation of survival, but some indication of trend can be supplied.  We first
consider band recoveries, and assume the recoveries come from an exploited
population (tags are recovered from the harvested animals).  Suppose fishing
or hunting (Fx ) and natural (Mx ) mortality operate together over the year
(and remain constant during the year) but change from year to year. If we let

                                                     fx = 
Fx

Fx+Mx
   

then the estimate of survival from recoveries is approximately:

 
E(T)

E(n+T)    =

 
E(n1)+2E(n2)+3E(n3)+...
E(no)+2E(n1)+3E(n2)+...                                                                       (10.27)  

               = 
f1(1-s1)so+2f2(1-s2)sos1+3f3(1-s3)sos1s2+...

fo(1-so)+2f1(1-s1)so+3f2(1-s2)sos1+4f3(1-s3)sos1s2+...  

               = so [
f1(1-s1)+2f2(1-s2)s1+...

fo(1-so)+2f1(1-s1)so+...  

Thus if the samples are large enough to permit the operation o f
equation (10.27) -- one would really prefer to find E(T/n+T) which is not t h e
same as what we have above -- it appears that the "dominant" quantity in t h e
estimate is so, or survival in the first year.  One might expect that result b y
inspection of the recovery data, since the first two classes (no and n1) a r e
necessarily expected to be the largest.  The effect of some postulated change i n
survival rates can be determined by considering the sequence of s u r v i v a l
rates in equation (10.27).  For example, suppose survival has been i n c r e a s i n g
so that so > s1 > s2.  Then (1-s1) > (1-so) and (1-s2) > (1-s1), and so o n .

Consequently the overall estimate will be less than so.  One might thus write:

                                            s^   = so(bias)
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Any quantitative appraisal of the bias term will evidently depend on a
numerical evaluation of equation (10.27) for which one needs to k n o w
survival rates. Furthermore, changes in survival are likely also to affect the fx
terms, inasmuch as the fraction taken by exploitation will no doubt a lso
c h a n g e .

While the situation above is rather complex from an ana ly t i ca l
standpoint, the circumstances are not difficult to mimic via c o mp u t e r
simulation.  A limited effort along those lines (Eberhardt, 1972) led to t h e
following set of recommendations:

(1) The Chapman-Robson (Lack) equation for estimation of s u r v i v a l
from banding recoveries is clearly the best of those studied.  The o t h e r
methods have variances which are usually at least twice as large.

(2) Both Chapman-Robson and Heincke estimates should always b e
computed and used to test the compatibility of the first year of returns ac tua l l y
used with those of later years.  If the test is significant, one may simply d r o p
the first year, and proceed with the remaining data.

(3) In the case of incomplete data (banded individuals still alive a t
analysis) or a prior evidence of a marked change in survival rates, t h e
segment method is available, but variability of the results is d i scou rag ing l y
large unless the data are nearly complete.

(4) Combining results of a series of years of banding may take two
routes .

( a ) If it appears that there is a marked change in survival, o n e
probably has to depend on a year-to-year analysis--this is an area n e e d i n g
further investigation.

( b ) If it appears that survival rates have not c h a n g e d
appreciably, then those years for which complete data are available c a n
simply be added together and analyzed with the Lack formula (justification f o r
this statement appears in the appendix to Eberhardt (1972)).  If part of the da ta
is incomplete, then the Haldane formula is called for.

(5) It was provisionally suggested that, even in the face of c h a n g i n g
rates, the Chapman-Robson and/or Heincke methods give estimates of f i r s t -
year survival which likely are not very much biased.  An exception is the case
where rates change in the second year, as may be expected if f i r s t - y e a r
recoveries of juvenile banding are used.  However, the Chapman-Robson tes t
provides good protection against that eventuality.

(6) If all else fails, and samples are indeed large, one might look at ra t ios
of successive groups of returns (i.e., use the "current" life table) and obtain a n
average survival rate.  Even so, it is probably advisable to simply drop t h e
smaller frequency groups (say below 10 returns).

(7) There seems to be little reason to continue the practice of life- t ab le
analysis of banding data.  Under the requisite assumptions, all of t h e
information in a "cohort" table appears in its first line, and in the form of a
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Heincke estimate, which has a variance appreciably larger than that of t h e
preferred method.  Use of the method thus amounts to throwing away data t h a t
are often rather expensive to obtain.  As suggested above (6), it may b e
necessary to examine data on a year-to-year basis--essentially in a " c u r r e n t "
life table, but the variances of such estimates are discouragingly large. T h e
evidence from this study suggests that the Chapman-Robson (Lack) me thod
will often give a useful estimate of first-year survival, and that very l i ke l y
will be all that can effectively be salvaged.

Much the same sort of analysis can be carried out for kill-curves.  I n
analogy to equation (10.2):

                                             E(nx) = λNs1s2...sx...

                                           = s1 [  
1+2s2+3s2s3+...
1+2s1+3s1s3+...  

and we can again consider changes like s1 > s2 > s3 and their qualitative e f f ec t
on a bias term:

                                                      s^   = s1(bias)
It is perhaps worth noting what happens if survival remains constant for
several years, e.g.:
                                                s1=s2=s3 > s4=s5=s6

if we let s1 represent the recent series and s2 the older series of rates, we have

                                              
E(T)

E(n+T)   = s1 
1+2s1+3s12+4s12s2+...

1+2s1+3s12+4s13+...
  

so that, unless survival is unusually high so that the later terms have a n
influence, it seems evident that the estimate will be very close to s1, apart f r o m
the effects of sampling variation.

A similar analysis can be carried out for the Heincke estimate (equation
(10.10)):

                                             
E(n-no)
E ( n )    = s1 

1+s2+s2s3+...
1+s1+s1s2+...                                        

(10.29)   

A crucial assumption in the above is that recruitment remains cons tan t ,
i.e., that we can consider N to be a constant in developing equations l i k e
(10.28).  As we have already remarked, this is frequently an u n w a r r a n t e d
assumption, and this largely negates direct use of the methods thus f a r
described for kill-curves of many populations.

10.11 Use of telemetry to estimate survival

Radiotelemetry  offers substantial  advantages  over depending on tag
returns for estimating survival. Conceptually, the actual time of death will be
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known and it may be possible to determine the cause of death for non-harvest
mortalities. Under such circumstances a simple binomial model may suffice for
analysis. Very likely the most widely known analysis is that of Heisy and
Fuller (1985). They proposed  estimating a daily survival rate as:

Where xI is the total number of transmitter-days, and yI is the total number of
deaths in some interval, i. An important precaution is to select an interval in
which conditions are likely to be relatively constant. It may be necessary to
consider several such intervals that span the total period of interest. For a
single such interval the survival rate may be estimated as:

Combining rates for several intervals is then accomplished by multiplying the
rates for the several (I) intervals

10.12 Kaplan-Meier estimates of survival

An important problem in survival estimation is lack of knowledge of the
fate of individuals. The difficulty is severe when tags or bands are recovered
by sampling as in hunting and fishing, but  is also important in the capture-
recapture methods. Conceptually , it should be a minor concern in
radiotelemetry studies where one might suppose there is virtually absolute
knowledge of the fate of individuals. However, this is not always the case.
Radios do fail on occasion, as do the attachments, and the lost radiotag may not
always be promptly recovered. Also, radiotagged individuals may emigrate out
of the study area, which may pose a special problem that needs to be
considered in the study design.

The problem of the loss of identity of individuals turns up in various
other circumstances. It is particularly important in medical studies, where the
long-term fate of patients given some treatment needs to be followed for many
years. Various forms of “life-testing” also bring up the issue, inasmuch as
some items may be removed from the study for reasons that have no bearing
on the duration of life of the item. These difficulties led to a study of ways to
deal with the incomplete observations by Kaplan and Meier (1958). It has been
proposed that their methods for compensating for inadvertent losses be used
in radiotelemetry studies. (Pollock et al. 1989).

The basis for the Kaplan-Meier approach is to handle the individuals
lost from the study (“censored” observations) by breaking the records down in
intervals and estimating survival separately for each such interval. Overall
survival for a longer period is estimated from the product of the individual
intervals just as in equation (10.32). It turns out that the approach of Heisy and
Fuller (1985) described above can be used to give essentially the same results,

√ √ ( )S s
y

xi i
L i

i

Li i= = −1                                     (10.31)  

√s
x y

x

y

xi
i i

i

i

i

= − = −1                              (10.30)  

√ √*S Si
i

I

=
=

∏
1

                                 (10.32)    



                                                                                                     10 .23

but it is worthwhile to contrast the two methods inasmuch as the calculations
proceed somewhat differently.

Kaplan and Meier (1958) term their procedure a “product-limit”
estimate. It depends on a sequence of events (deaths and losses from
observation) that  are assumed to be mutually exclusive in terms of the time of
occurrence, i.e., occur at different times. They suggest “fudging” a  little if two
events are recorded at the same time. If data are recorded by day, there may
not be much need for “fudging”. Very likely losses from observation may be
less-accurately recorded as to date, and Kaplan and Meier (1958:461)
recommended that “deaths recorded as of an age t are treated as if they
occurred slightly before t, and losses recorded as of an age t are treated as
occurring slightly after t” (this is only necessary if two events are recorded at
exactly the same time).

To introduce the basic scheme, we assume no losses and consider only
deaths as events, plotted along a line representing the time span (of length LI)
being considered.

+------*-----------*------------*---------------- …  ---*----------*------+
0           1                 2                3                                             d-1           d          L

If d deaths occur and the initial population size is N, then probability of the
first death is 1-(1/N), and given that event, then the probability of the second
event is 1-[1/(N-1)], and so on, with the probability of d deaths being the
product of the individual terms:

Rearranging gives:

Cancelling like terms in numerator and denominator reduces the result to:

Which is what one would expect, i.e., survival rate equals 1 – mortality rate.

The approach of Heisy and Fuller previously discussed might be labeled
the  “radio-days” method for convenient reference. It uses a daily survival
rate and estimates survival for the same span (LI) as:

Where X is the sum of the days lived by the animals dying in LI  plus the (N-d)
L I days from animals that did not die during the observed time span. Thus the
product-limit (Kaplan-Meier) method uses a mortality rate based on population
size while the “radio-days” method expands a daily rate to the overall interval
used. The time span considered can be varied to accommodate one’s immediate
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purpose. Pollock et al. (1989:Table 1) illustrate the method using weekly data.
Their Table 1 with Heisy-Fuller calculations added shows the agreement
between the two methods:

Heisey-
Number Kaplan-Meier Cumulative Cumulative Fuller

Week at risk Deaths Censored Survival weeks deaths Survival

1 1 8 0 0 1 1 8 0 1
2 1 8 0 0 1 3 6 0 1
3 1 8 2 0 0.8889 5 4 2 0.8930
4 1 6 0 0 0.8889 7 0 2 0.8905
5 1 6 0 0 0.8889 8 6 2 0.8890
6 1 6 1 0 0.8333 102 3 0.8360
7 1 5 0 0 0.8333 117 3 0.8337
8 1 5 1 1 0.7778 132 4 0.7818
9 1 3 1 2 0.7179 145 5 0.7292

1 0 1 0 1 1 0.6462 155 6 0.6738
1 1 8 0 0 0.6462 163 6 0.6620
1 2 8 0 1 0.6462 171 6 0.6514
1 3 7 0 0 0.6462 178 6 0.6403

The data above are cumulated over the span of the study, which, as no ted
previously, assumes constant survivorship. If there is reason to suppose t h a t
survival is not constant, then the data should be analyzed in blocks that a r e
more likely to have constant survival within a block. In many studies,
captures may go on throughout the course of the study. Kaplan and M e i e r
(1958) noted that these individuals can be added to the number at risk as t h e y
enter the study, and Pollock et al. (1989) dubbed such an approach as a
“staggered-entry” model, and illustrated it with weekly data on bobwhite q u a i l
(Colinus virginanus) survival. They provided a  convenient variance es t imate
[Heisey and Fuller (1985) resorted to a computer program for v a r i a n c e
est imat ion] :

                                                          v S t
S t S t

r t
[ √( )]

√( ) [ √( )]
( )

= −2 1
                               (10.35)     

where r(t) is the number at risk at time t. Data to illustrate the approach f r o m
their Table 2 appear below with variance estimates. In this case sequen t i a l
survival estimates [equation(10.33)] are multiplied [equation (10.32) to o b t a i n
an estimate of survival at the end of the current period. To use the Heisey-
Fuller approach on the data, one would have to determine how long t h e
individuals dying during the period (week) were alive during the period, so
that it is desirable to record radio-days as best possible. In the table below it i s
assumed that individuals censored were lost at the end of the period and a n y
added were introduced at the end of the period.
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Kaplan-Meier estimates of survival for bobwhite quail [from Pollock et a l .
(1989: Table 2)] with variance estimates.

Number Kaplan-Meier

Week at risk Deaths Censored Added Survival Variance

1 2 0 0 0 1 1 0
2 2 1 0 0 1 1 0
3 2 2 2 1 0 0.909 0.0034
4 1 9 5 0 0 0.670 0.0078
5 1 4 3 0 0 0.526 0.0094
6 1 1 0 0 0 0.526 0.0119
7 1 1 0 0 0 0.526 0.0119
8 1 1 2 0 0 0.431 0.0096
9 9 1 0 0 0.383 0.0100

1 0 8 0 1 0 0.383 0.0113
1 1 7 0 0 3 0.383 0.0129
1 2 1 0 0 0 6 0.383 0.0090
1 3 1 6 4 0 1 0 0.287 0.0037
1 4 2 2 4 0 5 0.235 0.0019
1 5 2 3 4 1 6 0.194 0.0013
1 6 2 4 4 0 0 0.162 0.0009
1 7 2 0 2 0 0 0.146 0.0009

10.13  More complex models for analysis of survival data.

Much of this Chapter has been devoted to what might now be t e r m e d
“classical” methods for estimating survival. The older methods r e m a i n
valuable as a background for understanding the newer approaches, and t h e y
provide tools for initial analyses and for planning studies. The major d r a w b a c k
in using these earlier methods is the restrictive assumptions that are r e q u i r e d
to justify the estimates. Section 10.10 provides some rough notions about t h e
outcome of using these estimates when the underlying assumptions a r e
violated.

The newer, “modern”, methods make it possible to use less res t r i c t i ve
and more realistic assumptions, and to take advantage of the computing p o w e r
now available on most desktops. A disadvantage of the newer methods is t h e
nearly universal dependence on computer programs. A major goal of t h e
present effort has been one of presenting the basis for many quan t i t a t i ve
methods without requiring the reader to use any more complex programs t h a n
are available on most spreadsheets, with specific reference to EXCEL. For t h e
most part, only basic statistical methods have been used. To use the n e w e r
methods, one needs to rely on computer programs, along with m o r e
sophisticated statistical methods.

A good starting-place for approaching “modeling survival and t es t i ng
biological hypotheses using marked animals” is the paper by Lebreton et a l .
(1992). They recommend (1) starting from a “global” model (essentially o n e
that includes all the parameters that may be relevant) and assess its fit, t h e n
(2) select a more parsimonious model (fewer parameters) using Akaike’s
Information Criterion (AIC), and (3) testing for the more important b io logica l
questions by comparing this model with “neighboring ones” using l ike l ihood
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ratio tests, and then (4) find maximum likelihood estimates of model
parameters with estimates of precision. Papers utilizing this general a p p r o a c h
are now steadily appearing in the ecological literature, and it appears l i ke l y
that the approach has become the “standard” method for studying survival.

Using AIC in biological studies is the subject of a recent book ( B u r n h a m
and Anderson 1998) that contains a good deal of practical advice on model
selection and inference. It appears, however, that these authors h a v e
developed doubts about the importance of a “global” model, at least in c o n t r a s t
to an earlier essay (Burnham and Anderson 1992), and they particularly w a r n
of the dangers of “data-dredging”, i.e., starting with a model with m a n y
parameters and discarding parameters by using AIC. The problem basically i s
that chance fluctuations in the data may seriously influence the outcome,
essentially in the manner that plagues stepwise regression (Section 1.12).
Burnham and Anderson (1998) thus recommend choosing a “pars imon ious”
model on largely a priori grounds. How one does that is still an open ques t i on
in many situations. However, the rapidly developing literature on mode l i ng
survival offers opportunities to select a few models that seem to be among t h e
top candidates and thus useful starting-places.

Lebreton et al. (1992) list a sizable number of computer programs t h a t
have been used to estimate survival and used RELEASE which is described i n
detail by Burnham et al. (1987) and SURGE 4.0, which was (and still may be) a
proprietary program. Fortunately, Dr. G. C. White has invested a great deal o f
effort in producing and updating program MARK which contains most of t h e
features of these earlier versions and is freely available through the Web Site
listed in Section 8.4.

10.14 Exercises

10.14.1 Calculate the Heinke estimator of survival and its variance for the da ta
of Example 10.1. Calculate the ratio of its variance to that of the Ha ldane
variance estimate [eq.(10.7)]. Compare this ratio to the value you get f r o m
eq.(10.13). Is there a difference? If so, explain.

10.14.2  Repeat the analysis of Example 10.2, then extend it to use the first 6
classes and calculate a variance estimate from eq.(10.16). Compare t h i s
variance estimate with that of example 10.1, and with the value of the r a t i o
tabulated below eq.(10.17). Discuss your results.

10.14.3  Check on the values tabulated for eq.(10.17) for k = 6 and explain t h e
trend from s = 0.1 to s = 0.9.

10.14. 4 Suppose that there were 55 recoveries in the first year after b a n d i n g
in Example 10.1 (instead of 45 recoveries). Compute the chi-square test f o r
compatibility of first recoveries and state the p-value.

10.14.5 Calculate the chi-square value for Example 10.4.

10.14.6  The following resighting data are for female monk seals on L a y s a n
Island. Calculate a survival rate as in Example 10.5. Compute a variance f r o m
eq.(10.23). As noted in Section 10.8, it likely is best to bootstrap for con f i dence
intervals, but the estimate should serve for comparison to the results o f
Exercise 10.14.7 below.
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Tagged 0 1 2 3 4 5 6 7
1983 1 0 1 0 1 0 9 8 9 9 6 6
1984 1 3 1 2 1 0 1 0 8 7 6 6
1985 1 4 1 0 9 9 7 5 5
1986 1 7 1 2 1 2 9 7 6
1987 1 5 1 3 1 1 9 7
1988 1 7 1 1 5 4
1989 1 3 6 6

10.14.7 The following data are resightings for female monk seals banded o n
French Frigate Shoals in 1984. Calculated survival from eq.(10.24) along with a
variance about regression (you can do this with EXCEL’s regression tool).
Compare this variance with that dound in Exercise 10.14.6. Also calculate s
from eq.(10.25) and compare with the results of eq.(10.24) and Exercise 10.14.6.

Tagged 1 2 3 4 5 6 7
39 35 35 33 30 28 26 26
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11.0 THE LOTKA-LESLIE MODEL

11.1 Introduction

The life table is a useful technique for studies of a stationary population
or of a single cohort. Changing populations require the additional features
provided by the Lotka-Leslie models which add age-specific reproductive rates
( m x ) to the survivorship (lx ) entries from which the classical life table is
developed.  A further feature of the Lotka-Leslie approach is the calculation of
a stable age structure (cx ) .

The use of life tables in ecology became popular after the classic paper
of Deevey (1947). Most of the illustrations for natural populations were
unfortunately based on observed age structures or band returns with little
assurance that the age data came from stationary populations or that survival
rates were constant in the banding data. More recently it has become evident
that these are risky assumptions. Burnham and Anderson (1979) and Anderson
et al. (1981) discussed the problems and gave tests of the underlying
assumptions for banding data. Tait and Bunnell (1980) noted that ages of
animals found dead could be used with mx data to estimate λ , and Van Sickle et
al. (1987) have conducted further exploration of that approach. Although
dependable survival rates cannot be extracted from age structure samples (if
used alone) of non-stationary living populations, some useful information can
be obtained from the "apparent" survival rate calculated from such
populations (Eberhardt 1988).

Since fluctuations in population size caused by human influences on
natural populations have become nearly ubiquitous, the classical life table has
become largely an abstraction and laboratory tool. Practical purposes are now
better served by the Lotka-Leslie model. However, "life tables" now appear in
the literature that contain reproductive data as well as survival data, and are
often the basis for calculation of a rate of change of a dynamic population. It
may be worthwhile to denote these tables as "augmented" life tables to
distinguish them from the classical life table, which contains only data on
su rv i vo r sh ip .

11.2  Discrete and continuous population growth

Many large mammal populations exhibit what Caughley (1977) termed a
"birth-pulse" growth pattern. That is, reproduction takes place in a relatively
short period each year. In between these pulses of growth, mortality takes its
toll, and the population decreases. However, most textbooks treat growth as a
continuous process and use an exponential curve to represent the growth
pattern. I believe that a more realistic model is that of compound interest, with
the compounding done annually through the birth-pulse. Fig. 11.1 shows the
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two models as compared to the likely actual trend of a population.
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Fig. 11.1 Population growth modeled by continuous (exponential) and discrete
(geometric) growth curves and the likely actual course of a population's size.

Very likely the best approach for most purposes is to use a "finite
growth" model, using λ  to denote the rate of change and writing:

                                                 Nt = No λ t                                                        (11.1)

where No denotes initial population size and Nt is population size t years later.

We can then interpret λ  as λ  = er for continuous growth and λ  = 1 + r for the
compound-interest or geometric growth model. Fig. 1 suggests that the
geometric growth model is closer to reality for birth-pulse populations, but the
frequent use of the exponential model in texts makes it desirable to have the
two interpretations in mind.

Another consideration is that we need methods to estimate rates of
change, and using different methods can lead to some confusion. When there
is a sequence of annual measurements of population size, the usual approach is
that of log-linear regression. That is, we take the natural logarithm of
population size and convert eq.(11.1) to:

                                       loge Nt = loge No + t loge λ                                    (11.2)

and fit a linear regression of the form y = a + bx. Then the slope (b) estimates

loge λ , and if we use the interpretation in which λ  = er, then r̂  = b inasmuch as

loge er = r. Using the interpretation in which λ =1+r, then b estimates log(1+r),
and we have to take the antilog and subtract unity to get r.
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In some circumstances, however, we may want to estimate rate of
change from two successive measurements of population size, getting:

                                                      λ̂  = 
Nt+1
Nt

                                              (11.3) 

We thus need to keep in mind the quantity being estimated. Using log-
linear regression the logical estimate is r, while the ratio estimator gives
λ directly. How important is the difference? If the rate of change is small, the
two interpretations are nearly indistinguishable. But for larger rates of
increase, the two interpretations are sufficiently different to make an
appreciable difference in, say, projections of population size into the future.
Fig. 11.2 exhibits the values of the two interpretations of λ .
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Fig. 11.2 values of r for the two interpretations of  λ. The continuous model (λ =
er) yields values appreciably lower than those for the discrete or geometric
model (λ  = 1 + r) when λ  is significantly below or above 1.0.

Some discussions of the continuous model present the rate of increase as
having two components, r = b - d, where b represents births and d, deaths.
These are "instantaneous" rates, i.e., appropriate to indefinitely small
increments of time. However, the model of Fig. 11.1 doesn't work that way. The
model for the actual trend for one year could be written as:

                                       Nt+1 = Nt s52 R = Nt λ                                               (11.4)

where s is a weekly survival rate. In actuality, the model would be more
complex, with s being a blend of rates over the year and R, the birth-pulse,
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usually doesn't occur instantaneously. Nonetheless, eq. (11.4) describes the
general pattern -- mortality occurs throughout the year, while reproduction
occurs in a short annual period. The geometric approximation operates as a
"step-function", assuming the population remains constant throughout the
year, and then jumping to the new level at year-end.

One very important consequence of the birth-pulse model is that the
basic unit of time is one year. This means that models for population growth
need to be difference equation models, rather than the continuous models
implied by the differential equations commonly presented in ecology
textbooks. Differential equations are often derived as limiting expressions for
difference equations. That is, a relationship is written as a difference equation
with time unit ∆ t and then ∆ t is assumed to become very small, resulting in an
"instantaneous" rate or differential equation. Thus, if the units of time become
very small (days, perhaps, instead of years) the discrete model becomes nearly
indistinguishable from the continuous model. This does not work with birth-
pulse models, due to the fact that births occur only once a year. Consequently,
the more realistic difference equation models are not necessarily suitably
approximated by continuous models. However, it is often possible to obtain a
perfectly reasonable  fit of a continuous model to the data. Thus, in Fig. 11.1, if
we observe population size annually just after births take place (or just
before), the continuous exponential model (dotted line) fits the data very
nicely. However, the rates of increase (r) implied by the two models may be
quite different unless λ  is in the neighborhood of unity (Fig. 11.2). In many
situations, one can ignore these details by using eq. (11.1). Problems may come
in at two points: (1) when estimating λ  by eqs. (11.2) or (11.3), and when a
more complex model for population growth is fitted.

11.3 Lotka's equation and the Leslie matrix model

The underlying model was derived by Lotka (1907) for continuously
reproducing populations. Leslie (1945) derived his matrix formulation as an
approximat ion to a cont inuously reproducing populat ion,  and the
demographic textbook approaches (e.g., Keyfitz 1968) also focus on the
continuous si tuat ion, since they are largely concerned with human
populations, where reproduction occurs the year around. Keyfitz (1968:Ch.8)
discussed convergence of the matrix equation to Lotka's integral equation. For
practical purposes, it is useful to be able to inter-relate the discrete version of
Lotka's equation (eq.(11.1)) with the Leslie matrix. This is readily done
through the characteristic polynomial (characteristic equation) of the matrix,
if the "maternity values" (Fx ) of the Leslie matrix are expressed as   Fx = somx,
where so is survival from birth to age 1. This points up the main difference
between the two formulations -- Lotka's equation pertains to the population
just after reproduction occurs, while the Leslie matrix pertains to the
population just before reproduction. That is, the first term of the stable age
distribution (eq.(11.6)) is co = B, the proportion of newborns in the population,
while the first element in Leslie's population vector (n1 ) represents the
youngest age class, just before parturition takes place, and one year after
births occur.

Cole (1954) showed that Lotka's integral equation can be replaced by a
summation for populations in which births are concentrated in a relatively
short period of the year. In practice, solutions of Lotka's equation have
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necessarily been approximated by a summation, in any case. The basic
equation is:                                  

where lx  denotes survivorship from birth (or from recruitment to some older
portion of the population) to age x, mx  represents age-specific reproductive
rates, and the summation ranges from the age of first reproduction (a) to the
maximum age (w) assumed represented in the population. Lotka's intrinsic
rate of increase (r) is widely used, but is replaced here by using λ  since a
finite rate of increase is appropriate for the many species populations that
reproduce in a short annual period ["birth pulse" populations in the useful
terminology of Caughley (1977)]. One can thus interpret λ  as er or 1+r.

The results given here were derived for "birth-pulse" populations.
Continuous breeding may take several forms. If the reproductive rate is
constant throughout the year, then equation (11.5) can be used as an
approximation, as was done by Birch (1948). If constant, continuous breeding
occurs only over part of the year, with no reproduction at other times, then it
may be necessary to resort to the approach of Leslie and Ranson (1940). In a
third pattern, reproduction may take place at any time of the year, but there is
a definite seasonal peak. Murray and Garding (1984) presented a general
approach for populations with "discontinuous breeding seasons" that depends
on an "average mx " but this rate is defined only by the statement (Murray and
Garding 1984:325) "mx  is the average fecundity of individuals in age class x, in
the sense that the Cx (t) individuals produce Cx ( t )mx  offspring between t and
t+1 that are observed alive at t+1...", and no method for calculating this
"average mx " was given in the paper. Consult Caswell (1989, 2001) for more
explicit approximations.

Lotka's model, in the form given by Cole (1954), represents the
population just after births take place. If we consider the population structure
just  before the annual period of parturition, the characteristic polynomial of
the Leslie (1945) matrix gives the same result. The Lotka equation (eq. (11.5)) is
somewhat easier to write out and preserves the central (lx ) entry of the
traditional life table. To construct a Leslie matrix, one only needs to note that
Leslie's reproductive rates can be written as Fx  = som x , where so = survival
from birth to age 1 (Eberhardt 1985). Annual survival rates appear in the
Leslie matrix as sx = l x + 1/l x  (hence so = l1). It is important to note that the
calculations here assume first-year survival (so) to be independent of fate of
the adult female. Caswell (1989, 2001) gave definitions of the Fi  that permit
structuring the Leslie matrix for censuses of "birth-pulse" populations taken
at any time of the year, but this requires some approximations. He also
considered birth-flow populations, and devoted most of the books to “stage-
structured” models, which are applicable when ages cannot readily be
assigned to individuals.

11.4  The stable age structure

The stable age distribution is calculated as:

1= −

=
∑λ x

x a

w

x xl m                                                (11.5)
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                                         cx = B λ-x lx                                                           (11.6)

because cx  represents proportions summing to unity, we have

1.5  Augmented life tables

An "augmented" life table is simply a convenient way to present the
data for Lotka-Leslie calculations in table form. Basic data for an augmented
life table are a column of ages, and the lx , mx , and cx  columns. Iterative
solutions of eq.(11.5) are needed to determine the rate of increase (λ  or r) and
to calculate cx . Such solutions are readily obtained with a simple computer
program (or on a programmable calculator). A convenient alternative is to
incorporate the data in a spreadsheet program that includes a column of
values of  λ - x  lx  mx . Trial and error calculations can then be used to satisfy
eq.(11.5). However, many of the currently available spreadsheet programs
include iterative procedures, so the table can be set up to provide a direct
solution of eq.(11.5). This can readily be done with the “SOLVER” routine in
EXCEL (found in the TOOLS menu). The column of λ -x l x m x  values should
nonetheless be maintained, since it is both a convenient way to examine
approximations and provides useful information,  described below. One of the
convenient features of the spreadsheet approach is that the data can often be
transferred directly into graphics and word processing programs. At least one
of the commercially available spreadsheet programs (EXCEL) also incorporates
routines for using matrix equations, so that various further operations on the
Leslie matrix are feasible directly from an augmented life table, if desired. For
most practical purposes, the Leslie matrix is not needed. The term,
“augmented”, is likely superfluous, as most contemporary writers now simply
use “life table” to include reproduction, although the original meaning
concerned only survivorship.

11.6  An augmented life table

The example used here (Table 11.1) is based on data on elk (Cervus
e laphus ) reported by Houston (1982). The survivorship data given by Houston
(1982:Table 5.8) were fitted to an equation given by Eberhardt (1985:eq.(6)) by
nonlinear least-squares on logarithms of the survival data (Fig. 11.3). The
equation used is:

Reproductive data (Fig. 11.2) from Houston (1982: Tables 5.1 and 5.2)
were used with eq (11.8), developed by Eberhardt (1985):

B
lx
x

x

w=
−

=
∑

1

0

λ

l a a x a bx = − − − −exp[ (exp( )]1 2 3 3 1                                         (11.7)

m a b x c a b xx = − − − −[ exp( ( )]exp[ exp( )]1 13 3                                    (11.8)
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 Pregnancy rates for older animals were obtained as a weighted average
of the 1962-1967 data given by Houston (1982: Tables 5.1 and 5.2). Data for the
older elk were reported as an average for all animals 16 years of age and older,
and are arbitrarily plotted here at age 18.

There is now a considerable degree of confusion in the literature about
parameter definitions, which is too extensive and too pervasive to discuss in
detail here. Jenkins (1988) provided a good review of the confusion in
textbooks. David (1995) more recently reviewed different formulations of e q .
(11.5). Much of the difficulty stems from the fact that both the Lotka and the
Leslie approaches actually refer to continuously-breeding populations, but are
computed with discrete approximations. Definitions of continuously breeding
populations thus involve averaging over some time period, usually one year in
length. The present approach depends on Cole's (1954) development of the
"Lotka" equation as a discrete model where reproduction is assumed, in effect,
to occur instantaneously at the same time every year.

Applications of the augmented life table to actual field data must, in
nearly all cases, use that data which can be obtained on a particular
population. "Birth rates" are then often actually observed as pregnancy rates.
Much of the confusion as to definitions (e.g., "natality", "fecundity") and
differences between the Lotka and Leslie models can be avoided in practice
simply by computing both approaches. This is readily accomplished by
spreadsheet methods.

All that is needed is to multiply the cx  column (stable age disrtibution)
of Table 11.1 by an initial population size (No). These values can then be
projected forwards one year by multiplying by entries in the sx  column to
create a column (N1) of projected numbers in age classes 1,2,3,... . The first
entry in N1 (age class zero) is obtained as the sum of products of the mx  entries
(Table 11.1) with those in column N1 (in most spreadsheets it is convenient to
enter the individual products in an intermediate (B1) column). The same
procedure may be used to project N1 to N2, N2 to N3, and so on. The overall
procedure is essentially that of the Leslie projection matrix, yielding the
corresponding series of population vectors (N1,N2,N3, ...). The only difference,
apart from a lack of matrix notation, is that newly-born individuals are
represented by an entry, whereas they do not appear in the age vectors of a
Leslie matrix projection.

The projection calculations should carry forward fractional "animals".
If this is done, then the ratio of successive sums will yield the same value of λ
as obtained by solution of eq (11.5). It is instructive to round the projection
vector (Ni ) entries (readily done by a standard spreadsheet command) and
calculate a series of λ i . For small and moderate population sizes such a
calculation gives a worthwhile illustration of the desirability of including no
more than 2 decimal places in reporting estimated values of λ . For example, the
data of Table 11.1 were used to project an initial elk population of 1,000
individuals. With fractional entries, the successive ratios of column sums are
all 1.20133, but if rounding to the nearest "individual" in each age-class is
used, successive values are 1.2010, 1.1998, 1.1964, 1.1972, 1.2010, 1.2000, 1.2013,
1.2012, 1.1989, and 1.2005.  Note that, in calculating λ  by eq.(11.5), one will
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usually carry more than 2 decimal places in order to be sure that eq.(11.5)
"ba lances" .

Table 11.1 Augmented life table for elk data from Houston (1982)

Age Reproductive Survivorship Adjusted Stable age Survival
rate net maternity distribution rate

m ( x ) l ( x ) rate c ( x ) s ( x )

0 0 1 0 0.2426 0.6745
1 0 0.6745 0 0.1362 0.995
2 0.0749 0.6711 0.0348 0.1128 0.995
3 0.4682 0.6677 0.18031 0.0934 0.9934
4 0.4732 0.6634 0.1507 0.0773 0.994
5 0.4728 0.6594 0.1246 0.0639 0.9936
6 0.4721 0.6552 0.1029 0.0529 0.9929
7 0.4711 0.6505 0.0849 0.0437 0.9918
8 0.4696 0.6452 0.0698 0.0361 0.9903
9 0.4674 0.6389 0.0573 0.0297 0.988

1 0 0.4641 0.6312 0.0468 0.0245 0.9845
1 1 0.4592 0.6215 0.0379 0.02 0.9795
1 2 0.452 0.6087 0.0305 0.0163 0.9719
1 3 0.4416 0.5916 0.0241 0.0132 0.9608
1 4 0.4264 0.5685 0.0186 0.0106 0.9445
1 5 0.4048 0.5369 0.0139 0.0083 0.9208
1 6 0.3746 0.4944 0.00983 0.0064 0.8865
1 7 0.3337 0.4383 0.0065 0.0047 0.8377
1 8 0.281 0.3671 0.0038 0.0033 0.77
1 9 0.2174 0.2827 0.0019 0.0021 0.6791
2 0 0.1484 0.192 0.0007 0.0012 0.5632
2 1 0.084 0.1081 0.0002 0.0006 0.4261
2 2 0.036 0.0461 0 0.0002 0.2813

The “adjusted net maternity rate” is:

                                                             λ−x
x xl m
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Fig. 11.3. Survivorship (upper curve) and reproductive data for elk from
Houston (1982). Fitted curves (eqs. (11.7) and (11.8)) are shown, along with
estimated age-specific rates (mx  rates were averaged for some age groups).

11.7 Reproductive and survival curves

The Lotka-Leslie model depends on age-specific rates. Ideally, λ  would be
calculated from eq. (11.5) using estimates of reproductive (mx ) and
survivorship (lx ) rates for each age class, and the models are often presented
as if such individual age-class values were available. In practice, however, we
seldom have the large volume of data necessary to estimate rates for each age-
class, and some kind of averaging has to be employed. Because the lx  values are
calculated as the product of individual survival rates such curves always
appear smooth, even though the actual survival estimates may be very erratic.
It is thus desirable to also plot individual survival rates.

In practice, fitting curves like those of eqs. (11.7) and (11.8) may not be
particularly useful or desirable. Very likely their main util ity l ies in
comparing different data sets and in dealing with the issue of senescence.
Because sample sizes are usually small, very few older individuals will be
observed so that little will be known about senescence in a given species. In
many studies, the possibility of lower reproductive and survival rates in the
older age classes has simply been ignored. For large vertebrates with
relatively high adult survival rates this practice can introduce a significant
b ias.

The practical way to limit such a bias is simply to truncate the age
distribution, i.e., to choose a value of the maximum age (w) used in eq. (11.5)
below the maximum age actually observed for a given species. Very likely the
main value of fitting curves to reproductive and survivorship data is just to
demonstrate the impact of various choices of w on the resulting estimate of λ.
In many cases there may not be enough data to make a guess at w, so that it
may be helpful to review data on other species, as shown in Fig. 11.4 below.
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11.8 Some useful approximations

The approximation used here serves when individual age-specific rates
cannot be obtained for all age-classes, as usually is the case in practice. It
represents survivorship by lx  = la s(x-a) (when x > a)  and reproductive rate by 

mx = m, so that the net maternity curve is lx mx = m la sx , where la denotes
survival to the age of first parturition, and s denotes adult survival rate.
Senescence is approximated by truncating the net maternity curve, i.e., w in
eq.(11.5) is reduced to compensate for dropping the senescence terms of eqs.
(11.7) and (11.8). Lotka's equation (eq.(11.5)) then has the solution used by
Eberhardt (1985:eq.(9)), expressed here as a polynomial in λ :

                          λa -sλa-1 -lam [1 - (
s
λ) 

w-a+1
] = 0                                   (11.9)

when w becomes very large we have:

                            λ a - sλ a-1 -lam = 0                                                (11.10)

If λ  = 1, then lam = 1 - s, so that recruitment to reproductive age just
balances annual mortality (1-s), as required for stationarity.  Because 1 or 2 of
the younger age classes often show sharply lower reproductive rates than
older animals, one may need to use 2 or 3 values of m, rather than the single
value of eq.(11.9) for accuracy in the approximation. The polynomial of
eq.(11.9) then becomes somewhat more complicated, but is not needed in
practice, as the relevant entries can simply be introduced in a spreadsheet
table like Table 11.1 for a solution.

When some of the subadult age classes can be assumed to have the same
survival rate (s) as adults, eq. (11.9) can be written in terms of survival to age
k (as lk ) after which survival is at the adult rate, so that la = lksa-k, giving:

                           λ a -sλ a-1 -lk sa -km [1 - (
s
λ) 

w-a+1
] = 0              (11.11)

Utility of the approximations  can be assessed by comparing the adjusted
net maternity curve for the approximate values with values for the fitted
equations (eqs.(11.7) and (11.8)). For the elk data discussed above, the
approximation is very good (Fig. 11.4). Using the data on fur seals (Cal lorh inus
urs inus ) of Eberhardt (1985) gives a little poorer fit (Fig. 11.5), but nonetheless
a good approximation.



                                                                                                                                     11.11

Fig. 11.4. Examples of survivorship and reproductive data. The domestic sheep
data are from Hickey (1960), while the feral sheep data are from Grubb (1974).
These curves show the impact of mortality early in life on a wild population
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very nicely. The feral horse survivorship data are from Garrott and Taylor
(1990), while the horse reproductive data are from Berger (1986). The African
buffalo survivorship data are from Sinclair (1977), the fur seal data from
Eberhardt (1981), and the fin whale data from Mizroch 1981.
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Fig. 11.5 Approximation (solid points) compared to values (bars) from fitted
curves (eqs.(11.7) and (11.8)) for elk data from Houston (1982).
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Fig. 11.6. Approximation (solid points) compared to data from fitted curves
obtained by Eberhardt (1985) for data on northern fur seals.

11.9 Approximate variance of λ

Setting confidence limits on λ is likely best done by the statistical
technique of bootstrapping.  However, bootstrapping does not supply estimates
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of the relative magnitude of the several components contributing to the
overall variance. Such estimates are essential in planning studies, i. e., h o w
much effort should be devoted to estimating each component, and what total
effort is required to produce a given width to the confidence interval?
Questions of this kind can be approached by approximating the variance of λ
by the "delta method".

A general expression for obtaining a variance by the delta method is
(Seber 1982):

where g(x ) is some function of several variables, xi , v(xi ) is the variance of a

given xi ,  
∂g
∂xj     represents the partial differential of g(x ) with respect to xi ,

and cov (xi ,xj ) denotes the covariance of two variables xi  and xj. In the cases
considered here, it is assumed that these covariances are zero or negligible.

The partial derivatives provide a useful byproduct, in that their
numerical values give an indication of the relative importance of each
component variable in determining λ . The partial derivatives have to be
obtained by implicit differentiation, due to the fact that there is no "closed
form" expression for λ , i. e., λ  = g(x ) cannot be written as a simple
mathematical expression (λ  is estimated by iterative methods from eq.(11.5),
(11.9), (11.10), or (11.11)). Inasmuch as the partial derivatives are complicated,
they are most conveniently obtained by one of the computerized routines now
available for equation solving. Results for eq (11.9) are:

                      
∂λ
∂s  = λ [(w-a+1)lamλ (

s
λ )w-a+1 - sλa]/sA                              (11.13)

                      
∂λ
∂l a  =  mλ2[(

s
λ )w-a+1 -1] /A

                                 
∂λ
∂m  =  laλ2[(

s
λ )w-a+1 -1] /A

where A = (w-a+1)lamλ (
s
λ) w-a+1 + λa(as - s -aλ ) .

Recently there has been a considerable amount of interest in
“sensitivity” and “elasticity”. Sensitivity has been defined as the partial

derivative of λ  with respect to aij  and elasticity as:

These definitions refer to the individual elements, aij , of a Leslie matrix,
whereas equations (11.13) are based on implicit differentiation of of eq. (11.9).
Nine papers in a Special Feature in vol. 18(3) of the journal, Ecology, describe
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recent developments. These papers  nearly all require matrix algebra and use
“stage-structured” models extensively.

Using the delta method requires variance estimates for each component
of the equation used. The main use at present appears likely to be in planning
a study, or in deciding how to improve a given data set by collecting more
observations. One then might assume a binomial distribution for the survival
rates for planning purposes. Obtaining a simple variance formula (like the
binomial) for reproductive rates is a subject that needs further investigation.
More research is also needed to evaluate the accuracy of both the delta method
and bootstrapping when used with the Lotka-Leslie model. Two approaches are
used here. One is to compare the two methods on actual data sets for several
species, and the second is to test the methods by monte carlo simulations.

Bootstrapping is a relatively new statistical technique that takes
advantage of the "number-crunching" ability of modern computers. The
ability to do many thousands of computations very quickly makes it feasible to
"resample" a data set and extract variance estimates. The surprising feature of
bootstrapping is that useful results appear to be available for quite small
samples.

The approach used here to set confidence limits on λ  is reasonably
simple, and can be illustrated with reference to eq. (11.9). For simplicity,
suppose n1 observations are available for estimating s, n2 for la, and n3 for m,
and stored in computer files. Exactly n1 random draws with replacement are
made from the file of data for s ("with replacement" means that the same data
point can be drawn more than once). An estimate of s is then made from this
sample by whatever technique was used for the original estimate. The same
process is carried out for la and m, using n2  and n3 samples  drawn with
replacement, and an estimate of λ  formed from the resulting data.

The technique for forming confidence intervals used here consists in
repeating the above scheme a large number of times, say 1,000. The resulting
1,000 estimates are arranged in a frequency distribution, and confidence limits
are determined as the points on the frequency distribution that cut off
approximately α /2 of the observations in each "tail" of the distribution, with α
usually set at 0.05. Thus for 1,000 bootstraps, the confidence limits are the
points cutting off the smallest 25 observations (lower confidence limit) and
the largest 25 observations (upper confidence limit). This is the "percentile"
method (Efron and Tibishirani 1993: Ch. 13).

An alternative approach is to use the set of bootstrap estimates to
calculate a standard deviation (s), and set approximate 95% confidence limits as
the original estimate of l +1.96 s. This technique has also been applied to the   
examples described below, and in the monte carlo simulations, and gave results
very close to the percentile method.

Most of the applications described below have been based on eqs. (11.9)
through (11.11), and values of a and w were assumed known. Given enough
appropriately collected data, one can bootstrap eq. (11.5) directly. Results for
one example appear below, along with examples depending on the
approximations given above.
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11.10  Examples of bootstrapping

The following figures show examples of bootstrapping for a number of species.
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Fig. 11.7. Outcome of bootstrapping survival and reproductive data for the
Hawaiian monk seal on Laysan Island. The reproductive and survival data were
described by Johanos et al (1994) and Gilmartin et al. (1994). Frequency
distributions for the components of eq. (11.5) are shown here. In this instance,
the adult survival rate was assumed to apply from age 1 onwards, so that k = 1.
Early survival  has 2 components, survival from birth to weaning, and from
weaning to age 1. The estimated value of λ was 0.97, with 95% confidence limits
of 0.91 to 1.01. The indicated rate of decline in the population was supported by
a log-linear regression on trend data, which gave essentially the same value of
λ.
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Fig. 11.8. Bootstrapping data from grizzly bears in the greater Yellowstone
area. Details of the study were reported by Eberhardt et al. (1994). In this
example, two subadult rates were used, so that la = so  s14, where so = cub
survival, and s1 = annual subadult survival rate. Cub survival is appreciably
less than subadult survival, which in turn is less than adult survival.
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Fig. 11.9. Bootstrapping data for Florida manatees. Manatees reproduce at about
3 year intervals, and thus high adult survival is essential for population
g r o w t h .
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Fig. 11.10. A study of feral horses by Garrott and Taylor (1990) provides
sufficiently extensive data for bootstrapping eq. (1) directly. The frequency
distribution of λ  above is from 1,000 bootstraps of Pryor Mountain horse data.
The 95% confidence limits were 1.122 to 1.196.
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Fig. 11.11. Bootstrapping data from a study of California sea otters. Data largely
from Siniff and Ralls (1991).
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11.11 Delta method examples

Applying the delta  method of eq.(11.12) to data on actual populations
gives the results shown in Table 11.2.

Table 11.2  Data from the delta method for actual populations.

Monk Grizzly Manatees Feral Sea
seals bears horses otters

Survival to age k l k 0 .38 0.52 0.68 0.968 0.63
Reproductive rate m 0.28 0.33 0.15 0.282 0.23
Adult survival s 0 .87 0.92 0.95 0.974 0.91
Age first reproduction a 6 5 4 3 3.5
Maximum age w 2 0 2 0 5 0 2 0 1 5
Lambda
    Bootstrapping 0.97 1.046 1.161 1.013
    Delta method 0.97 1.046 1.158 1.006
Coefficients of variation
     Delta method 0.03 0.02 0.01 0.009 0.07
     Bootstrapping 0.03 0.02 0.01 0.017 0.07

Components of variance
    Survival 0 .96 0.44 0.58 0.21 0.81
    Early survival 0 .02 0.46 0.18 0.03 0.1
   Reproduction 0 .02 0.1 0 .24 0.76 0.09
      Total 1 1 1 1 1

Partial derivatives
    Survival 1 .1 0 .57 1.02 1.03 0.9
    Early survival 0 .11 0.2 0 .09 0.16 0.17
    Reproduction 0 .3 0 .32 0.5 0 .55 0.56

11.12  Comparisons with direct estimates of λ

From Table 11.2 it appears that the delta method and bootstrapping yield
much the same estimates of λ and variability. One might thus use bootstrapping
to obtain confidence limits and utilize the delta method to examine components
of variance as a guide to improving estimates of λ by obtaining larger samples
of data on the parameters that contribute most to overall variability. Thus in
Table 11.2  the main improvement for monk seals will come from obtaining
more information on adult survival, which seems often to be the case.
However, the grizzly bear data suggest improvements might be equally
important for both early and adult survival. For the particular feral horse
herd used in the example, it appears that more data on reproduction  should be
obtained, but this likely is an exception to the general rule due to
c i rcumstances .
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An important further check on the estimates of λ  obtained from the
approximations obtained above is to compare estimates of λ  from reproductive
and survival data with those obtained from direct measures of population size,
usually by log-linear regression following the examples of Chapter 9. Fig.
11.12  shows results of such a comparison. The line shown in Fig. 11.2 is a 1:1
line, i.e., shows exact agreement of the 2 estimates. The major discrepancy
appears to be the data for caribou, and it seems likely that it is due to
underestimation of adult female survival rates, inasmuch as they were
reported to be significantly lower than those for subadults.

Fig. 11.12.  Comparison of direct estimates of lambda with those obtained from
reproductive and survival data by the Lotka method. Thirteen examples are
plotted of which 2 coincide with other points.

11.13 Development of stable age-structure

The following material gives a simple approach to development of the
Lotka equations. A formal proof requires methods of the calculus on a Complex
domain. The derivation used here assumes the end result, so does not consist of
a "proof" but is rather a simple demonstration of the mechanics of the process.
A further simplification is to assume time units of one year and to regard
reproduction as occurring instantaneously at the beginning of each year.  We
also assume that the population is growing geometrically at a rate, r.  Thus we
h a v e :

N o = initial population
rNo = number added in first year
N1 = No + rNo = No(1 + r) = population at end of first year

N2 = N1 + rN1 = No(1 + r)2 = population at end of second year
and, generally:

                                Nt = No(1 + r)t  = population at end of tth year               (11.14)

The above equation admits the possibility of fractional animals, which is
not a matter of great concern if the population size (Ni ) is large enough to
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avoid the influence of chance fluctuations. There are advantages in keeping
fractional animals and thus regarding the values calculated as expectations.

A convenient tabulation of the process has time (in years) along the left
margin and the series of year-classes along the top.  A further simplification
is achieved by supposing that a constant fraction (q) of the animals are lost
each year so that l-q = p survive to the next year.  It should be noted that this is
not a necessary assumption, but is used here to avoid complications.  The first
two years are shown as:
                                           Year-class                            Total
Time        1                     2                3                   ....                     population                      
   0           1                                                                         1
   1           p         q+r                                                         1+r

Thus the first age-class, at time zero, might be regarded as a "pioneer"
generation in a new habitat -- or, equivalently, as some particular segment of
a larger population.  A fraction, p, of this initial group survives to year 1, as
shown at time 1, under year-class 1.  Since it is postulated that the population
increases to 1+r at the end of the first year, it is necessary to add q+r new
recruits -- q to replace mortality in the "pioneer" group, and r to achieve the
requisite increase.  Going into the second year, the table is:

                                          Year-class                            Total
Time        1                     2                3                   ....                     population                      
   0           1                                                                        1
   1           p        q+r                                                         1+r
   2           p2      p(q+r)   (q+r)(1+r)                            (1+r)2

Fate of the pioneers is simply that another fraction (p) survives to year 2, as
happens to year class 2.  The entry in column 3 contains items to replace the
losses, that is p-p2 and q+r - p(q+r).  Since q + p = 1, this reduces to

                   p-p2 + q+r - p(q+r) = q(1+r)

and we require that the previous year's total (1+r) be increased by a fraction r
to sustain the geometric rate of increase.  Hence year-class 3, which contains
all of that year's recruits, has to be:

               q(1+r) + r(1+r) = (q+r)(1+r)

which gives the second year total (adding along the second row) as (1+r)2.

The third year population is constructed in the same way, giving:
                                         Year-class                                  Total
Time        1                     2                    3                       4                       population                     
   0           1                                                                              1
   1           p       q+r                                                                1+r
   2          p2      p(q+r)     (q+r)(1+r)                                 (1+r)2

   3          p3      p2(q+r)   p(q+r)(1+r)    (q+r)(1+r)2      (1+r)3

and a general formula for the ith year can be written down as:
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Total population = pi  + pi-1(q+r) + pi-2(q+r)(1+r) + pi-3(q+r)(1+r)2 + . . . +
pi-k (q+r)(1+r)k-1 + . . . + p(q+r)(1+r)i-2 + (q+r)(1+r)i-1 = (1+r)i

where i is the last year considered and k denotes a general term for some
intermediate year class.  Dividing through by the total population, (1+r)i , gives
the proportion in each year-class in year i:

[ (
p

1+r
  )i + 

q+ r
1+r   {(

p
1+r

  )i-1 +  (
p

1+r
  )i-2 + ... + (

p
1+r

  )i-k  + ...+ (
p

1+r
  ) + 1}] = 1 (11.15)

Note that p is less than unity, so p/1+r is also a fraction, hence large powers of
this quantity tend to become vanishingly small.  Hence, once i becomes large,
the "pioneer generation" virtually vanishes, as do the other early year-
classes, and the quantity in brackets approaches an infinite geometric series
(but written backwards).  Using the equation for the sum of a geometric series:

          1 + x + x2 + x3 + . . . = (1-x)-1 (x < 1)

we thus can write equation (11.15) as approximately:

                        
q+r
1+r   [1 - 

p
1+r  ]

-1 =  
q+r
1+r  

1+r
q + r  = 1

and the proportion corresponding to the xth year class is:

                                                 cx =  
q+r
1+r   [

p
1+r ]

 x                                              (11.16)

The quantity  
q + r
1+r   in equation (11.16) is also the ratio of any year's recruits to

that year's population total (consider the last year-class entry in any row of
the tables above), hence we denote it as

b =  
q+r
1+r                  (11.17)

and regard this as the "birth-rate" per head (really a recruitment-rate).

Since survival from year-to-year is constant, the survival for x years is
px , and equation (11.16) can be rearranged to

cx = b(1 + r)-x px                    (Σ cx = 1)                             (11.18)

11.14  Lotka's equations

In the development thus far, we have each year arbitrarily introduced
the number of recruits required to sustain a population increasing
geometrically, and this turned out to be a constant fraction (b) of the
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population total.  If we now assign age-specific reproductive rates, mx , to each
age-class ("year-class" above), an equation for b is:

That is, b is the recruitment-rate per head and it is contributed to at a rate mx ,
by each proportion of the population, cx.  Of course mx  may be zero, since the
early and late age-classes may not reproduce.  However, whether or not
reproduction occurs in the first age-class depends on the species and the
definition of time of recruitment, which might conceivably be set at sexual
maturity.  Using infinity for the upper limit of summation in equation (11.6) is
a convenient convention and avoids the necessity for defining an upper limit
to survival.  When actual examples are considered, we replace it with w, the
maximum age considered in an analysis. 

If the definition of cx  given by equation (11.14) is inserted in equation
(11.15) we have:

                                                 b =  ∑
x=0

oo
b(1+r)-x pxmx 

o r :

                                                  1 =  ∑
x=0

oo
(1+r)-x pxmx                                           (11.20)

and this now gives a general equation containing the several quantities
involved in population analysis -- survival, reproduction, and rate of increase.

Recalling that the cx  are proportions summing to unity permits a useful
rearrangement of equation (11.18), namely:

1
b  =  ∑

x=0

oo
(1+r)-x px                                      (11.21)

Equations (11.18), (11.20) and (11.21) then provide tools for calculating the
essential features of population structure.  If reproductive and survival rates
are known, a trial and error (iteritive) solution of equation (11.20) gives the
rate of population growth (r) to be expected when the population has reached
the stable age-structure given by equation (11.18).  Equation (11.21) provides a
means for calculating b after equation (11.20) is solved.

The above equations suffer one obvious fault in that a constant rate of
survival (p) has been assumed.  However, the previously mentioned results of
Lotka (1939) and Leslie (1945, 1948) permit replacement of the term px  above
by one that denotes an age-specific survival rate from recruitment to age x

reproductive rate =  b =                      c mx x
x =

∞

∑
0

11 19( . )
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(dated from the time of recruitment).  Hence equations (11.18), (11.20) and
(11.21) may be rewritten in terms of age-specific survival by replacing px  by
l x .  In practice, one usually estimates annual survival as a series of rates like
po  = survival from recruitment through the first year, p1 = survival in the
second year, etc., and lx  is then obtained as the product of several such rates.

If reproduction is regarded as a continuous process (as was done in the
original development of the equations), then it is necessary to replace the
summations above by integral signs, and the geometric rate of increase, (l+r)x ,
now becomes exponential. However, solutions require the use of the form
involving summations, in any case. Hence, we will consider only the
summation forms here. These are recapitulated below, using lx  instead of px :

                                                         
1
b  =  ∑

x=0

oo
(1+r)-x lx                                           (11.22)

                                                        cx = b(1 + r)-x lx                                             (11.23)

                                                       1 =  ∑
x=0

oo
(1+r)-x lxmx                                         (11.24)

The rate, r, is widely known as the "intrinsic rate of increase" (a term
coined by A. J. Lotka), and has been subjected to all sorts of attempts at
definition in terms of optimal conditions, etc.  The best definition is that of
equation (11.24), i.e., given constant age-specific reproductive (mx ) and
survival rates (lx ) a population will tend to develop a stable age structure, and,
if that age structure is attained, the population then increases at rate r.  From a
practical point of view, one may doubt the likelihood that a particular
population has or will actually attain the above conditions, but r is still useful
as a quantity defined by equations (11.24) for a given observed set of rates mx
and lx .

Before considering some simplifications of the above equations it is
worth noting that a similar development can be constructed for males by
assuming a 1:1 sex ratio at recruitment, and that p1 represents male survival.
Then :

Age structure for males:

                                                     cx  = 
q1+r
1+r  (1+r) -x p1x                                    (11.25)

Total population at year i = (1+r)i [1 +  
q1+ r
1+r   ]                         (11.26)

and, the sex ratio in the population then is:
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females/males =  
q1+ r
1+r                                          (11.27)

11.15  Net rate of increase

Some variations of the basic equations (11.22 to 11.24) are useful.  One is
the "net rate of increase" or "net reproduction rate" defined as:

Ro = ∑
x=0

oo
 lxmx                     (11.28)

or, in terms of an integral (continuous reproduction):

Ro = ⌡⌠

0

oo
 lxmxdx                                             (11.29)

These equations correspond to equation (11.24) with r=0, whereupon Ro=1 and
the population is "stationary" (neither increasing or decreasing).  There is
thus the expectation that if Ro > 1 the population should be increasing and vice
versa.  This is true enough if the age structure is that given by equation
(11.19), otherwise it is not necessarily the case, since the equations do not take
current age-structure into account.

R o  has also been used to define something called the "length of a
generation".  In those species reproducing only once, the length of a
generation can be explicitly defined.  Familiar examples are insects that
reproduce annually and die (or the cicadas, with as much as 17 years of larval
development before reproduction and death in a few weeks of adult life), and
the Pacific salmon with 3 or 4 year "cycles" between spawning of parental and
filial generations.  But when a species exhibits repeated and age-specific
reproduction the replacement of one generation by another is a gradual
process, with no specific time of transition.  Thus there is a need to define
some measurement if one wants to consider "length of a generation."  The
necessity for a definition is of major importance in terms of genetic behavior
of a population.

Leslie (1966) gives several definitions of length of a generation, with
his own recommendation being:

T
_ 

 = ⌡⌠

0

oo
 xe-rx lxmxdx                                   (11.30)

Leslie pointed out that this is not the same as an earlier definition:

T = 
logeRo

r                                                     (11.31)
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Another definition that has been used is that of the mean age of mothers at the
birth of their daughters or "cohort generation time":

Tc =

⌡⌠

0

oo
xlxmxdx

Ro
   =  

⌡⌠

0

oo
xlxmxdx

⌡⌠

0

oo
lxmxd x

                                  (11.32)

which is equivalent to T when r=0.  The above equations are written with
integrals as would be the case for continuous reproduction, but summation
signs need to be substituted for cases where reproduction occurs at discrete
time intervals.

Equation (11.31) seems difficult to justify as a useful measurement of
"generation time," and for most practical purposes one might elect to use
either equation (11.30) or (11.32), with the latter being a little less trouble to
calculate.  However, students should consult Leslie's paper and Caswell (1989,
2001) if they have occasion to use mean length of a generation.

11.16  Practical applications

With a few exceptions, the actual use of equations (11.22) to (11.24)
entails circumstances that permit various simplifications.  The exceptions
consist largely of human populations (demographic and actuarial data) and a
few species that have been extensively studied in the laboratory or in
domestication. The main simplification results from the observation that 2 or 3
different survival rate estimates may serve to represent lx .  This largely
results as a consequence of constant survival rates for mature individuals.
Since most wild animals die violently from predation, accidents, or hunting,
and do so at rates great enough to preclude more than a small fraction
reaching any sort of old age, it is difficult to determine whether adult age-
classes may exhibit age-specific mortality which is simply not observed or
whether the adult survival rate is indeed virtually constant.  Since very large
samples are needed to demonstrate relatively small changes in survival rate,
and since year-to-year changes in overall rates do clearly occur, it is not
surprising that age-specific rates have seldom been recorded for mature
an ima ls .

Whether the younger age-groups are assigned one or two survival rates
depends in part on longevity of the species and on quality and quantity of the
available data.  In most circumstances it seems desirable to use two rates; one
for an interval including birth and the relatively short period of high
mortality just after birth, and the second for the subsequent interval up to
maturity.  Very likely early adult life should also be characterized by an
additional rate, but only rarely are sufficient data available to do so.  The
choice of number of survival rates also depends on the choice of age for
recruitment to the population being studied.  Thus if new recruits are not
tallied until they are nearly mature, two survival rates may suffice.
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Somewhat similar considerations may apply to reproductive rates.
Many avian species appear to have a virtually constant clutch size, so that
only one reproductive rate need be used, while the shorter lived mammals may
have a smaller first litter, but effectively constant litter size thereafter. Many
of the larger mammals show distinct age-specific rates, increasing to the
"prime of life", holding relatively constant for some considerable time
thereafter, and possibly declining to nearly zero in "old age".  In practice,
then, age-specific reproductive rates may constitute from two values (zero for
younger age-classes and a constant rate for all mature age classes) to perhaps
3 to 5 significantly different rates.

Given a reduced set of lx and mx values as suggested in the above
paragraphs, one can then simplify the calculations required by equations
(11.22) to (11.24) or produce alternative versions to serve as the basis of
inferences about population trend, or allowable harvest, etc.  Leslie (ibid.)
gives an example for a seabird (Uria aalge, the guillemot or murre) which           
serves to illustrate the procedure.  This species first breeds at 3 years of age
and it is assumed that clutch size remains constant thereafter.  Lesl ie
calculated mx  on the basis of the number of young at fledgling stage, "ready to
go to sea", and equal numbers of males and females, so that we start dating
events at this time, with mo=0, m1=0, m2=0, m3= F = mx  (x > 3), where F is a  
constant (since only a single egg is hatched by a breeding pair, F is at most
0.5). Survival for the first year after hatching was defined as Po, while that in
the second year was P1, and the rate in all subsequent years was considered a
constant value, P.  The essential rates are thus:
Age (x) 0              1   2  3   x(x>3)             
Su rv i va l 1 po p1 p p

     lx 1 po pop1 pop1p pop1px -2

      mx 0 0 0 F F

If we let  λ = l+r, as used by Leslie, then equation (11.15) becomes:

  1 = λ -0(1)(0) + λ -1po(0) + λ -2pop1(0) + λ -3Pop1pF + λ -4pop1p2F

     = λ -3pop1F(1 + λ -1p + (λ -1p)2 + ...)

     = λ -3pop1F(1 - λ -1p)-1

so that:

                               1 - 
p
λ   = λ-3Po p1F

and :

λ3 - pλ2 - pop1pF = 0                                               (11.33)

Hence, given values for Po, P1, P, and F, one can calculate λ  (and thus r) by
solving the cubic equation (11.33).

The net rate of increase, Ro is (equation 11.28):
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Ro= pop1F(1 + p + p2 + ... ) = 
pop1pF
1  -  p                                  (11.34)

so that if r=0 (and thus λ =1) equations (11.33) and (11.34) are identical and
represent conditions when the population is of constant size.  Thus one can
consider the plausibility of the available estimates of Po, P1, P and F over long
periods of time, or conjecture as to the future of the population if survival
and/or reproductive rates change.

Using equation (11.24) and  λ = l+r, we calculate:

  
1
b  = 1 + λ -1po + λ -2pop1 + λ -3pop1p + ...

     = 1 + λ -1po + λ -2pop1 + λ -3pop1p(1 - λ -1p)-1

 which provides an estimate of b from which the stable age-structure can be
obtained with equation (11.23).  Again, if r=0, then  λ =1, simplifying the
equation somewhat.

Introducing additional age-specific reproductive rates poses no special
problems, beyond including the necessary quantities in a table like the one
used above, and keeping track of the necessary algebraic results. this gives
results like eq. (11.11). Sometimes, as was done be Leslie in his study, it is
convenient to use all adults (3 years old and older in this case) as a base, and
calculate proportions of nestlings, 1 and 2 year-olds relative to that base.  In
practice, one may often not be able to determine the exact age of an "adult",
necessitating such an arrangement.

11.17 Exercises

11.17.1 Discrete and continuous rates of increase

Most species show some degree of seasonality in reproduction. There is
thus an annual cycle of numbers, peaking at the period of maximum
reproductive effort, and reaching a minimum when reproduction is at the
lowest annual rate (or not occurring at all in many species). Annual rates of
growth should thus be computed from measurements made at the same time
each year, and the "compound interest" formula is the appropriate model for
population growth:
                                       Nt+1 = Nt(1 + r)t

where t is expressed in years. There are some species that will reproduce
continuously under suitable conditions. The continuous time model:
                                       Nt+1 = Nt ert

 then provides a close approximation to observations, and t can be measured in
time units of varying length.

As a matter of mathematical convenience and custom, many authors use
the continuous model exclusively, When r is small, and t not too large, it makes
little difference which model is used. Students should try values of r = 0.01,
0.05, 0.10 for t = 5,10,20 in the two equations in order to see how the results
d i f fe r .
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If we utilize λ  in equations, it can represent either case, i.e., λ =er or
λ =1+r. The main difference arises when one reports a rate of increase as r. In
one case r=logeλ , and in the other, r=λ -1. Students should try calculating r from
values of λ  calculated from the two definitions (i.e., suppose λ=1.25, a n d
calculate r = l o geλ  and r=λ -1 and compare the results. Compare the series

expansions of loge(1+r) and er for further understanding.

11.17.2  Constructing a stable age distribution

Make a numerical version of the table of Sec. 11.13  using p=0.9 and
r=0.1. Carry it to the fifth generation. Note that each succeeding entry for a
given year class is simply p times the previous value, and the last year class in
each generation is given by the last term in the equation for total population
size given below the table. Check to be sure that your values add to (1+r)i  for
the ith generation. Convert the last row into proportions, and calculate the
stable age distribution from eq. (11.23) and enter it as a final row in the table.
Note that the final year class in each row represents newborns and is
consequently co, so that you enter the stable age entries from right to left in
the last row.

Since survivors from the zeroth generation are calculated as pi , it will
take quite a long time before that generation is reduced to a level
commensurate with the result expected from eq.(11.15). In 20 years, we have
(0.9)20=0.1216. Compare this with the result you get from eq. (11.23). Hence,
with high survival rates, changes in age structure can persist for fairly long
time periods.

11.7,3 Calculating rate of increase for fur seals.

Use of equations (11.22) to (11.24) can be illustrated with data on the
northern fur seal (Callorhinus ursinus). The data appear in Table 11.17.1 below  
and consist of age-specific reproductive rates (mx ) and annual survival rates
(px , which are often written as sx). The mx entries in the table are one-half of
pregnancy rates observed in extensive pelagic collections of fur seals (some
12,000 seals were aged). Survival rates were estimated in various ways.
Survival from birth to age 3 comes from estimating pup numbers and the
number of 3 year-old males present at the time they were harvested for furs.
This three year rate was arbitrarily partitioned over the first 3 years of life. A
single adult survival rate was estimated from the rate of decrease of the
relative size of age classes from age 3 up to age 16, and then from averaging
ratios of pairs of year-classes for animals older than age 16. More details are
available in Eberhardt (1981).

Calculations proceed by forming an lx  column from the annual survival
rates simply by taking products, with lo = 1 by definition. Since mx  = 0 for the
early age-classes, equation (11.20) can be written as:

                                    1 = ∑
3

24
 λ -xlxmx 
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The equation is solved for λ  by iteration, i.e., one chooses a value of λ  in the
neighborhood of unity, calculates the sum, and either increases or decreases λ
according as the sum exceeds or is less than unity, continuing until the sum is
sufficiently close to unity. Programming a calculator or computer to do the
work is desirable if one has more than a few such calculations to carry out.

One iterative method uses linear interpolation. From the data of Table
11.15.1, we can compute that the sum of the lxmx is 1.0604. This is equivalent to
setting λ  = 1.0. Evidently λ  is somewhat larger than unity, so we might try λ =
1.01. This gives a sum of 0.95787. A simple way to remember the interpolation
process is just to note that the two pairs of points computed thus far determine
a straight line, y = a +bx. It is convenient to let y = λ , and x represent the sum
calculated from the equation above, since we want to predict what value of y
results from x=1.0. The slope (b) is the rate of change in y resulting from a
change in x from 1.0604 to 0.95785. This gives:

                            b = 
1.00-1.01

1.0604-0.95787  = -0.0975324.

The intercept, a, is then:

                            a = y - bx=1.01 + 0.0975324(0.95787) = 1.10342,

so the line is thus:

                            y = 1.10342 - 0.0975324x

Setting x=1 gives λ =1.00587. Using this value in eq. (11.20) gives a sum of
0.999006. Another iteration can be obtained by following the same procedure,
using the new value and that for λ =1. This gives

                             y=1.10319 - 0.0956119x

or λ =1.00578 which yields a sum of 0.99992. A sketch is always helpful in
keeping track of things in the interpolation process.

Linear interpolation formulas given in textbooks and manuals require
fewer calculations, but the above procedure should be easy to remember. Other
approaches can be used when a calculator or computer is programmed.
Perhaps the simplest is to start with λ =1 and change it by some small
increment which is positive or negative depending on whether the resulting
sum (eq.(11.20) is greater or less than 1.0. As the sum decreases, then the
increment should be made smaller, down to the order of accuracy wanted. As
has been noted before here, one can conveniently avoid most of the above by
using SOLVER in EXCEL.

When λ  has been calculated, eq.(11.22) can be used to calculate the
"birth rate per capita" (b) and eq.(11.23) then provides the proportions in
various age-classes found in a population having the stable age structure.
These are shown for the fur seal data in Table 11.15.1. Note that b is also the
first entry in the age structure table (why?).
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11.17.4  Rates of increase from Leslie's model

Leslie (1966) gave estimates of po = 0.7, p1 = 0.8, p2 = 0.9 and F = 0.2307 for
a guillemot (murre) population. Solving eq. (11.33) with these values requires
finding the positive root of a cubic equation:
                          x3 - 0.9x2 - 0.116273 = 0
which has the solution x = 1.01325 (=λ ). From eq. (11.28), we get Ro  =
0.116273/0.1 = 1.1627. Leslie also used F = 0.375 and F= 0.50 for illustrative
purposes. Calculate λ  and Ro corresponding to these two values of F.

11.17.5 Calculating a stable age distribution for Leslie's data

For F = 0.2307 and the survival rates given in the exercise above,
calculate the stable age distribution for Leslie's guillemots at the time of
hatching, assuming that there are 1,000 adults (3 years of age and older). Use
the equation following (11.24) to estimate b, and eq.(11.23) to obtain cx.

11.17.6  Extending Leslie's simplified model

Leslie (1966) assumed that the guillemots began reproduction at age 3.
As discussed in Sec. 11.15, he then produced a cubic equation, and solved that
for λ . Often, one will not have the data to solve the resulting polynomial, but it
may nonetheless be useful to explore possibilities with the data that are on
hand. Thus Eberhardt and Siniff (1977) wrote the corresponding equation as:
                              1 = λ -apop1pa-2F(1 - pλ -1)-1

where a = age of first reproduction. Students should check to see that this
reduces to eq. (11.33) when a = 3.

The quantity often missing in field studies is survival from birth to
adulthood, so the above equation was rearranged by defining the ratio:

                                        K =  
pop1

p2  

which is the ratio of juvenile survival to that of adults. This then gives:

                                       K = 
λa-1(λ -p)

Fpa  

If we have estimates of F and p, it is then possible to explore the rates of
increase likely to result from various ratios of juvenile to adult survival.
Eberhardt and Siniff (1977:Fig. 3) plotted some values for convenient
inspection of possibilities. Other arrangements of the simplified equations
were used to examine other facets of marine mammal population dynamices .
An important conclusion was that the age of first reproduction is not as
important in determining rates of increase as seems to be assumed in many
r e f e r e n c e s .

11.17.7  Calculating length of a generation

Try the equation of Sec. 11.14 on the guillemot data given above. You
will need to replace integrals by summations and use sums of series. Make a
table showing the three estimates for length of generation for each of the
three values of F given in the example.
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Table 11.17.1. Age structure data for northern fur seals.

Age cx mx lx px        

0 0.18876 0 1 1
1 0.10288 0 0.548 0.548
2 0.08183 0 0.4386 0.800
3 0.07419 0.0015 0.400 0.912
4 0.06727 0.0205 0.3648 0.912
5 0.06100 0.192 0.3327 0.912
6 0.05531 0.3815 0.3034 0.912
7 0.05015 0.4020 0.2767 0.912
8 0.04547 0.433 0.2523 0.912
9 0.04123 0.4495 0.2301 0.912
10 0.03738 0.4405 0.2099 0.912
11 0.03390 0.446 0.1914 0.912
12 0.03074 0.440 0.1746 0.912
13 0.02787 0.434 0.1592 0.912
14 0.02527 0.420 0.1452 0.912
15 0.02291 0.4135 0.1324 0.912
16 0.02077 0.402 0.1207 0.912
17 0.01396 0.341 0.0816 0.676
18 0.00893 0.3325 0.0525 0.643
19 0.00499 0.273 0.0295 0.562
20 0.00310 0.239 0.0185 0.626
21 0.00135 0.293 0.0081 0.438
22 0.00054 0.178 0.0032 0.4
23 0.00016 0.05 0.0009 0.3
24 0.00003 0 0.00019 0.2

Exercise 11.17.8.     The Leslie matrix.
The results given in this Chapter depend on the discrete form of Lotka’s
equation and the assumption of a birth-pulse population as expressed in eqs.
(11.5) and (11.6). Because the Leslie matrix is widely used, students should be
familiar with it. The following table gives the elk data of Table 11.1 expressed
as a Leslie matrix (but the matrix is printed in two blocks because of space
constraints,  and the row and column numbers are not part of the matrix).

1 2 3 4 5 6 7 8 9 1 0
1 0 0.0505 0.3158 0.3192 0.3189 0.3184 0.3178 0.3167 0.3153 0.3130
2 0.995 0 0 0 0 0 0 0 0 0
3 0 0.995 0 0 0 0 0 0 0 0
4 0 0 0.9934 0 0 0 0 0 0 0
5 0 0 0 0.994 0 0 0 0 0 0
6 0 0 0 0 0.9936 0 0 0 0 0
7 0 0 0 0 0 0.9929 0 0 0 0
8 0 0 0 0 0 0 0.9918 0 0 0
9 0 0 0 0 0 0 0 0.9903 0 0

1 0 0 0 0 0 0 0 0 0 0.988 0
1 1 0 0 0 0 0 0 0 0 0 0.9845
1 2 0 0 0 0 0 0 0 0 0 0
1 3 0 0 0 0 0 0 0 0 0 0
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1 4 0 0 0 0 0 0 0 0 0 0
1 5 0 0 0 0 0 0 0 0 0 0
1 6 0 0 0 0 0 0 0 0 0 0
1 7 0 0 0 0 0 0 0 0 0 0
1 8 0 0 0 0 0 0 0 0 0 0
1 9 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0
2 2 0 0 0 0 0 0 0 0 0 0
2 3 0 0 0 0 0 0 0 0 0 0

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 2 1 2 2 2 3
0.3097 0.3049 0.2979 0.2876 0.2730 0.2527 0.2251 0.1895 0.1466 0.1001 0.0567 0.0243 0.0243

0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

0.9795 0 0 0 0 0 0 0 0 0 0 0 0
0 0.9719 0 0 0 0 0 0 0 0 0 0 0
0 0 0.9608 0 0 0 0 0 0 0 0 0 0
0 0 0 0.9445 0 0 0 0 0 0 0 0 0
0 0 0 0 0.9208 0 0 0 0 0 0 0 0
0 0 0 0 0 0.8865 0 0 0 0 0 0 0
0 0 0 0 0 0 0.8377 0 0 0 0 0 0
0 0 0 0 0 0 0 0.77 0 0 0 0 0
0 0 0 0 0 0 0 0 0.6791 0 0 0 0
0 0 0 0 0 0 0 0 0 0.5632 0 0 0
0 0 0 0 0 0 0 0 0 0 0.4261 0 0
0 0 0 0 0 0 0 0 0 0 0 0.2813 0

The first row of the matrix contains the reproductive values for ages listed in the column
headings (these are ages one and older as newborns do not appear in the Leslie matrix).
The reproductive rates are those of the first column of Table 11.1 multiplied by survival
from birth to age 1 (0.6745). The entries in the diagonal starting with age 2 (left column of
numbers) are survival rates from age one onwards as shown in Table 11.1. A stable age
distribution is calculated as in eq.(11.6) except that one has to recode the age-classes so
that age one is now coded as age-class zero. This lets us set up a stable age distribution
for 10,000 elk which is used as an age vector (column of ages) along with the MMULT
function of EXCEL. To use that function, one enters the range of the Leslie matrix followed
by a comma and the range of the initial age structure vector (must have the same number of
rows as the Leslie matrix). The MMULT function then produces a new vector which is the
population structure one year later. Because we started out with the stable age structure,
the same proportions are obtained as in the initial age structure. If one starts with a
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different age structure, then repeated projections show a convergence to the stable age
structure. The several computations are as follows:

lambda 1.20133
SURVIVAL Calc. for COHORT 1s t 2nd 3 rd
RATES l ( x ) C(x) c (x ) project

.
prop pro j prop pro j prop

0 0.995 1 1 0.1798 1798.2 2160.3 0.1798 2595.3 0.1798 3117.8 0.180
1 0.995 0.995 0.828 0.149 1489.4 1789.2 0.149 2149.5 0.149 2582.3 0.149
2 0.9934 0.990 0.686 0.123 1233.6 1481.9 0.123 1780.3 0.123 2138.8 0.123
3 0.994 0.983 0.567 0.102 1020.1 1225.4 0.102 1472.1 0.102 1768.5 0.102
4 0.9936 0.978 0.469 0.084 844.0 1013.9 0.084 1218.1 0.084 1463.3 0.084
5 0.9929 0.971 0.388 0.070 698.1 838.6 0.070 1007.4 0.070 1210.3 0.070
6 0.9918 0.964 0.321 0.058 577.0 693.1 0.058 832.7 0.058 1000.3 0.058
7 0.9903 0.957 0.265 0.048 476.3 572.2 0.048 687.4 0.048 825.8 0.048
8 0.988 0.947 0.218 0.039 392.7 471.7 0.039 566.7 0.039 680.8 0.039
9 0.9845 0.936 0.180 0.032 322.9 387.9 0.032 466.0 0.032 559.9 0.032

1 0 0.9795 0.921 0.147 0.026 264.6 317.9 0.026 381.9 0.026 458.8 0.026
1 1 0.9719 0.902 0.120 0.022 215.8 259.2 0.022 311.4 0.022 374.1 0.022
1 2 0.9608 0.877 0.097 0.017 174.6 209.7 0.017 251.9 0.017 302.7 0.017
1 3 0.9445 0.843 0.078 0.014 139.6 167.7 0.014 201.5 0.014 242.1 0.014
1 4 0.9208 0.796 0.061 0.011 109.8 131.9 0.011 158.4 0.011 190.3 0.011
1 5 0.8865 0.733 0.047 0.008 84.1 101.1 0.008 121.4 0.008 145.9 0.008
1 6 0.8377 0.650 0.035 0.006 62.1 74.6 0.006 89.6 0.006 107.6 0.006
1 7 0.77 0.544 0.024 0.004 43.3 52.0 0.004 62.5 0.004 75.1 0.004
1 8 0.6791 0.419 0.015 0.003 27.7 33.3 0.003 40.0 0.003 48.1 0.003
1 9 0.5632 0.285 0.009 0.002 15.7 18.8 0.002 22.6 0.002 27.2 0.002
2 0 0.4261 0.160 0.004 0.001 7.4 8.8 0.001 10.6 0.001 12.7 0.001
2 1 0.2813 0.068 0.001 0.000 2.6 3.1 0.000 3.8 0.000 4.5 0.000
2 2 0.019 0.000 0.000 0.6 0.7 0.000 0.9 0.000 1.1 0.000

sum 5.561 1.000 10000 12013 1.000 14432 1.000 17338 1.000
B= 0.1798

Repeat the calculations in order to become familiar with the Leslie matrix. There are
many more manipulations possible, and one can calculate lambda directly from the
matrix, and so on.

Exercise 11.17.9  Convergence to stable age structure.
The above exercise started out with a stable age structure. Use the same matrix
for projections, but start the projections with a different initial age vector.
Enter 4287 above the first column of the spreadsheet that will contain your
calculations, number a column from 1 to 23 as in the above exercise, but now
make the “cohort” entries by multiplying by 0.7 raised to the power of the row
numbers, i.e., entries will be calculated from 4287*0.7^x , where x is the row
number (1 to 23). The first cohort should be as shown below. Now project out 10
years proceeding as in the previous exercise, and note that the proportions in
each age class approach the stable age distribution as in the previous exercise.
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4287
0.7

COHORT
1 3000.90
2 2100.63
3 1470.44
4 1029.31
5 720.52
6 504.36
7 353.05
8 247.14
9 173.00

1 0 121.10
1 1 84.77
1 2 59.34
1 3 41.54
1 4 29.08
1 5 20.35
1 6 14.25
1 7 9.97
1 8 6.98
1 9 4.89
2 0 3.42
2 1 2.39
2 2 1.68
2 3 1.17

SUM 10000.26
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12.0 POPULATION MODELS
12.1 Introduction

A tremendous amount of work on ecological models has been published
in the last few decades, including a number of books on the subject, and a
journal, Ecological Modeling. The focus here will be on models that may be
useful in collecting and assessing field data on actual populations. These may
range from quite simple equations to complicated computer programs. Almost
any kind of analysis depends on a model of some sort. Many scientists use
various statistical tests without stopping to consider that each such test
depends on a formal model.

The simple linear regression model, y = a + bx, serves to assess one
possible relationship between paired observations. Fitting a regression model
is usually (but not necessarily) done with the least-squares technique. The
fitting process depends on the assumption of a model (linear in this case). If
least-squares is used in fitting, it brings in the further assumption that the x-
values are known exactly, so that the minimizing process involved in fitting
deals only with variability in the y-variable (independent variable). For
linear regression, this amounts to minimizing the quantity:

                                                               S = Σ [y
i
 - (a + bxi)]2

                                                                     i
with respect to the coefficients (parameters) a and b.

Going beyond the fitting process to do statistical tests of various kinds
requires some further assumptions. For linear regression, the main such
assumption is that the model is actually of the form:

                                                       yi = α  + βxi + ei                                                    (12.1)

where the ei are randomly drawn from a normal distribution with mean zero

and a constant variance, σ 2 . We thus have a sequence of events in using
models. First one settles on the mathematical form of the model, then on the
method of fitting, and finally methods of analysis are considered, i. e., finding
out whether the parameters are "significant" and how important they are in
the process being studied.

Many population models use time as the independent variable, so that
the variation in fitting can reasonably be assumed to be associated solely (or
mainly) with the dependent variable. Consequently, least-squares is often an
appropriate fitting technique. Unfortunately, many of the models that seem to
be useful in ecology are fairly complicated. Consequently, most of the usual
statistical analysis techniques can only be validly applied in considering
components of the model, and become very doubtful indeed if applied to model
outcomes.

This makes the relatively new technique of bootstrapping appear very
promising for modelling, as it can be applied to very complex systems. One
such application appears in Chapter 11, where bootstrapping and the delta
method were applied to a complex model, the Lotka-Leslie model. Because the
model has to be solved iteritively, least-squares is no help. Efforts to deal with
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the underlying model mathematically depend on the calculus of complex
variables and thus become difficult for most biologists. Bootstrapping,
however, is quite straightforward and gives results supported by realistic-
seeming stochastic models of actual populations.

12.2 Curve-fitting models

A natural extension of the simple linear regression model is to fit more
complex curves. Multiple regression offers a simple extension of the linear
regression model (eq. 12.1), taking the form:

                                      yi = bo + b1x1 + b2x2 + ... bkxk + ei                                  (12.2)

where the xi  are several (k) independent variables. Fitting is again readily
done by least-squares. Many texts now give the relevant equations in matrix
form. Mathematically and computationally speaking, a large number of
independent variables can be used, but this is where a lot of biologists get into
serious trouble without realizing what they are doing. Many of the available
statistical packages wil l not only f it multiple regressions with many
independent variables, but they will also "decide" which of the variables are
"statistically significant" via stepwise regression. If fits with the observed
variables (x1, x2, etc.) aren't satisfactory, one can try various transformations,

e.g., x12, log x2, 1/x3, etc., looking for a good fit.

The problem with this approach is that it may be difficult to justify even
the simplest multiple regression model for biological data. Very often we can
be quite sure that linear models are not suitable for biological relationships.
Hence experimenting with combinations of variables until one gets a good fit
should only be used for predicting a future y-value and then on ly   if the model
can be proof-tested on an independent data set. Otherwise such predictions
may be an exercise in self-delusion.

The most frequently used model in population studies is undoubtedly the
exponential function:
                                                              y = aebx                                                         (12.3)

where a and b are again parameters. Usually a = N0, the initial population size,
y = Nt, current population size, and x = t, time of observations. The exponential
function is non-linear, i.e., the variables are not related by simple additions
and multiplications as in eqs. (12.1) and (12.2).

There are two ways to fit eq. (12.3). One is by non-linear leas t -squares
which requires a computer fitting routine, now found in most statistical
packages. Using that approach assumes that the underlying model is:

                                                    yi  = aebxi + ei                                                       (12.4)

i.e., that the error terms are additive. The alternative is to take natural
logarithms of the yi , giving the log-linear regression model:

                                                    loge yi = loge a + bxi                                             (12.5)
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which is readily fitted by simple linear regression. To justify eq. (12.5), one
needs to write the underlying model as:

                                                            yi = aebxi ei                                                    (12.6)

thus assuming that the errors are multiplicative. This appears to be the
appropriate model for population data. If one fits an exponential model to a
sequence of observations of a population changing at a constant rate, and then
examines the deviations of observed points from the fitted curve:

                                                   Deviations = yi - N0erti                                        (12.7)

it usually turns out that the deviations increase in magnitude with time.
Deviations from the log-linear model tend to be independent of time, giving a
reasonably constant "variance about regression", and thus conforming
approximately to the simple linear regression model requirement of constant
v a r i a n c e .

The log-transformed approach using simple linear regression (log-
linear regression) is thus to be preferred. This disturbs some workers, who
prefer to think in terms of the observed population size. An obvious answer to
that complaint is just to present the data in terms of the original
measurements, i.e., numbers or counts, rather than the logarithms of those
data. Doing so may draw criticism from statisticians, who point out that
"transforming back" can introduce bias in estimates. However, the over-
ridingly important result from a log-linear analysis of population trend data is
ordinarily the slope, which estimates the rate of change, r, directly (and thus
does not need to be transformed back in any case). The other parameter in a
fitted equation (N0) seldom gets much attention, regardless.

In many instances, the basic data may be counts, rather than actual
population estimates, so it makes good sense to stay on the logarithmic scale
and graph the fitted relationship as a straight line. An advantage, as
mentioned above, is that deviations from the fitted regression line tend to be
more uniform over time, supporting the notion that log-linear regression
gives a useful estimate of the rate of change.

One may thus be led to suppose that it will be acceptable to go ahead and
obtain confidence limits for r in the usual manner for linear regression, and
this seems to be a rather common practice. Unfortunately, there is reason to
doubt that such limits will provide the degree of "confidence" one would
expect. In simple linear regression 95% confidence limits on the slope can be
interpreted to mean essentially that if we repeat the process generating the
observed data many times, then 95% of the resulting estimates of r should fall
within the confidence limits obtained in the first place. Hence, it might be
supposed that if it were possible to observe many populations growing under
conditions identical to the one population studied, about 95% should show
values of r within the calculated confidence limits.

The problem is that normal theory confidence limits are based on the
assumption that the "errors", ei , of eqs. (12.1) and (12.5) are randomly and
i ndependen t l y   drawn from a normal distribution. For population growth, this
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would mean that each increment of growth would be determined
independently of previous increments. However, real populations, like real
organisms, do not grow that way. A chance fluctuation early in time
influences future population size. Consequently, a population experiencing,
by chance, slow growth initially may have a trajectory appreciably below that
of a population that happens to "get a good start".

The consequences of this phenomenon appear quite surprising.
Eberhardt and Simmons (1992) used stochastic models of population growth for
several species of large mammals to study behavior of the confidence limits
generated from log-linear regressions on such data. Their results were
expressed in terms of "coverage" of calculated confidence limits. That is,
confidence limits calculated for log-linear regressions on each of 1,000 runs of
a given population model were examined to see whether they included the true
rate of population change expected from the population parameters used.

If confidence limits from log-linear regression applied to population
growth data behaved as for ordinary linear regression, the anticipated
coverage would be 95%. In the simulations, it was about 60%. This raises doubts
about confidence limits for the rate of growth determined from log-linear
regression. In practice, of course, other factors influence the observed
variability, including sampling errors of the measurements of population size
and  year-to-year fluctuations of the actual rate of growth associated with
environmental condit ions.

The simulations of Eberhardt and Simmons (1992) did show that an
accurate estimate of the rate of change can be obtained from trend data, so that
estimating a rate of change from trend data complements estimates from
reproductive and survival data very nicely (Fig. 11.12). The main problem is
one of how to make comparisons between estimates from the two sources. Some
unpubl ished s imulat ions indicate that  coverage f rom bootst rapping
confidence limits based on the Lotka-Leslie model is very close to the expected
95%, so that, if there are no biases in the survival and reproductive estimates
used in generating the estimate of λ , the confidence limits from bootstrapping
provide a useful tool for further analysis.

It should be noted that there is a theoretical answer to the problem of
poor coverage of confidence limits from loglinear regression on population
trend data, but one that is impractical for population studies. The approach is
that taken in studies of growth of individual organisms, where the same
problem exists. In that case, one simply observes growth rates for a number of
individuals, and confidence limits for the mean growth rate are based on the
rates for the individuals. However, it is seldom feasible to study a number of
independent populations under the same conditions, so using "replications"
isn't a useful solution.

One further outcome of the simulations of Eberhardt and Simmons
(1992) is useful. This is that confidence limits on projections of given
populations a few years into the future did give acceptable coverage. It is thus
evident that trend data can give useful estimates of rates of change, and
provide worthwhile confidence limits on short-term projections of population
size. The implication then is that a record of trend data provides useful
information on variability for the observed population trajectory, but not for
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other trajectories that might arise from the underlying survival and
reproductive rates.

Consequently, if we have estimates of rate of change from reproductive
and survival data and from trend data, it appears worthwhile to ask whether
the estimate from trend data can be considered to be one realization of the
many possible population trajectories that might arise by chance from the
observed reproductive and survival data. One approach is to do a t-test. A
difficulty is that the variance of the trend data estimate can be expected to be
different from that obtained from reproductive and survival data. This leads to
what statisticians know as the Behrens-Fisher problem. An approach using
bootstrapping has been suggested by Efron and Tibishirani (1993).

12.3 Some growth curves

A number of equations other than the exponential have been used to
represent the growth of populations, usually for laboratory studies or in the
case of introduction into new habitat or after substantial reductions in
numbers.  Most of the curves are "sigmoid" or S-shaped with the initial stage
characterized by nearly exponential growth, followed by a gradual tapering-
off towards a constant, or asymptotic level.  The curves to be described here
are all deterministic, that is, do not take into account chance or stochastic
fluctuations in numbers. Stochastic versions are available for several of the
curves, but the details are mathematically complex.

All of these curves are also applicable to the study of growth of
individual organisms, and several were originally developed for that purpose.
Thus we may take the dependent variable, y, as representing either population
size or the weight of an individual or average weight of a group of individuals,
all presumably being of the same age.  Since the curves are all continuous in
form, we are effectively supposing the population to be large enough that it
doesn't matter whether we use a continuous or discrete representation.  This is
also implied by the use of a deterministic as opposed to a stochastic model.

Since there are a substantial number of growth curves available, one
needs some criteria for choice in particular circumstances.  This is a problem
that is not resolved.  Both the growth of populations and that of individual
organisms are sufficiently complex and variable to prevent a solution on
purely theoretical grounds, and the choice is often one of convenience for the
needs of the moment.  Although theoretical bases are available for most of the
curves, discussion here will largely be limited to one simple criterion - the
rate of change per unit of time.  Thus for exponential growth the rate of
change is a constant fraction of y, that is, for a small increment of time ( ∆ t )
the incremental change in y (∆ y) is proportional to y:

                                                                    
 ∆ y
 ∆ t    = ry

so that, for population growth, this can be described as the difference between
births, b(or recruits) per head and loss rate (d), giving

                                                          
∆y
∆t   = by - dy = (b-d)y = ry
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If a continuous variable is involved, the differential notation is normally used,
i.e.,

                                                                        
d y
d t    = ry

It may be more convenient to study a given set of data in terms of a relative
rate of change,

                                                                        
d y
y d t  = r

so that one examines the rate of change divided by the current size.  In
examining a given set of data, one might thus decide on a convenient (but
short) time interval, ∆ t, and determine whether the corresponding changes,
∆ y, are nearly constant fractions of current size (y).  Of course the assumption
of exponential growth can be examined much more readily by simply taking
logarithms (or plotting on "log-log" paper), but such a simple approach is not
available for many of the other growth curves. Such curves can often be fitted
by non-linear least-squares (available in a number of commercial computer
“packages”). When these routines fail to converge (or give dubious results), it
is worthwhile to start over with guesses as to the parameters. Often the first
derivatives given below can be used to obtain such starting values.

The remainder of this section will be devoted to a listing of a number of
growth curves, the first derivative (dy/dt) and a few remarks.  Most of the
curves can be written in several forms.  Those used here are largely as given
by Grosenbaugh (1965). An extensive set of models for analysis of fish growth
and survivorship is available in Schnute and Richards (1990). All of the curves
described here (excepting, of course, the exponential) have an upper
asymptote (denoted by A) which is approached as t becomes very large.  All but
one are sigmoid, or S-shaped. The exception is sometimes known as the
"monomolecular" curve, and has the equation:

                                                       y = A(1 - e-Bt)                                                    (12.8)

Replacing e-Bt  by the first two terms in the series expansion (e-Bt =
.
 1-Bt) gives

an approximation for small values of t:

                                                               y =
.
  Abt

which shows that the curve starts out as nearly a straight line.  As t becomes
large, y gradually approaches A, so we have something like an inverted J, or a
curve that is concave downwards.  The first derivative (rate of change) can be
written as:

                                                            
d y
d t    =  B(A - y)                                                (12.9)

Thus when y is small the rate of change is nearly constant, indicating a
straight line as suggested above.  As y increases the slope diminishes, and
ultimately reaches zero at the asymptote.  For a given set of data, an
investigator could calculate ∆y for some small fixed  ∆ t and expect that a plot of
∆ y against y would yield approximately a straight line:

                                                              ∆y =
.
  BA – By

and thus suggest the applicability of equation (12.8) as a model.  In this case,
however, the general shape of the curve should also give a first indication as
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to its suitability.  This curve has been used to represent the upper portion of
growth curves, by simply disregarding the early stages of growth.  One way to
do this is to write the curve as:
                                                          y = A(1 - e-Bt) + C

so that when t = 0, y = C where C is the first value to be considered. Eq. (12.8) is
also often useful if one wishes to fit curves to reproductive data as shown in
Fig. 11.4. Sometimes it is possible to fit eq.(11.8) directly with non-linear least-
squares, but this approach often will fail due to the number of parameters that
need to be estimated. This is especially true when there is little data on
senescence, as usually is the case. One may then attempt to approximate the
curve in sections. Eq. (12.8) represents the left-hand side of the curves (Fig.
11.4), except that a constant (c) appears in eq. (11.8). This constant effectively
represents the age at which an appreciable amount of reproduction is first
observed (e.g., age 4 in the fur seal data of Fig. 11.4). One can thus obtain a
useful guess at c and take a as the reproductive rate observed for prime-age
individuals, and then fit the left-hand portion of the curve by non-linear
least -squares.

Equation (12.9) indicates that the rate of change depends on y (and the
constants A and B) but not on t -- that is growth depends only on the size
already achieved, and not on time.  A curve that brings in a dependence on
time also, is named after the mathematician Gauss, has the following form:

                                                            y = A(1 - e-bt2)                                            (12.10)

and has the first derivative:

                                                              
d y
d t     =  2bt(A - y)                                        (12.11)

so that we have the rate of change again decreasing in proportion to size of y
(just as in equation (12.9)), but there is an opposite effect due to the value of t.

Equations (12.8) and (12.10) may also be written with another constant
(C) as multiplier for the exponential term:

                                                                  y = A(1 - Ce-bt)

                                                                 y = A(1 - Ce-bt2)

which provides more flexibility in fitting data, for which the price paid is less
assurance that the particular curve considered is somehow unique or
"appropriate".  In neither case does C appear in the first derivative.

The logistic (Verhulst) curve has probably been more widely used t h a n
any of the others.  The equation is:

                                                                 y = 
A

1 + Ce-B t                                           (12.12) 

and the derivative is:

                                                                  
d y
d t    =  y (A - y)                                    (12.13)
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which shows again a dependence on the approach to the asymptote through
(A- y), but now modified by the value of y.  A plot of  ∆ y/∆ t against y will now
give a curve (a quadratic or second degree curve):

                                                                
∆y
∆t     = By - 

B
A  y2

In fisheries management, an important concept is that of a stock-recruitment
curve, which compares the number of recruits to a fishery with the existing
stock. These curves can be considered as growth curves. Because recruitment
is often an annual or generational event, the underlying equations can best
be expressed as difference equations, rather than the differential equations as
in the other growth curves described here. Two stock-recruitment curves
have been widely used, one being the Beverton and Holt curve (Beverton and
Holt 1957) and the second due to W.E. Ricker, who described both curves in
detail in his 1975 book (Ricker 1975). It can be shown that the Beverton and
Holt curve can be written as a difference equation form of the logistic curve
{eq. (12.12)] and that the Ricker curve approaches the Beverton and Holt curve
under limiting conditions (Eberhardt 1977c). The Ricker curve is nonetheless
different from the logistic and is worth separate l isting here, being
conveniently written as:
                                                        Nt+1 = ANte-BNt

where Nt is the population size at time t (often at generation t, as for Pacific
salmon where distinct generations are observed) and A and B are parameters.

A rather more complicated curve with an evident similarity to the
logistic is the Pearl-Reed curve:

                                                         y = 
A

1 + Qe-(Rt+St2 +Ct3)
                           (12.14) 

which has the derivative:

                                                      
d y
d t    = 

y
A  (A-y)(R + 2St +3Ct2)                           (12.15) 

so that the rate of change has the logistic's dependence on y modified by
another second-degree equation in t.  This is a difficult curve to work with, but
is included here to show the range of possibilities generated through a variety
of assumptions about the rate of change and all built around the deviation
from the asymptote, y-A.

A popular curve for representing growth of individuals is named after
Gompertz, whose interest was, however, in studying mortality curves for
actuarial purposes.  The equation is:
                                                               y = Aexp(-Ce-Bt)                                     (12.16)
with derivative:

                                                                 
d y
d t    = BC ye-Bt                                         (12.17)

This is evidently a departure from the rates-of-change thus far considered. An
inspection of data may be most convenient in terms of a relative rate of
c h a n g e .
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d y
y d t   = BCe-Bt

which might conveniently be plotted on "semi-log" paper (i.e., plot ∆ y / y
against t) where it should appear as a straight line.  Referring back to
equation (12.13) it appears that the relative rate of change of the logistic
curve should provide a straight line in arithmetic coordinates:

                                                                  
d y
y d t   = B - 

B
A  y

so that the two curves (logistic and Gompertz) provide a rather distinct
con t ras t .

Growth of individual fish has been represented by a curve developed by
Von Bertalanffy, with the equation being:

                                                            y = A(1 + Ce-Bt)3                                        (12.18)

This curve has the derivative:

                                                        
d y
d t   = 3B(A1/3 y2/3  - y)                                 (12.19)

which is not so readily compared with the other forms.  However, the original
rationale for the curve does give an interesting interpretation.  Von
Bertalanffy proposed that the rate of growth of a fish depends on the
dif ference between anabol ism and catabol ism, with anabol ism being
proportional to surface area and catabolism to body weight.  If surface area is
taken as proportional to weight over length, an approximation then is weight
to the 2/3 power and we have:

                                                              
d w
d t   = k1w2/3 - k2w

where the ki  are constants, and we thus have the general form of equation
(12.19).  An interesting, and useful, sidelight is that the relationship can be
approximated in terms of the length of fish, giving an equation equivalent to
(12.10).  An alternative way to write equation (12.18) is:

                                                              y = A[1 + e-B(t-to)]3

so that to becomes a parameter replacing C.  This can also be done for the other
equations involving C as a multiplier of the exponential term.  Since to is a
constant, one can write:
                                                       e-B(t - to) = eBto e-Bt   = Ce-Bt

where C = eBto.  The advantage of using to is that it provides an explicit symbol
of the fact that this constant lets one shift the curve along the time axis.

Another quite different growth curve is the Johnson-S c h u m a c h e r
equation, which has been used mostly for tree growth:

                                                                 y = Aexp(- 
B

t+c  )                                      (12.20)



                                                                                                                       12.10

The derivative is:

                                                                      
d y
d t   = 

By

(t+c)2
                                          (12.21) 

and this provides another variant on the relationship between rate of change,
time, and current level.

12.4 Projection models

Many population studies must deal with the situation where appreciable
numbers of individuals are removed from a population, often annually, but
also on a less-regular basis. Dealing with such situations accurately requires
estimates of abso lu te   numbers in the population and of removals. The models
used here also require that the removals take place in a relatively short time
interval, to avoid the complications of appreciable numbers of deaths from
natural causes during the removal period.

Two models may be considered:

         I        Nt = Nt-1λ  - Kt                                        (12.22)

        II        Nt = (Nt-1 - Kt)λ

In essence, model I assumes that removals, Kt, take place just before the census
at time t, while the second model assumes that removals take place just after
the census at t-1. Annual censuses are assumed in both cases. If we let S1
denote survival from t-1 to reproduction, and S2  denote survival from
reproduction, R, to removal, Kt, then Model I can be written as:

                Nt = (Nt-1S1)RS2 – Kt

so that λ = RS1S2, including reproduction and survival through two periods of
natural  mortality. However, if there is an appreciable loss between removal
and the second census, then another survival rate needs to be introduced, and
a bias is introduced.

Hence if we have estimates of absolute population size, and known
removals in a short time period, the two models offer a way to estimate λ in the
presence of removals. A very convenient way to proceed is to use a ratio
estimate. In Model I:

                                    λ̂  = 
Σ( N t +  Kt)

ΣNt-1
                                       (12.23) 

Where the summation is over successive observations. An alternative is to use
a least-squares approach. A difficulty is that the estimates of population size
are serially correlated, i.e., Nt-1 becomes Nt in the next time period. Eberhardt
(1987) examined this problem by testing various approaches on sets of
population growth data that did not involve removals. With such data it is
possible to estimate the rate of change by log-linear regression, as discussed in
Section 12.1. The ratio and least-squares (log-linear regression) estimates gave
consistent results, as shown in Fig.12.1.
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With such a high correlation between the two methods, it would app e a r
that the ratio method is likely to give useful results. A remaining problem,
however, is one of obtaining useful variance estimates, due to the serial
correlation issue. One way to approach the problem is to use jackknifing, in
which a set of estimates is obtained by dropping each of the n items from
which λ  is estimated in turn, and forming n estimates of λ  from the sets with
one item deleted. A variance is then computed from the n estimates. A
comparison (Fig. 12.2) between the jackknife variance estimates and that from
the least-squares fit suggests that the jackknife method gives comparable
estimates, but can't always be depended on.
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Fig. 12.1. Relationship between estimates of λ from the ratio method and from least-
squares. Data from Eberhardt (1987:Table 2). 1:1 line shown.
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Fig. 12.2. Comparison of estimates of variance for λ  obtained from jackknifing
(Ratio S.E.) and estimates from a least-squares fit to the data. Data from
Eberhardt (1987:Table 2). 1:1 line shown.

From the examples mentioned above, it appears that the projection
models may be quite useful in various circumstances. In some instances,
reproductive and survival data may also be available, so that an estimate of the
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value of λ  occurring without removals is also on hand. It will then be
important to know whether an estimate of λ  obtained from the removal data, as
described above, is compatible with that obtained from the Lotka-Lesl ie
a p p r o a c h .

12.5 Predator-prey models

Various simple models for predator-prey interactions have been
discussed and explored mathematically for over 70 years. The initial models
were two simple differential equations proposed by Lotka (1925) and Volterra
(1931).  Very little attention has been given to attempts to fit coefficients from
actual field data, or to use such data to assess individual components of the
models. Some prospects are explored in Section 12.6 by using data on wolves
and their prey.

In practice, we usually need to deal with "birth-pulse" populations
(Caughley 1977:6) where reproduction occurs in a relatively short period each
year. The population then decreases until the next birth period, when it again
gets a boost upwards. This sort of behavior may approximately be described by
a "step-function", i.e., by a graph looking like a stairway, perhaps with steps
of uneven size (cf. Fig. 11.1). One may thus use difference equations rather
than differential equations, and the models used here are all computed as
difference equations. Much of the recent literature is based on differential
equations, which are not appropriate for birth-pulse populations because
reproduction does not occur continuously throughout the year.

We first show the relationship of difference equations to differential
equations, using the logistic equation (previously given as eq. (12.12) but
shown here with the parameters familiar to ecologists):

                                             
dV

dt
rV

V

K
= −[ ]1                                                      (12.24)       

with K being the asymptotic value. Differential equations are often developed
as a limiting expression, where some small increment of time approaches zero.
For present purposes, we consider the increment as unity (one year, one day,
etc.) and write:

                                              
dV

dt
V V rV

V

Kt t t
t≈ − = −− −
−

1 1
11[ ]

Rearranging gives a difference equation:

                                                      V V rV
V

Kt t t
t= + −− −
−

1 1
11[ ]                                   (12.25) 

Many of the differential equations of interest in ecology have no explicit
solutions, but the logistic does:

                                  V(t)= 
K

1  +  c e- r t  
    where c = 

K - xo
xo                                   (12.26) 

with xo = initial value, here taken to be unity.
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The logistic model for population growth assumes continuous growth, at
an instantaneous rate, r. If we take r = 0.8 and K = 30,000, then we can plot
eq.(12.26) for, say, 30 years. To approximate it with difference equation (12.25),
we need to subdivide the year into increments. If we use 20 such increments,

then r1 =  
r
20   =  

0.8
20   = 0.04.  Fig. 12.3 shows, the difference equation provides a

reasonable approximation to the differential equation, with as few as 20
increments per unit of time.

Fig. 12.3. Graph of a logistic equation (line) compared to values (points)  from a difference
equation version of the underlying differential equation.

Usually, we expect the behavior of the predator population to depend on
the abundance of the prey, and it also may be subject to removals by man. The
terms "prey" and "predator" often refer to animals, but the models can also
serve to represent herbivores and vegetation. Consequently, we use the letters
H for herbivores or predators, and V for vegetation or prey. The prey equation
usually contains provision for self-limitation or a "density-dependence" term,
often the logistic model given above, and then a term representing removals
by the predators. This is termed the "functional response" and is denoted below
as a generalized function, F(H,V). The predator equation contains a term
showing the way in which the predator supposedly responds to prey
abundance, and this is termed the "numerical response" and denoted by
G(H,V). It is worthwhile to quote the original definition of these terms
(Solomon 1949) inasmuch as some discussions in the literature appear to
deviate appreciably from that definition. Solomon uses "natural enemy" to
cover both predators and parasites:

"to be density-dependent, the enemy must respond to changes in numbers of
the host .... The nature of this response is commonly twofold. First, there must
be a functional response to (say) an increase in the host density, because of the
increased availability of victims: as host density rises, each enemy will attack
more host victims, or it will attack a fixed number more rapidly. A frequent,
but not invariable result of this is an increase in the numbers of the enemy (a
numerical  influence) due to an increased rate of survival or of reproduction,
or of both; this may or may not be sufficient to produce an increase in the
proportion of enemies to the increasing hosts."
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The two generalized equations are:

                                         
dV

dt
rV

V

K
HF H V= − −[ ] ( , )1                                          (12.27) 

                                
dH

dt
HG H V= ( , )                                                               (12.28) 

Where F(H,V) represents the “functional response” and G(H,V) is the
“numerical response”. In the early use of these equations, it was assumed that
the functional response was proportional to the number of predators present,
i.e., that F(H,V) = α V so that the equation becomes:

                                                    
dV

dt
rV

V

K
VH= − −[ ]1 α                                          (12.29) 

with the last term often interpreted as depending on an "encounter rate" and
thus the product of the numbers of H and of V. The numerical response has
been written as G(H,V)= -d + β V, and this can be interpreted as a constant
mortality rate of predators (d) plus a reproductive rate depending on prey
abundance (βV), with the equation then becoming:

                                                    
dH

dt
V d H= −( )β                                                    (12.30) 

There are a variety of other forms of functional and numerical responses,
with a large literature dealing with theoretical interpretation of these terms.
Various aspects of the theory appear in May (1981), and some of these are
discussed in Section 12.7 below.

With this background, we can take a look at a system variously used to
describe vegetation-herbivore interactions (Caughley 1976, 1977, Caugh ley
and Lawton 1981), in which the herbivore has been described as an "ungulate"
or as typifying "white-tailed deer colonizing a mosaic of grassland and forest"
(Caughley and Lawton 1981). In the several examples, the relevant equations
are given as differential equations, which are here translated to difference
equat ions:

                                 Vt = Vt-1 + rm1V t-1(1 - 
V t-1

K  ) -c1Ht-1(1 - e-d1V t-1 )       (12.31)

                                  Ht = Ht-1[1 -a2 + c2(1 - e-d2V t-1 )]                                     (12.32)

The exponential terms, (1 - e-diV t-1 ) , are supposed to adjust the herbivore's
intake of vegetation and population growth rate according to density of
vegeta t ion .

Plots of vegetation and herbivore density show rather dramatic changes
in the first 20 years, and come nearly to equilibrium in 50 years (Caugh ley
1977:Fig. 9.6, Caughley and Lawton 1981:Fig. 7.3). If we plot the difference
equations (12.31) and (12.32) using the constants given by Caugh ley
(1977:129), we get very pronounced and continuing oscillations (Fig. 12.4).
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Fig. 12.4. Caughley's (1977) vegetation-herbivore system computed as a difference
equation in which reproduction occurs annually.

Why the difference? The answer lies in the way in which the equations
interpret reality. The difference equations assume reproduction occurs just
once a year for the herbivore and for vegetation. The differential equations
assume reproduction goes on throughout the year. Caughley (1977:130)
remarked that "the population has been grown in a programmable desk
calculator by estimating growth curves twenty times per year and adding on
the appropriate increment each time". However, ungulates don't reproduce 20
times a year, behaving instead like the difference equations, producing young
once a year. Since vegetation does grow continuously over part of the year, a
somewhat different model presumably could be used for vegetation. If we
follow Caughley's prescription cited above, using difference equations and
rates divided by 20, then the difference equation model reflects  his Fig. 9.6
reasonably well, but the time scale is now multiplied by 20. In effect, if
reproduction occurs only once a year, then the curve shown by Caugh ley
takes something like 500 years, not 50 years.

The main point to be made here is that one needs to be sure that the
equations used do reflect the biology of the situation at hand. Some other
problems with the system discussed above are described by Eberhardt (1988).
Another example concerns an effort to consider the role of interactions
between species in the management of multispecies fisheries. May et al. (1979)
used differential equation models to il lustrate the possible impacts of
commercial harvesting of the main food supply (krill) of baleen whales in
Antarctic waters. They stated that "A crude Lotka-Volterra form of predation is
assumed, with prey being consumed at a rate proportional to their density,
a N1, per predator".  Written as a difference equation, this gives:

                                  Vt= Vt-1 + r1V t-1(1 - 
V t-1

K  ) -c1Ht-1V t-1                            (12.33)

while their predator equation is:

                                    Ht= Ht-1 +   r2Ht-1[ 1 - 
Ht-1
aVt-1

  ]                                          (12.34)
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The problem is that baleen whales are very unlikely to have evolved to each
take a proportional share of the available prey. Instead they quite clearly take
as much prey as needed to supply the individual whale, so that the last term in
eq. (12.33) becomes c1H t-1. Such a change makes an appreciable difference in
trend of the predator and prey curves, and conclusions about equilibrium
points, relative yields, and the like, as indicated in Eberhardt (1988).

12.6 A wolf-ungulate model

As noted above in connection with eq. (12.33), it is unlikely that an
effective large predator will take a proportional share of the available prey. A
further modification of eq.(12.33) is available in the form of the generalized
logistic in which the growth rate may not begin to decline appreciably until
the population approaches its asymptotic value (K). With these modifications,
eq. (12.33) becomes:

The general form of eq.(12.34) has been recently popular under the label of
"ratio dependence" (Matson and Berryman 1992). Eberhardt (1997) used data on
moose and caribou from the literature to show that the functional relationship
very likely can be reduced to the constant, c, of eq.(12.35). It is worth noting
here that the equilibrium values (obtained by setting Ht = Ht-1 and Vt = Vt - 1
a r e :

  V K
ca

r
z= −[ ] /1

1

1         and         H = aV                          (12.36)  

The best available data are those for moose. Eberhardt (1997,2000) used
data from the literature to estimate c in eq. (12.35) as 2 moose killed per wolf
per 100 days in winter, with an annual rate of a little less than 7 moose per
wolf. Eberhardt (1998) calculated a maximum rate of increase for moose as λ =
1.38. The parameter z is not well established, but was used as z = 5. Carrying
capacity (K) depends on the specific population considered and thus may be
selected arbitrarily here. For eq. (12.34) the maximum rate of increase for
wolves was estimated as λ = 1.48 (Eberhardt 1998) and the ratio-dependence
constant as a =1/20 wolves/moose (Eberhardt and Peterson 1999). Using these
constants, and starting with a moose population of 30,000 (at carrying
capacity, K) and a small initial wolf population (20) gives the results of Fig.
12.5, which can be compared to Fig. 12.4. A small initial fluctuation soon
disappears and both moose and wolves settle down to steady-state numbers at
the assumed ratio of 20 moose per wolf.

An obvious feature of Fig. 12.5 is the absence of the oscillations that
were induced in the model of Fig. 12.4 by the choice of mathematical forms for
the functional and numerical responses. There is a good deal of evidence that
such oscillations do in fact occur in insect populations with their generally
high rates of increase, but wolves and their prey have much lower rates of
increase so that the models derived for insects and other species with high
rates of increase ought not to be arbitrarily assumed to be appropriate as
seems to have been done in the literature.

V V rV
V

K
cHt t t

t z
t= + − −− −

−
−1 1 1

1
11[ ( ) ]                           (12.35)  
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Fig. 12.5 Trend of moose and wolf populations using Eq. (12.34) and (12.35) with the
parameters given above.

Another carryover from entomological studies is the notion of a “total
response” model in which the predator population is assumed to respond
instantaneously to changes in prey abundance. Using such a model one can
conveniently depict predator abundance as a function of prey abundance and
produce a variety of models along the lines of Messier (1994). However, wolves
do not respond instantaneously to fluctuations in prey numbers, and hunting,
trapping, and “control” actions have resulted in non-equilibrium numbers of
predator and prey in most real-world situations. A realistic approach thus
needs to depend on equations like (12.34) and (12.35) that show non-
equilibrium conditions. The “total response” model traces back to Ho l l ing
(1959) who warned about the consequences of assuming that model as follows:
“The method is an over-simplification, since predator density is portrayed as
being directly related to prey density. Animal populations, however, cannot
respond immed ia t e l y  to changes in prey density, so that there must be a delay
of the numerical response” and “the total response obtained when prey or
hosts are steadily increasing will be different than when they are steadily
decreasing. The amount of difference will depend on the magnitude and
amount of delay of the numerical response, for the functional response has no
element of delay”.

An interesting aspect of the model of eq. (12.34) and eq. (12.35) is that it
can be fit directly to actual data, using multiple regression. An attempt to do so
for data on Isle Royale moose and wolves appears in Eberhardt (1998:Fig. 2).
Unfortunately, there are few data with enough years of observations on both
prey and predators to make such an approach widely applicable and both
moose and wolves on Isle Royale appear to have been subjected to influences
not considered in the simple model. This illustrates the major dilemma in
model-building in ecological studies. Usually only a few parameters can be
unambiguously estimated from actual data, forcing the use of simple models
that cannot accommodate unexpected changes due to environmental or other
factors. A further possible difficulty with the simple model of eq. (12.34) is the
assumption that wolf abundance is limited solely by moose abundance through
the ratio-dependence parameter (a). In reality, wolf packs defend more or less

5 04 54 03 53 02 52 01 51 050
0

5000

10000

15000

20000

25000

30000

0

500

1000

1500

2000

2500

3000

YEAR

N
U

M
B

ER
 O

F 
M

O
O

SE

N
U

M
B

ER
 O

F 
W

O
LV

ESMOOSE

WOLVES



                                                                                                                       12.18

exclusive territories, a factor that may limit their abundance in the presence
of high prey densities.

12.7 Assessing differential equation models

This Section is provided to supply an indication of how differential
equation models for predator-prey studies can be evaluated. The basic problem
is that most such equations cannot be “solved”, i.e., integrated. Section 12.5
used the logistic equation as an example of a differential equation that can be
solved directly and showed that the difference equation analog can be used to
provide a good approximation to the behavior of the differential equation. This
is the simplest approach for studying differential equations when direct
solutions are not possible. Quite a bit can be learned about the equations by
plotting trend of the populations on a diagram showing the “isoclines”. We can
illustrate the basics by considering a modification of the original predator-
prey equations due to Lotka (1925) and Volterra (1931). The original equations
a r e :

                                     

dV

dt
rV bVH

dH

dt
cVH dH

= −

= −

1

where V denotes prey and H denotes predator as before. According to May
(1981) “This system has pathological dynamical properties…”, and we will not
consider the equations in the above form further here. A major problem from
the biologist’s point of view  is that, when no predators are present (H = 0), the
prey population will grow continuously, without limit. Hence early workers
made the modification given by eq. (12.29) which introduces the logistic
equation as a control on the prey rate of increase if no herbivores are present,
i.e.,

                                
dV

dt
rV

V

K
bVH= − −1 1[ ]

One approach to studying differential equations of this type is to plot the trend
of equilibrium solutions, i.e., let dV/dt=0, and thus:

                                       H
r

b

V

K
= −1 1[ ]

so that, given values of the constants, one can plot H against V as a straight
line. The solution of the predator equation is just V = d/c, a constant, and thus a
vertical line on the plot of H against V. The intersection of the two lines
(known as isoclines) provides an “equilibrium point” or the joint solution of
the two equations. This is the point at which the predator and prey populations
settle down to constant values (equations are known that cycle endlessly, and
one example will be given later in this Section).

To go further, we need to convert the differential equations to
difference equations. This is done by replacing dV/dt by ∆ V / ∆ t where ∆
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represents a small increment. In the case of approximating the logistic
equation in Section 12.5, we could make this increment as small as we like, but
the predators and prey mainly considered here reproduce only once a year, so
the time increment needs to be one year, i.e., ∆ t=1 and ∆V = Vt - Vt-1, or the size
of the prey population at time t minus its size at time t. The difference equation
for the prey population then becomes that of eq. (12.33) and the predator
equation is:

                                     H H d c Vt t t= − +− −1 2 11[ ]                                 (12.37)    

This is the same as equation (12.30) but now is written as a difference equation.
These equations are readily plotted in EXCEL, using values supplied here. For
convenience in making comparisons and for discussion purposes, parameters
used in the following examples are standardized so as to give roughly
equivalent equilibrium values and to approximate values for moose and wolves
used by Eberhardt (1997, 1998) and Eberhardt and Peterson (1999). The
equilibrium values are approximately 4000 moose and 200 wolves, while initial
values are 8000 moose and 50 wolves. Where an asymptotic prey value is
needed, it is set at K = 10,000. Maximum rate of increase for prey is r1 = 0.38 and
r 2  = 0.48 for predators. For eq.(12.33) the take by wolves is assumed
proportional to number of prey present. This is not a very realistic assumption
as wolves generally are likely to be capable of taking what they need as
suggested in Section 12.6, in connection with eq. (12.35). In that equation, a
constant rate is assumed and is set at c = 5 below. For comparability we thus
assume that c1V = 5 in eq. (12.33) where V is the equilibrium moose population,
so that c1 = 5/4000 = 0.00125. In the prey equation [eq. (12.37)] d is regarded as
an annual wolf mortality rate and set at d = 0.40, while c2 denotes a kind of
reproductive rate, being the gain realized from consuming moose. At
equilibrium we have c2V = d, i.e., the gain to the wolf population just offsets
loss (d), so we set c2 = 0.40/4000 = 0.0001.

The various equations are readily computed and plotted in EXCEL, using
the values supplied here. One starts out with initial conditions for predator and
prey, V0 =  8000 and H0 = 50, and uses the parameters given above. Thus in
eq.(12.33) the observation for prey at time 1 is:

V V rV
V

K
c V H1 0 1 0

0
1 0 01 8000 0 38 8000 1

8000
10000

0 00125 8000 50 8108= + − − = + − − =[ ] . ( )( ) . ( )

while the predator number [eq.(12.37)] is;

H1 50 1 0 4 0 0001 8000 70= − + =[ . . ( )]

and at time 2 the prey number is:

V V rV
V

K
c V H2 1 1 1

1
1 1 11 8108 0 38 1

8108
10000

0 00125 8108 70 7981 5= + − − = + − − =[ ] . [ ] . ( ) .

Subsequent  terms are computed in the same manner, and a plot of predator
and prey can be obtained as in Fig. 12.6, which shows the course of the
populations over time. We can also plot predator numbers against prey
numbers along with the isoclines H =304[1-304V/10000] and V = 0.4/0.0001=
4000 getting Fig. 12.7. In this example, the two populations oscillate over more
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than 100 years and ultimately settle down at the intersection of the isocl ines,
i.e,, 4000 prey and about 180 predators.

Fig. 12.6 Course of predator and prey populations calculated from equations (12.33) and
(12.37).

Fig. 12.7  Diagram showing isoclines (lines). Course of populations is shown by
the spiral 0f points starting near initial values (50 predators, 8000 prey) and
ending  near junction of isocline lines (equilibrium values).

The dramatic fluctuations generated by the above equations have been
observed for insect populations, and might well be invoked for some
vertebrate populations that show cycles of varying lengths, but it is not
established as yet that such observed cycles are necessarily due to predator-
prey interactions. It is thus useful to look at a few equations that do not vary so
dramatically. One set is that given by eqs.(12.33) and (12.34) and used by May et
al. (1979) to model Antarctic food chains. A diagram (Fig. 12.8) showing
isoclines for these equations shows only one simple curve  to the equilibrium
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point from the initial numbers (8000 prey and 50 predators), and the
population plots (Fig. 12.9) show essentially one cycle before settling down.

Fig. 12.8 Isoclines and trace of points for equations (12.33) and (12.34).

Fig. 12.9  Population trace for equations (12.33) and (12.34).

In connection with equations (12.33) and (12.34) it was remarked
(Section 12.5 ) that the last term in eq.(12.33) very likely should not include
the prey, i.e., that large predators like baleen whales and wolves most likely
take what prey they need rather than taking prey in proportion to its
abundance. Thus the modified equation was used as eq. (12.35) in the wolf-
ungulate model of Section 12.6, with one further modification, which was to
change the logistic term in the prey equations above to a “generalized
logist ic”:

                                                      [ ( ) ]1 1− −V

K
t z

where the exponent, z, is equal to or greater than unity (set at unity it gives
the usual logistic term). This modification is essential in that it gives prey
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populations a much more nearly constant rate of increase until they approach
the asymptote. If the rate of increase is permitted to decrease linearly as in the
usual logistic model, then prey populations cannot stand much in the way of
predation. The population course for this set of equations [(12.34) and (12.35)]
is very much the same as in Fig. 12.9, but the isocline lines now differ (Fig.
12.10), in that the equilibrium solution for the prey equation produces a curve
which is a second degree polynomial for z=2, but would be a third degree
polynomial if z=3, and so on. Note that using z=2  has increased the equilibrium
values substantially, due to  use of the generalized logistic rather than the
ordinary logistic which was used in producing Fig. 12.8

Fig. 12.10 Isocline lines and population plot for equations (12.34) and (12.35).

Another version of the prey equation may be considered at this point.
This incorporates the widely-used functional relationship originated by
Holling (1959), and usually described as his Type II curve. This gives rise to the
following prey equation:

                                     V V rV
V

K

mV

w V
Ht t t

t t

t
t= + − −

+− −
− −

−
−1 1 1

1 1

1
11[ ] [ ]                       (12.38)   

The functional relationship contains two parameters, m and w, and gives rise
to a curvilinear relationship replacing the very simple constant, c, of e q .
(12.35). The parameter m was set at 5 and w = 1000. The population trend is
again a simple curve (Fig. 12.11) and the isoclines are much like those of Fig.
12.10.  The Type II curve is not very much different from an exponential
curve, as can be shown by series expansions:
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When V is large, as it is for the most part here, these two expressions give very
similar curves. Using m=5 and w=1000 as used here, the Type II curve is much
the same as an exponential with the same parameters (Fig. 12.12). The
agreement is worth noting mostly by way of suggesting that one not place too
much faith in the derivations of the Type II curve found in the literature.

Fig. 12.11 Isoclines and population trend for equations (12.38) and (12.34).

Fig. 12.12 Comparison of Hollings Type II curve and an exponential f u n c t i o n
with the same parameters.

Thus, although we have used a different model for prey, the general
results are much the same as for 3 earlier cases. However, if we follow what
seems to be the current trend in the literature and use the same curve for
functional and numerical response, then a very different result is obtained,
i.e., sustained oscillations of the form exhibited in Fig. 12.4.  The prey equation
now is:
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The combination of eqs.(12.38) and (12.39) yields dramatic and continuing
oscillations and does not appear to converge on equilibrium values (Fig. 12.13).
Also, different starting values of predator and prey give different results.
Hence  these curves are not considered further here. Readers interested in the
theoretical basis for such curves should consult May (1981) and the current
literature on predator-prey models. Their practical utility remains to be
demonst ra ted.

Fig. 12.13. Trace of points generated by eqs. (12.38) and (12.39).

From the results considered thus far, it appears that the ratio
dependence model for predators [eq.(12.34)] yields rather stable results when
combined with various models for prey abundance, and that the prey equation
used for moose and wolves [eq.(12.35)] may be presently most useful for actual
data on large vertebrate predator-prey studies. However, most ungulate
populations are preyed on by hunters, as well as by wolves. Consequently, it is
worthwhile to consider a modification of eq.(12.35) that brings in removals by
h u n t e r s :

                                     V V rV
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K
cH Rt t t

t z
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1
11[ ( ) ]                                 (12.40) 

Here, we assume a constant annual harvest of, say, moose by hunting, set for
convenience at 290 individuals per year. Utilizing eq.(12.34) for predators,
population trends are qualitatively much the same as before with the
populations approaching equilibrium in about 20 years. The isocline diagram
(Fig. 12.14) differs, however, in several respects from Fig. 12.10, which
represents the situation without hunting removals. The equilibrium values are
substantially lower with both prey and predator numbers reduced, and the
isocline lines just intersecting rather than crossing. Perhaps the most
interesting and instructive result comes if we increase the hunter harvest just

1 0 0 0 08 0 0 06 0 0 04 0 0 02 0 0 00
0

100

200

300

400

PREY

P
R

E
D

A
T

O
R



                                                                                                                       12.25

slightly—from 290 per year to 294 per year. This results in a crash of both
populations (Fig. 12.15), after a long, rather slow decline. Of course, if the
harvest is set a little larger, the crash occurs sooner. These equations should
not be taken as useful direct models of actual populations, inasmuch as they
are very sensitive to small changes in parameters. In reality, wolves will most
likely “switch” to alternate prey if possible or leave the area entirely. The
general picture is well-illustrated by the fate of the Nelchina caribou herd in
Alaska, which became very large during wolf control, but ultimately crashed
when wolves regained high numbers and a largely fixed hunting harvest was
maintained. Some details of this event were reported by Eberhardt and Pitcher
(1992). A very considerable controversy about likely causes is discussed in
references cited in that paper.

Fig. 12.14. Isocline lines and population plot for equations (12.34) and (12.40).

Fig. 12.15  Trend of predator and prey populations when hunter harvest is
high enough to ultimately result in a crash of both populations.

Up to this point, we have considered some problems in predator-prey
models (Section 12.5), looked briefly at a wolf-ungulate model (Section 12.6),
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and then delved deeper into the various differential equation models in the
present Section. A tentative conclusion from the review here is that the
equations of Section 12.6 seem to “behave’ reasonably well in comparison with
some popular versions. It may thus be desirable to provide more detail on the
evidence supporting that model. For convenience the underlying difference
equations are repeated here.

The prey equation is:

and the predator model is:

                                    Ht= Ht-1 +   r2Ht-1[ 1 - 
Ht-1
aVt-1

  ]                                          (12.34)

while the equilibrium conditions are:

                                          V K
ca

r
z= −[ ] /1

1

1         and         H = aV                          (12.36)  

Definitions and some likely parameter values were given in Section 12.6. Here
we look briefly at the data supporting these models and the parameters.

Evidence for the constant, c, in eq.(12.35) has been collected from a
number of sources (Fig. 12.16) that suggest the moose kill/wolf/100 days to be
nearly constant over a wide range of moose densities.

Fig. 12.16. Data on moose kill per wolf per 100 days in winter from Eberhardt (2000) with
data (solid square symbols) from Hayes and Harestad (2000) added.  Solid circles
represent individual year data from Isle Royale and open circles show data of Messier
(1994: Table 2). Solid line shows constant rate assumed here, from an average that does not
include two very low and one very high point. Broken line shows fit of Type II curve.

Some lower kill rates at low moose densities might be taken as evidence for the
Type II model used in eq. (12.38). That model has been fitted to the data with
non-l inear least-squares as shown in Fig. 12.16. As was noted in connection
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with Fig. 12.11, introducing the Type II curve does not appear to change
behavior of the equations significantly. Arbitrary values of the parameters m
and w were used in eq. (12.38) to give results compatible with most of the other
equations. Using actual data now gives quite different values, namely m = 2.38
and w =0.082.

The other important evidence for the model suggested here has to do
with the ratio dependence constant, a, in eq. (12.34). The arguments for this
model were described in more detail by Eberhardt and Peterson (1999). A
possible improvement offered here is that the underlying relationship
between rate of increase for wolves (λ ) and the wolf/moose ratio may be
curvil inear, with an intercept at a somewhat lower wolf/moose ratio,
changing the equilibrium value from about 20 moose/wolf to 24 moose/wolf
(Fig. 12.17).

Fig. 12.17. Finite rate of increase (λ) of wolf populations vs. observed wolf-moose ratios.
The broken line depicts a second degree polynomial fitted to the data, and the short
regression line has been fitted to the data from the 7 highest moose-wolf ratios to
approximate what may be an underlying strongly curved relationship. Sources of the data
appear in Eberhardt (1998) and Eberhardt and Peterson (1999).

The best support for eq. (12.35) comes from the trend of the moose
population on Isle Royale, Michigan (Fig. 12.18). In the early stages of the
study it appeared that the wolf population was controlling moose abundance,
with the two populations approaching equilibrium by about 1979  (E b e r h a r d t
and Peterson 1999). However, the wolf population “crashed” in 1980, very
likely in consequence of the arrival of a virus (parvovirus) in the population.
Moose numbers then increased steadily and the moose population ultimately
also crashed in a severe winter. An epizootic of winter ticks (Delgiudice et al.
1997) interrupted the steady growth of the moose population in 1988, so
eq.(12.35) has only been fitted  up to that point.
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 Fig. 12.18. Trend of the Isle Royale moose population. Solid points and a solid line show
moose abundance through 1988 and the fit of eq.(12.35) to the data. Open symbols show
estimated moose numbers from 1989  onwards and the estimates are connected by a dashed
line to show the recent trend. Wolf density is shown by a broken line.

12.8 EXERCISES

12.8.1 Non-linear least-squares. The following are the data from Fig. 9.3
(muskox population growth curve). Fit the loglinear regression model of e q .
(12.5) using the analysis toolpak of EXCEL. Then explore non-linear least-
squares fitting of the same data by making a table bordered by values of the
two parameters and calculating the sums of squares for trial values of the
parameters. Calculate the sums of squares from:

                                                S = Σ [y
i
 - (a exp(bxi))]2

You will need trial values of a and b, and these can be taken from the loglinear
fit. It can be a tedious undertaking unless you start out with trial values, put
the sum of squares in a table and border these with sums of squares from the
adjacent values of a and b. Use 3 decimal places for b and 2 digits for a (don’t
forget that the loglinear fit gives log a as the intercept, so you have to
transform back). You can map the sums of squares and trace the minimal sums
of squares until you find one that is the lowest in its region. Sometimes this
“brute force” approach is useful if you don’t have ready access to a computer
program that provides nonlinear least-squares estimates. If you do have access
to such a program, use it to check your results.
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5 100
6 116
7 126
8 143
9 181

1 0 206
1 1 256
1 2 293
1 3 353
1 4 406
1 5 467

A plot of expected values from loglinear regression and from the nonlinear
least-squares fit is:

The solid line is the fit from loglinear regression. The nonlinear fit (dashed
line in the figure) does seem better for the higher counts but experience with
a variety of population growth data suggests using the loglinear fit if, as is
usually the case, one is mainly interested in studying rates of growth.

12.8.2 Use parametric regression bootstrapping (Ch. 2) to calculate
approximate 95% confidence limits on the population growth rate obtained by
loglinear regression in Exercise 12.8.1 and compare them with the limits
obtained from the regression program in EXCEL.

12.8.3 Plot the rate of change for the logistic equation [Eqs.(12.12) and (12.26)]
using the approximation given after eq.(12.26) which was used to make the
plot of Fig. 12.3. This is a serious limitation for use of the logistic equation for
the large vertebrates, as their rates of change do not seem to behave this way.
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12.8.4 An alternative to the logistic is the “generalized logistic” used in eq.
(12.35). Note that it was used with z=1 to approximate the ordinary logistic for
Fig. 12.3. Repeat the plot of Fig. 12.3 (in EXCEL), and make companion plots with
z=2,5, and 11. Plot the rate of change and compare it with the rate of change
obtained in Exercise 12.8.3. It is this nearly constant rate of change over much
of the range of population growth that typifies the large vertebrates.

12.8.5  A set of data on feral horses (Garrott and Taylor 1990) is given below.
Use Model I (Eqs. 12.22) and the ratio estimator of eq. (12.23) to estimate λ  using
EXCEL Compare your results with the following plot.

YEAR OBSERVED REMOVALS
1978 8 6 0
1979 104 0
1980 123 0
1981 150 7
1982 181 0
1983 155 5 0
1984 142 2 0
1985 153 1 3
1986 152 2 7

Plot of feral horse data showing removals and fitted curve for Model I.

12.8.6  Using EXCEL and the constants given in Section 12.6 reproduce the
results of  Fig. 12.5 with eqs. (12.34) and (12.35). You can use this approach to
reproduce many of the models given in the literature.

1 9 8 61 9 8 51 9 8 41 9 8 31 9 8 21 9 8 11 9 8 01 9 7 91 9 7 8
0

25

50

75

100

125

150

175

200

N
U

M
B

E
R

 O
F

 H
O

R
S

E
S



                                                                                                                                      13.1

13.0 DEALING WITH DENSITY-DEPENDENCE

13.1 Introduction

"Density-dependence" is a convenient label for the notion t h a t
populations cannot increase in size indefinitely. Eventually some r e s o u r c e
becomes limiti ng and the population tends to level off. In long- l i ved
vertebrates, early survival is often the first parameter to change w i t h
increasing abundance. The best known model for a dens i t y -dependen t
response is the logistic equation (eq. 12.12 and 12.26) described in Section 12.3
and 12.5. The resulting curve (Fig. 12.3) shows a smooth approach to a n
asymptote (usually denoted by K). A major problem in applying the logist ic
equation is that the rate of increase (r) declines continuously throughout t h e
growth of the population, approaching zero as the population size a p p r o a c h e s
K. This behavior is evident from the underlying differential equation, but i s
perhaps more conveniently exhibited in the analogous difference equa t i on
(eq. 12.25) where it can be seen that

                                           r r
N

K
t= −1 1( )

so that when population size is small relative to K, r is nearly at the max imum
value, r1, which is sometimes appropriately labeled rm a x.

The logistic curve became popular after Raymond Pearl (1926 ) used it t o
describe the growth of yeast populations. While it may be useful as a model f o r
growth of populations of some organisms, the logistic is g e n e r a l l y
unsatisfactory as a model for growth of populations of large vertebrates. Th is
is because, in practice, the rate of increase tends to be relatively constant o v e r
much of the range of population size and then begins to decrease as t h e
asymptotic value is approached. For this reason, a "generalized logistic" c u r v e
provides a much more satisfactory model for large vertebrates. For this model,
r holds nearly constant over much of the range of population g r o w t h ,
declining quite steeply as the asymptotic level (K) is approached. T h e
generalized logistic is written as a difference equation:

Note the change in notation from t-1 and t used in Chapter 12 to t and t+1. Th is
is done to conform to the notation used in references cited below. When z= 1
the rate of increase is as given above, i.e., the rate for the oridinary logist ic,
written as a difference equation. A comparison (Fig. 13.1) of the two rates o f
increase (for z=1 and z= 5) shows why the generalized logistic yields a
population growing at a relatively constant rate up until the “ c a r r y i n g
capacity” level (K) is approached, and is thus a better model for popu la t ion
growth of the long-lived vertebrates, which generally appear to have a
relatively constant growth rate at levels below carrying capacity.

In considering density dependence it is important to have in mind some
characteristics of different groups of species. Much of the current l i t e r a t u r e

N N r N
N

Kt t t
t z

+ = + −1 1 1[ ( ) ]                          (13.1)  
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deals with invertebrates, where very high rates of increase can lead t o
chaotic-seeming behavior of populations. At the other extreme are the l o n g -
lived vertebrates with relatively low growth rates that usually result in less
erratic behavior. Many (but not all) species of fish can achieve high g r o w t h
rates and may thus follow patterns closer to those of invertebrates. Many o f
the smaller vertebrates have short generation times and thus lack t h e
stabilizing qualities of age-structured populations and can also s h o w
substantial year-to-year fluctuations in abundance. Consequently, some of t h e
complexities in the current literature may not be relevant when c o n s i d e r i n g
the long-lived vertebrates, and attempts to apply models derived from studies
of invertebrates to vertebrate populations may be quite unsatisfactory.

Fig. 13.1 Comparison of rate of increase for the ordinary and  generalized logistic growth
curves.

Unfortunately, there isn't much in the way of accurate and precise da ta
on population growth in large vertebrates over a wide range of popu la t ion
sizes, making it difficult to demonstrate directly that population growth i s
more like the generalized logistic curve than the ordinary logistic. However, i f
one considers Fig. 13.1 and notes that many vertebrate populations do a p p e a r
to grow exponentially over much of the observed range, the ordinary logist ic
is much less palatable. Experience with harvested populations also shows t h a t
the ordinary logistic will not support observed rates of removals. It is d i f f i cu l t
to settle on a value of z, the parameter governing the rate of decrease in r w i t h
increasing population size. Often one must make an arbitrary choice. I n
developing guidance for managing cetaceans, the International W h a l i n g
Commission considered various values of z. The value used in various examples
here is z=5.0,  which gives the maximum numerical increment of growth a t
70% of K. Because the details of density-dependent responses and "popu la t ion
regulation" are so poorly known for large vertebrates, about all that can b e
done here is to try to supply some guidance for practical approaches to t h e
subject. The basic assumption is made that populations do not g r o w
indefinitely, and thus are somehow limited.
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13.2 Some historical aspects

Hairston, Smith, and Slobodkin (1960) produced an a l l- e m b r a c i n g
analysis, starting with the premise that energy is not accumula ted
significantly in organic matter, and working up from there to conc lus ions
about major trophic levels. Two critiques of their paper then a p p e a r e d
(Ehrlich and Birch 1967, and Murdoch 1966), and were rebutted by the o r i g i n a l
authors (Slobodkin, Smith, and Hairston 1967). The rebuttal extends t h e
original thesis somewhat and makes for interesting reading. All of t h e s e
papers depend on qualitative assessment of limiting cases and are thus n o t
very helpful in deciding what controls a specific population. One might, f o r
example, agree that predators as a class are food-limited, without a b a n d o n i n g
the notion that particular predatory species seldom increase beyond b o u n d s
imposed by behavioral (territorial) constraints.

Andrewartha and Birch (1954) offered the strongest objections to t h e
idea of density-dependence. Various critics of their views emphasized t h e i r
primary involvement with insects and that many of their conclusions d e p e n d
on events observed near the geographic limits of particular species, w h e r e
"limitation by catastrophe" probably does control populations. That this is a n
over-simplification of their views was vigorously pointed out by both au tho rs ,
individually and jointly. Some amelioration of the original stand seems ev i den t
in later papers by Andrewartha and Birch. In any case, their work h a s
provided useful evidence that many factors may interact to limit popula t ions,
not the least of which is the effect of essentially random "shocks" f r o m
weather conditions. Murdoch (1994:284) claimed that the “decades-old
controversy about regulation has been resolved in recent years”, sugges t i ng
that the “Nicholson school was right that regulation via stabilizing dens i t y -
dependent processes is essential to account for species persistence” but t h a t
“the local randomness and spatially out-of-phase dynamics emphasized by t h e
Andrewarthan school can create the necessary stabilizing dens i t y -
dependence” .

V.C.Wynne-Edwards promulgated what might be said to be a u n i v e r s a l
solution -- that social factors, frequently expressed as territorialism, c o n t r o l
population size. His thesis closely parallels the wildlife management p r i n c i p l e
of carrying-capacity, and fits nicely with a readily observed aspect of t h e
behavior of many species. There are, however, too many situations in w h i c h
territorial behavior does not seem to be either pronounced or e f fec t ive ,
perhaps most notable among the larger herbivores. Wynne-Edwards '
philosophy is expounded at length in a large book (1962), and compactly in a
later paper. Several authors have considered that a weak point in his theme i s
an invocation of group-selection as a necessary evolutionary device to i n s u r e
success of regulation by territorialism.

A specific physiological mechanism for population regulation w a s
proposed by J.J.Christian, and then tied to social aspects (Christian and Davis
1964). Objections to the "adrenal function" theory have centered a r o u n d
apparent absence of enlargement of the adrenal glands under s i tua t ions
where it would seem to be called for by the current status or ultimate fate of a
particular population. D. Chitty has been particularly explicit on this p o i n t
(see the discussion and references in Christian and Davis 1964). Chitty's o w n
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attitude on the matter of regulation appeared mostly to have been one of a
rather reluctant invocation of a genetic mechanism, at least to handle t h e
problem of cyclic crashes of lemmings and voles. The most detailed exposi t ion
of his "polymorphic behavior" mechanism was by one of his students (K rebs
1964) who contrasted that theory with Christian's stress hypothesis and a food-
supply hypothesis offered by Pitelka (cf. Pitelka 1958).

One of the apparent reasons for Chitty's belief in a change in quality i n
vole populations during a decline is the evident necessity for some de le ter ious
factor that persists through more than one generation in order to bring t h e
population down to the low levels observed in the field. In a long-term study o f
the vole, Microtus ca l i fornicus , Pearson (1966) came to the conclusion t h a t
such a factor is supplied by predation. He contended that some o t h e r
(unspecified) cause is responsible for the initial decline, but that p reda t i on
then acts to reduce the population to very low levels, whereupon the p reda to rs
then die off (in the Arctic) or shift to other prey (in temperate regions).

A feature not sufficiently stressed in many analyses of popu la t ion
regulation is that of evolutionary forces. A valuable review of the i m p o r t a n c e
of studying evolutionary ecology is that of Lack(1965). One of his more t e l l i n g
points is that few real opportunities remain to study ecological processes in a
sufficiently natural state that one might hope to appraise selective forces f r e e
of changes due to human influence.

Even a short excursion into the literature is sufficient to show t h a t
there are many views of population regulation. It seems reasonable to suppose
that, just as a variety of life forms has evolved, so may have a range o f
controlling mechanisms. The actual structuring of a population model m a y ,
however, call for a specific choice of mechanism, particularly if r e l a t i ve l y
long spans of time are to be dealt with. On the other hand, if we choose a
mathematical relationship to represent population regulation without good
evidence that it represents a mechanism actually existing in the popu la t ion ,
then we are really deciding the outcomes of the modelling exercise in advance ,
so that it may have little relevance to the actual population.

13.3 Testing for density-dependence

If a population appears to level-off, it may be  desirable to have a
statistical test to demonstrate that the apparent tendency is not due to c h a n c e
fluctuations alone. There is a very large literature on testing for dens i t y -
dependence, but the results are as yet often ambiguous and controversial f o r
large vertebrates. This is perhaps less true for smaller organisms, p a r t i c u l a r l y
insects. Due to the very different life histories involved, suitable tests f o r
density-dependence for insects should not necessarily hold for larger species.
In particular, most insect populations are capable of very high rates o f
increase, as are some fish populations. A density-related response may t h u s
occur over a short time span and be readily evident in the data.

One supposed test for density-dependence has been repeatedly shown t o
be of dubious value over the last 30 years or so, but still turns up in t h e
literature. No doubt this is because the approach is simple and seems natural. I t
consists of estimating λ  from the ratio of two successive population est imates,
λ t = Νt/N t-1, and then calculating the correlation coefficient of λ t and Nt-1 o n
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a series of such estimates. If λ t is negatively correlated with Nt-1, then o n e
might assume density-dependence is involved as λ t apparently decreases w i t h
increasing population size. The difficulty, however, is that values of Nt a p p e a r
successively in the numerator and denominator of the ratio determining λ t
and this induces a spurious correlation. This prospect was discussed for i nsec ts
by Watt (1964), and some additional examples were noted by Eberhardt (1970).

There has been considerable interest in testing for density d e p e n d e n c e
for the last 30-40 years, but it remains uncertain whether density d e p e n d e n c e
can be reliably detected from a sequence of data on population size or t r e n d
alone. Many of the slower-growing populations appear to increase f a i r l y
smoothly from low levels, and ultimately show signs of leveling-off. Those
with high growth rates may behave quite erratically, making it difficult t o
discern any pattern. Most of the efforts to devise tests appear to have b e n n
inspired by studies of populations showing rather erratic growth pa t t e rns ,
particularly insect populations. Nearly all of the recent efforts proceed a l o n g
the lines of statistical hypothesis-testing. Most of the available stat ist ical
methodology for conducting such tests is based on linear models, and t h i s
limits the range of models that can be considered. Most of the tests depend o n
taking logarithms (base e, usually) of population size, which g e n e r a l l y
appears to yield symmetrical distributions of deviations from the model, a n d
thus encourages assuming normally distributed errors (a n e c e s s a r y
assumption in many of the tests). Statistical hypothesis testing depends o n
setting up a “null” model and attempting to reject that model in favor of a n
alternative model. Rejecting the null model does not demonstrate that t h e
alternative model is correct, a fact that sometimes appears to be overlooked i n
the ecological literature. Because the null model generally needs to be l i n e a r
and fairly simple in form, the process more or less restricts attention to two
models, both linear and quite simple. In some cases, “nested” models may b e
considered, giving a little more flexibility.

A number of authors have used the following model for dens i t y
dependence :

Where 0<b<1, and K is the asymptotic value. An example of the resulting c u r v e
is shown in Fig. 13.2. Taking logarithms gives the model commonly used i n
studying density dependence:

Here X denotes the logarithm of N and b and K are as given above. I n
producing statistical tests, an error term (ε), assumed to be n o r m a l l y
distributed with some variance is added. Bulmer (1975) wrote the a b o v e
equation in terms of deviations from µ  = log K:

                                                 X b Xt t t+ − = − +1 µ µ ε( )

N N Kt t
b b

+
−=1

1( )                                       (13.2)

X bX b Kt t e+ = + −1 1( ) log                                              (13.3)
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Bulmer’s is one of the more widely quoted papers on testing for dens i t y
dependence. He used the null model (described as a “random walk” model:

                                                          X Xt t t+ = +1 ε

Fig. 13.2  An example of curves represented by Eq. (13.2). K=5,000, b=0.95.

Pollard et al. (1987) used the same models, but added another null model,
described as a “random walk with drift”:

                                                           X X rt t t+ = + +1 ε                                           (13.4)

It is important to note that this is the logarithmic form of the usual model f o r
exponential growth (over one unit of time) with a multiplicative error term (ε t

=loge et) :

                                                           N N r et t t+ =1 exp( )

Pollard et al. use the three models [one, eq. (13.3) representing dens i t y
dependence and the  two null models above] in “nested” form, so the tests c a n
presumably be used to choose among the 3 models. Examples of the r a n d o m
walk and random walk with drift are shown in Fig. 13.3 and 13.4.
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Fig. 13.3  An example of the random walk model used as a null model in various tests f o r
density dependence.

Fig. 13.4  An example of a random walk with drift null model (Eq. (13.4)).

An example of the linear (log scale form) of eq. (13.3) with an additive e r r o r
term appears in Fig. 13.5.
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Fig. 13.5 . An example of the linear model of eq.(13.3) with an additive error term

The sizable cluster of points on the right results from the substantial section o f
the underlying curve (Fig. 13.2 ) close to the asymptotic value.

Some problems with the approach to testing density dependence with t h e
models illustrated above can be seen by comparing the basic model (eq. 13.2)
and Fig. 13.2) with the generalized logistic of eq. (13.1). Making s u c h
comparisons requires a comparable set of parameters. This can be obtained b y
choosing parameter values that give similar values of λ  for the models o f
eqs.(13.1) and (13.2). Values of λ for long-lived vertebrates may range up t o
about λ = 1.5 but are often close to 1.2. Rearranging eq.(13.2) gives:

                                        λ t
t

t
t
b b

t

bN

N
N K

K

N
= = =

+

− − −

1

1 1 1( )

and values (Fig. 13.6) of b=0.95 and b=0.98 fall in this range (up to λ  = 1.5).
Comparing the generalized logistic with these two curves (Fig. 13.7) shows t h e
sharp difference between eq.(13.1) and eq. (13.2). Using smaller values of b
shifts plots of eq. (13.2) to the left but yields the much larger values o f
λ characterizing insects and some species of fish.
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Fig. 13.6  Lambda for density dependence model used by Bulmer (1975) and Pollard et al.
(1987) compared with lambda for a generalized logistic curve. Values of b used here are much
larger than those encountered in studies of invertebrates in order to obtain values of λ in the
range expected for long-lived vertebrates.

Fig. 13.7. Comparisons of curves from eq. (13.1) and a plot of the generalized logistic (broken
line above). Generalized logistic curve based on lambda 1.2 and z = 5.0.

A basic issue thus is that the curves are quite different, so that t h e r e
may be a question about efficiency of the test if the alternative model r e a l l y
should be more like the generalized logistic than like eq.(13.1). A n o t h e r
important issue is that the generalized logistic curve behaves essentially as a n
exponential curve for the lower part of its range (see Fig. 13.1), so one would
expect that the null model of eq. 13.4  would not be rejected for a popu la t ion
growing in the lower part of its range. Thus the test would have essent ia l l y
zero power of detecting density dependence in an important portion of t h e
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range of growth. This is not necessarily true for eq. (13.2) as λ  is large a n d
changes dramatically in the early growth phase for smaller values of b. H e n c e
the tests may be effective for insects and fail for long-lived vertebrates.

Dennis and Taper (1994) proposed tests for a more complex model of t h e
following form:

                                                     N N a bN Zt t t t+ = + +1 exp( )σ                                    (13.5)

where b < 0  and Zt is assumed normally distributed with zero mean and u n i t
variance, while σ is a constant that lets one choose the variance of the t h e
error term. Taking logarithms gives:

                                                          X X a be Zt t
X

t
t

+ = + + +1 σ                                   (13.6)

This model is thus nonlinear (because of the exponential term), making f o r
“intractable” distributions of test statistics. Dennis and Taper got around t h e
problem by using bootstrapping and some simulations to check their resu l ts .
The model of eq.(13.5) is equivalent to one used by W.E. Ricker (1975) to s tudy
stock-recruitment in fish [essentially the relationship between size of a
parental generation (stock) and the succeeding generation ( rec ru i t s ) ] .
Without the error term, eq.(13.5) can be written as:

                                           N N et t

r
N

K
t

+

−
=1

1( )

where r is the growth rate and K is the asymptotic value. If r is in the range o f
growth for most long-lived vertebrates (say 0 < r < 0.5) then a good
approximation to the above curve can be obtained by using the first two t e r m s
of the Taylor series expansion of the exponential term above, obtaining:

                                          N N rN
N

Kt t t
t

+ = + −1 1( )

which is the discrete from of the logistic growth curve (more details a r e
available in Eberhardt 1977).  This brings the model of Dennis and Taper (1994)
closer to the kind of growth curve one might expect would hold for l ong- l i ved
vertebrates. However, they also use nested models with the same random w a l k
and random walk with drift (eq. 13.4) used above. Hence, if the genera l i zed
logistic actually is the best model for a given population, then the power of t h e
test for populations at the lower end of the growth range is again essent ia l l y
zero, as discussed above.

Further difficulties with the recent approaches to testing for dens i t y
dependence were proposed by Shenk et al. (1998) who used c o mp u t e r
simulations designed to mimic the incorporation of sampling error in the data.
In most assessments, the error term is assumed to be due to “changes in c l imate
and other environmental factors” (Bulmer 1975), although Bulmer did
consider sampling error in one of his tests. Shenk et al. concluded t h a t
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“because these tests have been shown to be either invalid when only s a m p l i n g
variance occurs in the population abundances (Bulmer’s R, Pollard et al.s’s
and Dennis and Taper’s tests) or lack power (Bulmer’s R* test), l i t t le
justification exists for use of such tests to support or refute the hypothesis o f
density dependence”. It seems likely that their results will not be the last w o r d
on the issue, inasmuch as it is possible to estimate the contribution of s a m p l i n g
error in at least some circumstances, and also because they chose to use a
model of a large mammal population to simulate density dependence in t h e i r
analyses, while most of the methodology described above seems most
appropriate for insect populations.

Only a brief sketch of apparent problems in testing for dens i t y
dependence has been attempted here. Clearly the suggested difficulties need t o
be examined in more detail. This calls for assessments of the actual tests a n d
thus brings in the subject of likelihood ratio testing.

13.4 Population regulation

A  broader view of the issues involved in testing for density d e p e n d e n c e
was taken by Murdoch (1994). He discussed population regulation, “ w h i c h
arises as a result of potentially stabilizing density-dependent processes, e v e n
when brought about by ‘non-equil ibrium’ mechanisms”. He de f ined
regulation very broadly, stating “Population regulation seems best defined b y
defining non-regulation, which is random walk dynamics”. He de f ined
random walk in the form described above as random walk with drift” (eq.13.4)
and thus espoused the null model of exponential growth. Such a population i s
unbounded (i.e., increases indefinitely) and thus Murdoch stated that “we c a n
identify regulation with boundedness”. Because nearly all popu la t ions
(excepting perhaps humans) appear to be bounded, p rac t i ca l -m inded
observers  may see little reason to study density dependence. However ,
Murdoch suggested several possibilities for modes of population change t h a t
may transcend the simpler concepts of density dependence. He noted t h a t
regulated populations “thus include not only those with a stable e q u i l i b r i u m
but also those with a stable attractor, i.e., cyclic or chaotic populations”. A
cyclic model was described here by eq.(12.33) and (12.34) and illustrated in t h e
upper panel of Fig. 12.4.  Another very interesting concept for r e g u l a t i o n
without apparent density dependence can be developed by considering a
metapopulation in which isolated subpopulations follow a random w a l k
(without “drift”) and ultimately go extinct but with the area they occup ied
later recolonized by immigration from another distinct population. Mu r d o c h
(1994:275) commented that “little can be inferred from a statistical analysis o f
the time series of a single population. Thus if we are interested in e x p l o r i n g
regulation in a particular population we need to investigate the m e c h a n i s m s
di rec t ly . ”

Murdoch (1994) reported the results from  assessments of a l a r g e
number of sets of data on small bird populations that found the populations t o
be remarkably stable. He commented that “The remarkable invariance of t h e s e
bird populations makes it difficult to believe that they are not in fact we l l
regulated. If they are, we clearly have still not developed adequate means o f
detection”. From a statistical point of view, there is little or no prospect o f
detecting tight regulation from an analysis of the time series of observa t ions
alone. This is essentially proposing to prove a null hypothesis holds, when w e
can only reject a hypothesis through statistical analysis. Another example o f
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this problem concerning an elk population is discussed in Section 14.6 . In t h a t
example there is good evidence of a strong climatic effect that results i n
dramatic changes in first-year survival, yet the population trend is far less
variable than would be expected. Our tentative conclusion is that high s u r v i v a l
of adults “buffers” the effect of variable first-year survival, and that there is a
strict upper limit on first-year survival enforced by the avail abili ty of w i n t e r
thermal refugia. Examination of population trends can only show that there i s
much less population variability than one would expect on the basis o f
environmental data (30 years of snow depth data are available) so that t h e
main prospect for assessing density effects is by direct measurement o f
population parameters. Detecting regulation then requires that t h e
populations somehow be perturbed and essential parameters monitored d u r i n g
the return to an equilibrium condition.

13.5 Testing for a maximum net productivity level.

Thus far we have seen that the prospects for detecting dens i t y
dependence from a series of measurements of population trend are p r e s e n t l y
doubtful. In the present section, we assume that density dependence does
prevail in a population and seek a means to determine how it affects t h e
current trend. An important practical problem is to determine status of a
population with respect to the maximum net productivity level (MNPL). This i s
the point where the slope of the s-shaped curve of population growth shows a
change in rate of change of the slope (the inflection point of the c u r v e ) .
Determining status of a population with respect to this level is important f o r
several reasons. One is that the maximum sustainable yield (MSY) of a
population can be taken at this level, a second is that this point figures i n
legislation that requires managing populations at or above that level ( f o r
example, the Marine Mammal Protection Act of 1972), and a third is t h e
evidence (suggested in Section 13.3) that there likely is little prospect o f
detecting density dependence using the approaches presently in the l i t e r a t u r e
when a population is below the inflection point in the growth curve. It i s
important to stress that the test suggested here depends on assuming that an s -
shaped growth curve does govern the trend of a particular population, i.e.,
that we assume density dependence exists.

The basis for the test is to attempt to ascertain whether the re c e n t
trend of the population traces out a curve that is concave upwards (be low
MNPL) or concave downwards (above MNPL). This approach thus assumes an s -
shaped growth curve and the existence of density dependence. The test has two
stages and depends on the approximate test for curvil inearity given in Sect ion
1.7.  In the first stage, a straight line and second degree polynomial are fit t o
untransformed data. If the test for curvature is significant, we conclude t h a t
the population is below MNPL. If the test is not significant on data in t h e
arithmetic scale, then we transform to the log scale and repeat the test.
Significance suggests the population is above MNPL. The test was studied w i t h
simulations based on the assumption that the generalized logistic applies t o
first-year survival according to eq. 13.7.

                                                           s s
N

K
t z

1 0 1= −[ ( ) ]                                              (13.7)
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Here N, K, and z are as before and so is a constant while s1 denotes f i r s t - y e a r
survival. This general approach was later used in the simulations of Shenk e t
al. (1998).  More details on the test and simulation are available in E b e r h a r d t
(1992). The approach essentially depends on the fact that the usual g r o w t h
curve is concave upwards below MNPL and concave downwards above MNPL.
However, transformation to the logarithmic scale yields a curve that is n e a r l y
a straight line below MNPL but remains concave downwards above that p o i n t
(cf. Eberhardt 1992:Fig. 3), and this seemed to improve the power of the tes t
(Eberhardt 1992).

13.6 Components of density dependent responses

If, as seems to be the case generally, one cannot reliably detect dens i t y
dependence from a sequence of measurements of population trend data, it w i l l
be necessary to examine the behavior of population parameters as t h e
population changes. Thus far there are relatively few sets of data that p rov ide
the necessary details. Some preliminary results can, however, be suggested. I t
appears to be a generally accepted principle that adult female survival is t h e
key to well-being of at least the populations of the long-lived vertebrates, a n d
quite possibly to most of the sexually reproducing species. Over 20 years ago i t
was proposed that there appears to be a sequence of changes in vital rates a s
population density increases towards maximal levels (Eberhardt 1977). L a t e r
studies support this sequence (Fowler 1981,1987, Gaillard et al. 1998). T h e
proposed sequence is given in Fig. 13.8.

With the advent of effective mark-and-recapture methods, p a r t i c u l a r l y
those employing radiotelemetry, it has become possible to obtain data on t h i s
sequence for a number of large mammal populations, and to estimate the r a t e
of change (λ ) from such data. Often the resulting estimate of λ  can be c h e c k e d
by direct estimates of population density over time, or through measures o f
relative abundance (indices of abundance). Inasmuch as most estimates f r o m
field data are subject to a variety of potential biases, it is very important t o
have estimates from both reproductive and survival data and f r o m
independent direct measures (census or index).

Immature                   Age of first           Reproductive rate             Adult mortality
mortality       >            reproduction    >    rate of adult females    >    rate
rates                           becomes                 reduced                                increased
increase                     increased

- - - - - - - -> - - - - - - - - - - - - -> - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - ->
                              Order of events as population increases

- - - - - - - -> - - - - - - - - - - - - -> - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - ->

Fig. 13.8  Sequence of events contributing to regulation as a population of long-lived
vertebrates increases in abundance.

For populations with little impact of human activities, adult f ema le
survival appears likely to be at least 0.94  and likely higher (Fig. 13.9). Many o f
the examples used here were subjected to impacts that likely reduced s u r v i v a l
below a feasible maximum. Consequently, it seems very likely that adult f ema le
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survival will be at least 94% and may be 99% or higher in the prime a g e
classes under truly undisturbed conditions. Such a high annual survival i s
necessarily accompanied by reductions in survival due to senescence w h i c h
may not always be taken into account in reported estimates of adult f ema le
su rv i va l .

Fig. 13.9. Frequency of adult female survival rates. Most of the examples are from large
mammal data, but a few are from long-lived birds. Dark bars represent species where there i s
reason to believe human influence might have a minor influence, while those represented by the
lighter bars likely were affected by modest human influences.

Under largely undisturbed conditions, it seems reasonably we l l -
established that a density-dependent response in long-lived vertebrates w i l l
initially be evident in first-year survival. Poor first-year survival n o r m a l l y
results in poorer physical condition which will, in turn, result in a delay i n
ages of first reproduction. It may well be that these two factors will b e
sufficient to control population growth without invoking the s u b s e q u e n t
stages of Fig. 13.8, but extreme conditions may well result in an impac t
reflected in all four stages. The Hawaiian monk seals of French Frigate Shoals
provide one example of this result (Section 14.5 and Example 13.1 below).

In Chapter 11 (Section 11.9) we considered a method for o b t a i n i n g
approximate variance estimates for the rate of population change (λ ). A n
essential component is estimating the partial derivatives of λ with respect t o
survival and reproductive rates (eq. 11.13).  These provide a measure of t h e
relative importance of such rates in determining population growth. T h e y
indicate that adult female survival is most important, with reproductive r a t e
next, and survival to reproductive age apparently least influential (Fig. 13.10).
We can thus speculate that, because long-lived vertebrates have re la t i ve l y
slow rates of population growth, early survival might be the best m e c h a n i s m
for at least initiating population regulation.
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Figure 13.10 Relative importance of components of rate of population change for a number o f
species of long-lived vertebrates.

The evidence for reduced juvenile survival as the first parameter t o
change with increasing population density is now quite substantial. Gaillard e t
al. (1998:Table 1) reported that juvenile survival was implicated in 7 of 8
species for which there was evidence of density dependence. They noted t h a t
Fowler's (1987) review showed juvenile survival involved in 15 of 21 spec ies
for which density dependence was reported. A major problem in assessing da ta
from the literature is that the chronological sequence in which va r i ous
parameters change often cannot be determined from the reports, but it does
seem clear that changes in the age of first reproduction largely follow as a
consequence of the reduced resource availability leading to reduced e a r l y
su rv i va l .

Gaillard et al. (1998) presented data that showed much greater r e l a t i ve
variability (coefficient of variation) in juvenile survival (their Table 3) a s
contrasted to that of adult female survival (their Table 2). The likely cause o f
the higher variability in juvenile survival was illustrated by Gaillard et a l .
(1998:Fig. 1) as the sequence in time of adult female and juvenile s u r v i v a l
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rates. As density increased, juvenile survival decreased sharply, t h u s
substantially increasing the coefficient of variation. Gaillard et al. (1998)
noted that "only two island populations (Soay sheep and red deer) exh ib i ted
density dependence in adult survival" and that "Even for these two species,
survival of adult females varies much less than juvenile survival." Discussing
red deer, Saether (1997) pointed out that "the major density d e p e n d e n t
mortality losses occur among calves during their first winter", and that "This
pattern was found in three different studies of the species in both Europe a n d
North America". Gaillard et al.(2000) reviewed a substantially larger set of da ta
that confirmed the results of Gaillard et al. (1998) and ranked variability f r o m
highest in juvenile survival to lowest for adult survival.

Clutton-Brock et al. (1991) reported that "The persistent instability o f
the St. Kilda [Soay] sheep population is probably caused by their cons is ten t l y
high fecundity associated with a super-abundance of food in summer. I n
conjunction these may permit the population to pass through winter at a l eve l
close to carrying capacity; to increase as much as 50% during the s u b s e q u e n t
summer; and to enter the next winter at a level substantially higher than t h e
island can support".

A major problem in assessing the sequence proposed here is t h e
uncertainty as to the forces that regulated undisturbed populations b e f o r e
human interference became all-pervasive. The relative magnitudes of t h e
numerical values of the essential parameters (Fig. 13.10) indicate t h a t
"sensitivity" of λ  to parameter changes is least in early survival and g rea tes t
in adult survival, with reproductive rate in an intermediate position. It m i g h t
thus be supposed that this sequence may have some significance in a n
evolutionary sense. The notion of "r and K selection" has lost some of i t s
earlier preeminence, but nonetheless provides a convenient s h o r t h a n d
classification of species, with r-selected groups able to recoup losses in a v e r y
short period, and K-selected species requiring many years to recover f r o m
reductions in numbers. Consequently, it seems logical that selection in K -
selected species might favor a regulatory process that tends to m a i n t a i n
equilibrium numbers by small, rather than large, changes in λ , hence b y
modifying early survival. This argument is supported by the results of Gai l lard
et al. (2000) who evaluated temporal variation in “fitness components” of l a r g e
herbivores. These authors found that the coefficient of variation for e a r l y
survival was highest (0.64) in large herbivores and lowest for adult s u r v i v a l
(0.09). They suggested that “the immature stage … may be the c r i t i ca l
component of population dynamics for large herbivores”, indicating that “ o u r
review supports Eberhardt’s hypothesis and generalizes it to all sources o f
temporal variation”.

Three major forces can be proposed as influencing the l a r g e
vertebrates under "natural" conditions: weather, resources and predation. T h e
preponderance of evidence from demographic studies indicates that e a r l y
survival responds first to both severe weather and to resource limitations. As a
population begins to outstrip its resources, inclement weather may have a
much more pronounced effect, and may result in rather sharp fluctuations. A
key question is the possible regulatory role of predation. In most n a tu r a l
systems human interference severely limits opportunities to evaluate the  r o l e
of predation (Section 12.5). Wolf (Canis lupus) predation on ungulates has b e e n
observed to dominantly affect early survival and survival of s e n e s c e n t
individuals (Peterson 1977, Peterson et al. 1984:Fig. 5, Ballard et al. 1987:Fig. 16,
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Mech et al. 1998). To serve as a regulatory function, predation should exhibit a
direct relationship with prey density, increasing at high prey densities a n d
decreasing at lower prey numbers. The notion of ratio dependence (Matson
and Berryman 1992) may fulfill this requirement. Evidence has accumulated t o
favor the ratio dependence model in wolf-ungulate interactions (Ebe rha rd t
1997, 1998). The crucial question may then be whether predation tends to h o l d
ungulate populations below levels where weather and resource l imi ta t ions
become important. If so, then an evolutionary pattern may be implicated.

Example 13.1 Sequence of events in density dependence.

The illustration of the original development (Eberhardt 1977:Fig.
2) of the sequence of events indicated in Fig. 13.8 used data from a
number of sources. The Hawaiian monk seal population of French Frigate
Shoals (Section 14.5) illustrates the full sequence in a single
population. Trend of the French Frigate Shoals population through 1993
appears in Fig. 1.18, and was contrasted with the other sites by
Gilmartin and Eberhardt (1995). The population increased steadily until
sometime in the 1980’s, and then began a dramatic decline. The decline
was initially evidenced by finding malnourished pups, and a decreasing
first-year survival (Fig. 13.11).

Fig. 13.11 First year survival of monk seals on French Frigate Shoals.

High adult survival was recorded during the phase of population
increase (Gilmartin et al. 1993), but soon began a steady decrease. The
population is not a large one, so the number of weaned pups tagged each
year (a major effort is made to tag all pups at weaning) has averaged
around 40 individuals. Consequently sample size has an appreciable
effect on the numbers of older animals located (less than 10 individuals
in the data used here), as does the stochastic (chance) variation in
survival. Nonetheless, the pattern of decreasing survival is very
evident in logarithmic plots of numbers observed over the years (Fig.
13.12).
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Fig. 13.12. Logarithms of numbers of tagged seals recorded at French Frigate Shoals,
Northwest Hawaiian Islands, 1984 through 1989. Estimates of survival rates are shown f o r
each year-class. Because the numbers initially tagged (as weaned pups) are roughly the same,
the vertical scale has been adjusted so that the points do not overlap.

The survival rates given in Fig. 13.12 were obtained from the slopes of
logarithms of numbers of individuals returning to the Atoll each year.
More details on survival estimation appear in Gilmartin and Eberhardt
(1995). It appears that there has been a steady decrease in adult
survival rates, and this is, of course, evident in the population trend
(Fig. 1.18). It is particularly interesting that the first cohort tagged
(1984) apparently continues to have relatively good survival. The
decreasing trend in survival rates has continued, so that the cohort
tagged in 1996  exhibits an annual survival rate on the order of 40%.
Evidently the available food resource for this population has continued
to decline, and “carrying capacity” may not yet have been reached.

Due to relatively small sample sizes, it has not been feasible to
determine whether the sequence of events of Fig. 13.8 has occurred in
this population in precisely the order suggested, but clearly the
prescribed series of events has transpired. Age of first reproduction
clearly has been reduced, and it seems reasonably certain that the
overall reproductive success of adult females has decreased (Fig.
13.13).  The oldest tagged individuals in the overall population are now
about 18 years of age, so it is as yet to be determined when senescence
becomes important. The largest sample of reproductive data comes from
another site (Laysan Island, see map in Section 14.5), and suggests that
monk seals do not reach a reproductive peak until appreciably later than
other pinnipeds.
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Fig. 13.13  Reproductive rates for monk seals at Laysan Island and French Frigate Shoals.

It should be noted that this example very likely is not typical, in  the
sense that there is not sufficient information to determine what the
“typical” approach to an asymptotic population level might be. As noted
previously in this Chapter, it may be that a reduction in first year
survival and the (likely) concomitant delay in first reproduction may be
sufficient to cause a population to stabilize in the neighborhood of a
carrying capacity value. This is one of the issues that characterize the
limitations of the present state of knowledge about long-lived
vertebrates.

13.7 Exercises

13.7.1 Make plots of the rate of increase used in Eq. (13.1) and Fig. 13.1 f o r
r(1)=0.2 , z=1,2,5,11, and K=5000.

13.7.2  A model for density dependence.
Plot eq.(13.3) with b=0.95 and K=5000 and the log form of the genera l i zed
logistic [eq.(13.1)] with r(1)=0.2, z=5, and K=5000. Note  that you will need t o
rearrange eq.(13.1) to put it in a log form, and that you will need to use  e x p ( l n
X(t)) to represent N(t) in the portion of eq.(13.1) in brackets, inasmuch a s
exp(ln(x))=x.

13.7.3 Generating normal distributions.
A convenient way to generate normally distributed errors for studying dens i t y
dependence is given in the following equations:

                                                  
x r r

x r r
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where the x’s are random normally distributed values with mean 0 a n d
variance 1 and the r’s are uniform random variables (range 0-1). You c a n
obtain uniform random variables with the function RAND() in EXCEL ( n o t e
that you need the parentheses to generate uniform random variables but don ’ t
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need to enter a value in them). The above equations generate 2 random n o r m a l
variables from 2 uniformly distributed values. In doing largish simulations i t s
convenient to use both of the random normal numbers thus generated. Fo r
purposes of illustration, we need only use one. Set up a table of random n o r m a l
numbers using the above equations and try the random walk of Fig. 13.3,
using 100 values. Create a graph on the same EXCEL sheet and change t h e
values to see how the random walk changes. Note that the populations g o
extinct fairly regularly, whereas Fig. 13.3 shows an increasing popu la t ion .
EXCEL has a command that changes the random numbers to make a new g r a p h .
on occasion it is desirable to make the recalculation manual so as not to h a v e
the graph change while you are working on it.

Exercise 13.7.4  “Random walk with drift”.
Several of the papers referenced in this chapter discuss “random walk w i t h
drift” using eq.(13.4). It was noted in connection with eq.(13.4) that this r e a l l y
simulates an exponentially increasing population. Add another column to t h e
random normal numbers generated above which multiplies one of the r a n d o m
normal numbers by a constant so that you get an error term like that used i n
eqs.(13.5) and (13.6). Then add a constant to the random walk model above t o
construct results according to eq.(13.4), as shown in Fig. 13.4. Make a graph o f
the random walk model on the same EXCEL sheet. Vary the c o ns t a n t
multiplying the normal random variable from, say, 0.1 to 1 and note how i t
affects the graph of population size. With a small multiplier the graph shou ld
essentially follow an exponential plot (but on a log scale). With a l a r g e r
multiplier it becomes quite erratic.

Exercise 13.7.5  Rapid rates of increase.
It was noted in the Chapter that many of the papers on testing for dens i t y
dependence appear to be based on data on  insects. To examine this p rospec t ,
plot eq.(13.2) as shown in Fig. 13.2 with K=5000, but set it up with 3 c o lu m n s
and make a graph so you can compare different values of b. Try b=.95, a n d
b=.98 which should replicate Fig. 13.2 and part of Fig. 13.7. Now try values o f
b=0.5  to 0.8 to see how different the growth curves are.

Exercise 13.7.6 Lambda for rapid rates of increase.
Add 3 columns to the worksheet for Exercise 13.7.5  to show lambda for each o f
the population plots. This can be done with the equation given in the c ha p t e r ,
i.e.

                              λ t
t

t
t
b b

t

bN

N
N K

K

N
= = =

+

− − −

1

1 1 1( )

This shows why the growth curves of exercise 13.7.5  increase so rapidly.

Exercise 13.7.7 The generalized logistic.
Calculate the generalized logistic (eq.13.1) for K =5,000, z=5, r=0.2, 0.4, and K
=5,000, z=2, r=0.2, 0.4, and  make a graph of the results on the same workshee t .
Note the more rapid increase generated by r=0.4. One characteristic of t h e
generalized logistic is shown by the “overshoot” and oscillation for h i g h e r
rates of increase and larger values of z.
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Exercise 13.7.8 Bulmer’s tests
Some of the difficulties in testing for density dependence can be illustrated b y
considering Bulmer’s (1975) tests. The first test is based on the fact that t h e
squared differences between successive observations of population size can b e
used to approximate the overall variance of a set of observations, if there is n o
trend or pattern in the data. The test is essentially the Durbin-Watson test o f
eq. (9.13),  except that Bulmer used the reciprocal of the ratio, i.e., t h e
reciprocal of eq.(9.13). The table below gives the first 20 observations from t h e
generalized logistic used in Exercise 13.7.2,  20 observations bracketing t h e
inflection point, and 20 observations above the inflection point, along w i t h
logarithms of 20 observations from an exponential growth curve with N(0)=10,
r=0.20.

First 20 obsns
generalized
logistic

5 OBSNS OBSNS EXPONENTIAL
0.2 BRACKETING ABOVE MODEL

5000 INFLECTION INFLECTION N(0)=10
1 0 POINT POINT R=1.2

X(t) X(t ) X(t )
1 2.30259 7.04288 8.51718 2.30259
2 2.48491 7.22509 8.51719 2.48491
3 2.66723 7.40715 8.51719 2.66723
4 2.84955 7.58883 8.51719 2.84955
5 3.03187 7.76954 8.51719 3.03187
6 3.21419 7.94789 8.51719 3.21419
7 3.39651 8.12049 8.51719 3.39651
8 3.57884 8.27961 8.51719 3.57884
9 3.76116 8.40979 8.51719 3.76116

1 0 3.94348 8.48962 8.51719 3.94348
1 1 4.12580 8.51505 8.51719 4.12580
1 2 4.30812 8.51718 8.51719 4.30812
1 3 4.49044 8.51719 8.51719 4.49044
1 4 4.67277 8.51719 8.51719 4.67277
1 5 4.85509 8.51719 8.51719 4.85509
1 6 5.03741 8.51719 8.51719 5.03741
1 7 5.21973 8.51719 8.51719 5.21973
1 8 5.40205 8.51719 8.51719 5.40205
1 9 5.58437 8.51719 8.51719 5.58437
2 0 5.76669 8.51719 8.51719 5.76669

Bulmer’s first test is R=V/U where:
 

                   U x x V x xi
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2   and     

He gives a way to calculate significance levels, which gives a value of 0.696 f o r
the 1 % point and 0.909 for the 5% point, where the test is significant if the R
is less than the stated significance point. Calculate Bulmer’s R test for  the f i r s t
three columns above and comment. Also comment on the meaning of a
comparison of the first and last columns (note that the data are available i n
your results for Exercise 13.7.2  so  you don’t have to copy the numbers above).
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Exercise 13.7.9. Bulmer’s second test.
Bulmer (1975) recognized that his R-test would not behave satisfactorily in t h e
presence of sampling error so devised a second test for that purpose, which i s
R*=W/V where:

W x x x xi i i
i

n

= − −+ +
=

−

∑( )( )2 1
1

2

He gives approximate criteria for significance as:

R
n n n

R
n n n

0 05 2 3

0 01 2 3

13 7 139 613

20 1 258 1279

.
*

.
*

.

.

= − + −

= − + −

and indicates significance if R* is less than the calculated significance leve l .
Try this on the first 20 observations for the generalized logistic as given i n
Exercise 13.7.8 and comment on your results.



14.1

14.0 SOME CASE HISTORIES

14.1 Introduction

A substantial number of quantitative techniques have been presented
in the preceding chapters. Because these methods are mainly supported by
mathematical equations of various kinds, the presentation tends to suggest an
exact methodology. All the user has to do is supply numbers for the equations
and accurate results with appropriate confidence limits should become
available. However, the real world is not like that. The techniques presented
here must largely be applied in field settings and in circumstances where
various uncertainties arise. Furthermore, work with the populations
inhabiting large areas is always expensive and time-consuming, and various
sources of bias may exist and may not be identified or corrected. Consequently,
this chapter is devoted to reviewing some “case histories” to illustrate some of
the problems encountered in real-world settings. Also, data from a number of
the cases discussed below were used to illustrate various methods in the
previous chapters, so the following sections provide some background
information as to how and where the data were collected.

14.1 The Florida manatee (Trichechus manatus latirostris)

Manatees are slow-moving warm-water herbivores that produce a
single calf at two-year intervals under good conditions, with part of the
population giving birth at three-year intervals. Reproduction does not occur
until age 4 or 5. Aerial surveys produced an estimate of about 1,000 manatees in
Florida in the 1970's and early 1980's. Most adults carry characteristic scars
from encounters with speedboats, which appear to be the principal source of
mortality. A continuing increase in boating use exacerbated the situation.
Concern about the accidental death rate led to initiation of a program to
recover and examine carcasses in the mid-1970's. When the number recovered
reached 200 individuals per year, it was widely assumed that the manatee
population might soon be extirpated as the population clearly could not sustain
an annual loss rate of even 10% let alone 20%. This "crisis" situation continued
for another 15 years or so, with annual announcements of the imminent
demise of the species. Efforts to recover carcasses were accelerated, and the
aerial surveys were continued. Aerial counts are most effective during
unusually cold periods, when manatees concentrate in warm water areas and
are thus more readily seen. By concentrating on unusual cold-snaps and using
a sizable number of aircraft, the total count was increased to approximately
2,000. However, the carcass recovery program also turned up more deaths over
time, resulting in continued concern about prospects for the population.
Efforts to determine survival rates and to better understand the available trend
data eventually led to the conclusion that the population had, in fact, most
likely actually been increasing throughout the period (Eberhardt and O'Shea
1996).

The problem was that both sources of data (aerial surveys and carcass
recoveries) only accounted for some unknown fraction of the numbers
present and the annual losses. At present, there is no really suitable estimate
of the "efficiency" of either survey nor of the total number of manatees
present in Florida waters. With the realization that the population actually was
not in any real danger, it is quite possible that a relaxation of the controls on
boating in manatee areas might eventually lead to a sharp reduction in the
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population without that event being detected by the two major surveys.
Continued close attention to survival rates is thus indicated. This is not a simple
matter due to the fact that scar patterns had to be used for marking. We thus
have a situation where two surveys (one for population size and one for
mortalities) are biased (underestimate) and there is as yet no suitable means
for correcting the results. Given a suitable technique for marking, it seems
likely that improved survival estimates can be obtained and will offer some
protection against the very real risk that the population may decrease
substantially without that fact being detected until too late.

14.2 The Pacific walrus (Odobenus  rosmarus divergens) .

The population of the Pacific walrus occupying the Bering and
Chukchi seas was severely depleted by whalers starting in about 1848, and
continued to be overharvested beyond the turn of the century, resulting in
deaths by starvation of an appreciable part of the coastal Eskimo populations.
A partial recovery was again heavily harvested for commercial purposes,
starting in the 1930's. The Soviet Union prohibited taking of females by their
hunters in 1957, and the population recovered to what likely was an
asymptotic level by about 1980. Reproduction appeared to be substantially
reduced about that time, and harvests for subsistence purposes and for ivory
may well have again started an overall decline, and quite likely have reduced
the male segment of the population rather sharply.

A number of efforts have been made to estimate total abundance of the
walrus population through aerial surveys, but it has not been possible to
demonstrate that any of these surveys have approximated the total number of
walrus present due to the very bad weather often present at the times when
walrus are concentrated and available for counting. The harvests are very
selective, so that it is extremely difficult to determine composition of the
population, and the harvest estimates depend very much on reports by
hunters. Walrus ivory is valuable so there is a risk of overharvesting.
Reproductive rates are roughly comparable to those for manatees, so a reduced
population may take a long time to recover. Thus, while we know that there
are large numbers of walrus, the prospects for ascertaining total abundance
or trend are not encouraging, and the population very likely can not be
adequately understood without very large expenditures of time and money.

There is evidence that walrus depend heavily on clams and that the
prey species may be about as long-lived as the predator. It is thus quite
possible that the extensive commercial utilization of walrus and great
reductions in the population in the past may have resulted in a build-up of
prey to the point where the recovering walrus population may well have
"overshot" the steady-state carrying capacity of the environment in the
1980's, resulting in the observed sharp reduction in walrus reproductive rates.
A very substantial fluctuation in relative biomass in the Bering-Chukchi
region may well have occurred without anyone being aware of details, and the
cycles might well persist over long time periods. There may be an appreciable
potential for eventual human harvests of the molluscan resources of the
region, leading to the necessity for the very difficult job of assessing walrus
populations in detail. Thus far there are no good indices of trend, and no way
to reliably estimate survival rates.
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We thus have an example of a very large population [perhaps as many
as 250,000, Fay et al. (1997)] that most likely has fluctuated substantially since
the 1850’s, with very little reliable information as to current size or trends,
and few immediate prospects for improving the situation.

14.3 Bowhead whales (Balaena  mysticetus)

At each of its meetings from 1977 to 1982, the Scientific Committee
of the International Whaling Commission recommended that no bowhead
whales be removed from the stock inhabiting the Bering, Chukchi, and
Beaufort seas. Commercial whaling began on this stock in 1848 and continued
to 1914, greatly reducing the population. From 1914 to 1970 an average of about
12 whales per year was landed by Alaskan Eskimos, so that cessation of these
harvests was considered undesirable for cultural and subsistence reasons.
After 1970, however, the number of whales landed increased to about 30 per
year, with an increase also of whales "struck and lost", i. e., harpooned but not
landed, so that as many as 100 whales may have been killed in 1977. A
significant increase in the rate of removal on an already depleted population
indicated a need to be concerned about possible extinction. A series of counts
of northward migrating whales has been conducted in recent years, and
utilized with catch data and a backcalculation model. These counts gave erratic
results due to weather and ice conditions and various improvements in
technique. Hence, only a single current population estimate was utilized in the
model.

The bowhead calculations (Breiwick, Eberhardt and Braham 1984)
provide an example of the complexities involved in attempting to assess a
population trajectory with a minimum of information on reproductive and
survival rates. Likely ranges of parameters had to be adopted, and many runs
of the model used to explore the effects of various parameter combinations.
The major concern at the time was whether or not the population would
continue to recover under current and projected levels of harvest.
Consequently, the analysis mainly had to evaluate the prospects for a
continued decline, considering the history of harvests and current population
size.

A reliable method for determining age was not available for bowhead
whales. so that the available population data consisted of a classification as
calves, immatures, and mature individuals. Sex ratios in the harvest and in the
population appeared to be about unity so that particular complication was
neglected. To utilize the information on fraction of mature animals in the
population, it was necessary to use an age-structured model. Initially, it seemed
realistic to combine the mature animals in a single class, thus using a reduced
Leslie matrix. However, it soon became evident that high adult survival rates
would bias the outcome unless lowered survival due to senescence was
introduced. Hence a full matrix was used, truncated to approximate the effect
of senescence. Consequently, we have the necessary but anomalous-seeming
situation in which an age-structured model is used without knowledge of ages.
Inasmuch a commercial harvesting had ended about 1914, and the population
about 1970 was known to be at least 4,000 individuals, runs of the model with
parameters in likely ranges (deduced both from the available biological data
on bowheads, and on similar species) made it evident that a continuing decline
was improbable under the current harvesting regime.
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The important aspect of the bowhead situation for present purposes, is
that the initial discussions of the problem revolved around the notion that
there might only have been a few hundred whales present. The first serious
efforts at a census resulted in estimates of about 1,000. Continued efforts at
improving techniques ultimately pushed estimates up to nearly 8,000 whales.
These efforts required about 20 years to accomplish, illustrating the fact that
there is no simple way to deal with population problems in remote areas.

14.4 Grizzly bears (Ursus arctos horribilis)

The uncertain future of the grizzly bear in the coterminous United
States resulted in a "Threatened" status under the Endangered Species Act. It is
thus essential to monitor the population as closely as possible. The remaining
subpopulations occupy forested habitats, are highly mobile, often secretive,
and have very large home ranges. The subpopulation considered here is that
of the Greater Yellowstone area, containing about 20,000 sq km, and centered
on Yellowstone National Park. Direct determination of population size has thus
far been very difficult, so that it has been necessary to depend on an
assessment of reproductive and survival rates (obtained largely through
telemetry) to assess rate of change. Reproduction occurs at about 3 year
intervals, with an average litter size of about 2 cubs.

The major concern in the study is one of maintaining the isolated
population in the Greater Yellowstone area. Open garbage dumps had provided
a supplementary food supply since the 1920's, and likely served to concentrate
the population seasonally. Closure of the dumps in the early 1970's resulted in
very extensive mortalities, associated with interactions with humans in the
course of seeking new food supplies. Radiotelemetry studies were initiated in
1975, and indicated a long-term decrease of about 2% per year (Knight et al,
1985), based on calculation of λ  from reproductive and survival data.
Estimation of survival rates has identified the key factor in maintaining the
population. Adult female survival rates have been about 92%, whereas a
population free of human interference should have a rate on the order of 99%.
Hence protection of adult females was stressed, with a policy that a recorded
loss of more than two adult females per year would be likely to jeopardize the
future of the population.

Radiotelemetry data build up very slowly, so that in the initial analysis
it was necessary to combine males and females in calculating subadult survival
rates. As more data accumulated, it became evident that subadult male survival
was appreciably lower than that of subadult females, and a revised calculation
(Eberhardt et al. 1994, Eberhardt 1995) indicated that the population may in
fact have been increasing. The reproductive and survival data yield an
estimate of λ  of 1.05, with confidence limits of about 1.00 to 1.09. Data for an
index of relative abundance for Yellowstone grizzlies come from records kept
of distinct family groups (females with cubs-of-the-year). Females with cubs
are more readily seen than other bears, and the presence of cubs provides
various clues useful in distinguishing one family group from another
(number in the litter, size, coat color, radiotransmitters, etc.). Distance
between sightings and various obstacles (mainly highways and the Grand
Canyon of the Yellowstone River) are also important in distinguishing
families. Details of the method appear in Knight et al. (1995).  A major problem
with using the index is simply that visibility of individual bears varies
appreciably from year to year. In wet years with lush vegetation, bears are
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able to find adequate food supplies in relatively heavy cover and are thus not
seen so readily. In dry years, they are forced to range more widely, and thus
are seen more frequently.

The question of total size of the Yellowstone population has been a
recurring problem. Research on Yellowstone bears in the late 1960's was
concentrated on the population utilizing garbage dumps where bears were
readily accessible. Marking and tagging was used to produce an estimate of
population size, which was reported (Craighead et al. 1974) to be about 230
bears. Later reports (McCullough 1981) used an estimate of about 300 bears, but
this number has never been documented, apparently having arisen in
unpublished correspondence after the study by Craighead et al. ended. Closure
of the garbage dumps in the 1970's resulted in a great deal of controversy and
termination of the Craighead study. Little or no field work was done until the
mid-1970's, when the population was dispersed and very much changed in
behavior and general character. Estimates from tagging and recaptures or
resightings were not feasible, so that, as noted above, trend had to be
approximated from reproductive and survival data from the radiotelemetry
work, supported in a limited way by the index of relative abundance based on
tallies of females with cubs of the year.

Attempts to estimate total numbers during most of the recent study
depended on projections of the population size estimates from the work by the
Craigheads, and the heavy losses recorded during the period of dump closures
made it seem that the population must have reached a low level. Administrative
and public requests for an estimate ("How many are there?") led to
construction of minimum estimates in the recent study, starting with the tally
of adult females with cubs. Although these estimates were described as
minimums, many public reports treated them as estimates of actual numbers.
Ultimately it became possible to utilize the accumulated data on sightings to
produce a direct estimate of recent numbers (Eberhardt and Knight 1996). This
data suggested that the current population may be on the order of 400 bears.
Although the variable nature of the available data resulted in wide confidence
limits, it does seem likely that the estimates of the late 1960's were biased
downwards by the use of data collected mainly at the garbage dumps, and that
the population was then larger than supposed. Mortalities associated with
closure of the dumps thus very likely did not result in as abrupt a decrease in
numbers as seemed apparent at the time, and the recovery  may have been
much more rapid than generally assumed. Focussing on total numbers thus
seems to have greatly confused the issues.

The intense controversy over dump closure resulted in the abrupt
termination of the Craighead study with little or no monitoring of marked
bears. The subsequent study did not begin marking until 1975, and then
initially only outside of Yellowstone National Park. It thus took nearly 10 years
to build up sufficient information to approximate a population analysis
(Knight and Eberhardt 1985). Had the early study been continued throughout
the period of dump closure, the long interval of uncertainty about status of the
population might have been reduced appreciably. However, the Craighead
study depended largely on visual resightings of marked bears at the dumps,
while the recent study has utilized radiotelemetry of bears trapped at various
places throughout the Park. Whether continuation of the field studies during
the dump closure would have reduced the confusion is thus not certain. It does
seem evident that the emphasis on population size led to continued confusion
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and uncertainty. To estimate the actual numbers of bears in the Greater
Yellowstone area by a capture-recapture technique would be extremely
expensive and might not succeed. Live-trapping would be required which
presumably calls for moving traps by helicopter (not permitted in Wilderness
Areas, which are an important component of the overall bear habitat).
Because female survival is crucial, it may well be that this is the essential
parameter to monitor.

14.5 Hawaiian monk seals (Monarchus schaundslandi)

The Hawaiian monk seal is known to be sensitive to human intrusions,
and has been sufficiently reduced in numbers to become classified as
"Endangered" under the Endangered Species Act. An as yet poorly understood
series of events resulted in redistribution of the population over the several
atolls of the Northwestern Hawaiian Islands which constitute the sole habitat
of the species). Abundance was sharply reduced in the western part of the
chain, leaving a severely imbalanced sex ratio, with adult males substantially
outnumbering females in at least two sites. The excess of males has resulted in
a breeding phenomenon known as "mobbing" behavior in which females may
be killed outright or injured sufficiently to lead to death from shark predation.
Population trends are available as "beach counts" and survival and
reproductive data are available from data on marked seals.

Six primary sites contain the majority of the population. Midway Atoll
was subjected to intense military activity in World War II, and was used
extensively by the U. S. Navy until recent years. This intense human activity
essentially extirpated the monk seal population, with mean beach counts of
about 50 seals observed in 1956 and 1957. Apparently these were very old seals,
and they were mostly gone by the late 1960's. A few seals moved in from the
adjacent sites (Kure Atoll and Pearl and Hermes Reef), so that mean beach
counts on the order of 10 seals were observed recently. All of the other major
sites, with the exception of the easternmost, French Frigate Shoals, exhibited a
sharp decline beginning in the 1960's. It is likely that there was a common
agent external to the individual populations that caused the decline, but a
specific cause has not been identified. Occupation of Kure for operation of a
Loran station is known to have contributed to the decline there, and efforts
were made to rebuild the population by introducing young seals rescued from
French Frigate Shoals and "rehabilitated" in captivity for a year. A disease of
unknown origin turned up in seals kept in captivity for use in the
rehabilitation effort, resulting in cessation of that activity.
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Locations of the monk seal sites in the Northwestern Hawaiian Islands

No human actions are known to have impinged on the population at
Pearl and Hermes Reef, but it was driven to a very low level in the 1960's going
from beach counts of  more than 200 seals to a low of about 40 around 1975,
followed by a steady increase in numbers. Adult sex ratios of as high as 3 adult
males to each adult female were observed on Laysan and Lisianski in the
1970's, and the population on Laysan continued to decline slowly, possibly
associated with the "mobbing" phenomenon. Numbers on Lisianski are
essentially static.  Mating occurs in the water, and the excess males simply
gang up on estrus females, doing severe damage in the process. I believe that
the agent responsible for the overall decline was somehow selective by sex,
resulting in the unbalanced sex ratio. Apparently the decline was so severe at
Pearl and Hermes that it affected adult males as well. Initial counts at Kure
showed an excess of males, but the introduction of subadult females has
brought the overall sex ratio into balance.

The situation at French Frigate Shoals was quite different. A Loran
station was located on the best pupping site (East Island), and removal of that
station was followed by a steady increase in the population, continuing up to
the late 1980's, when a major decrease began, more than halving the
population there. This decrease has been marked by starvation of weaned
pups, and seems quite clearly a consequence of reduction in an essential food
source. As yet there has not been a shift in adult sex ratios, and it seems likely
that the situation is entirely different from that at the western sites in the
early 1960's.

An intensive program of tagging weaned pups was started in the early
1980's, and has resulted in the presence of a substantial marked cohort in the
population. Intensive studies at Laysan Island have also yielded a good deal of
reproductive data. Because the reproductive data at the other sites are not as
extensive, it has been necessary to use the Laysan values to explore trends at
the other sites. These results can,  however, be supplemented by rates of
change estimated from the recent beach count data (by log-linear regression).
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A report on status of the population (Gilmartin and Eberhardt 1995)
illustrates the sharp decline in the early years (1960’s). Currently, the smaller,
western populations (Kure, Midway, Pearl and Hermes Reef) appear to be
increasing, while the two intermediate populations (Laysan and Lisianski) are
static or decreasing slowly. The French Frigate Shoals population increased
while the other populations were decreasing in the 1960’s (tagging shows only
minor movements between individual populations), peaked in 1988 or 1989,
and then dropped dramatically in consequence of persistent starvation of
weaned pups.

The monk seal data are particularly interesting because there is no
clear evidence of causes of the initial major decline. Because adult sex ratios
were dramatically shifted (about 3 adult males per adult female) and
subsequent data show the usual large mammal pattern of lower male survival,
one can only conclude that the decline resulted from some human activity, but
this conclusion is unsupported by data (and largely not discussed in the
literature or in reports on monk seals). The essentially static population on
Lisianski and Laysan is characterized by reduced adult female survival, but
again no cause has been identified. The “crash” at French Frigate Shoals is
clearly due to resource limitation, but again the cause is unknown. Quite
recently monk seals have begun to move into the main Hawaiian Islands. They
have not previously been known to occupy these islands, but may simply have
been extirpated by the earliest Polynesian inhabitants, without any
archeological or other record becoming available as yet.

14.6 The Madison-Firehole elk herd

The study and data described below are included to provide an example
of  circumstances where a natural population has remained remarkably
constant in the face of severe and variable winter conditions.

The study system

The Madison-Gibbon-Firehole drainage (general location sketched
below) consists of a rugged mountainous landscape with elevations ranging
from 2150-2800 meters. The pronounced topography results in variable aspects
and slopes supporting a diversity of plant communities, including mature
conifer forests, sedge-grass meadows, and aquatic communities. Numerous
geyser basins warm low-elevation meadows and rivers, thereby reducing snow
cover in these areas and enabling some unique plant associations to continue
photosynthesis throughout the winter. Large scale fires during 1988 burned
55% of the drainage, creating a complex mosaic of burned and unburned
forests at different stages of succession. Winter climatic factors are an
important abiotic component of the ecosystem, as snow depths frequently
exceed 1.2 m, drastically reducing food availability and producing severe
energetic bottlenecks for herbivores during the winter.
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 Sketch map of the study area, which includes the Madison, Gibbon, and Firehole River
drainages.

The approximately 500-600 elk residing in the area are nonmigratory,
remaining within the borders of the Park throughout the In the 10 years of
study to date, no radio-marked elk has left the study area, nor have any of
these elk moved outside the 3 river drainages constituting the study area
(based on approximately  7,000 radio-locations). Neither the landscape nor the
elk that inhabit this drainage have been manipulated to any significant extent
since European settlement, hence the elk population is regulated solely by
natural processes. This is a particularly unusual feature of this study system
since nearly all large herbivore populations in North America are harvested
by man, including the previously studied Northern Range elk population of
Yellowstone National Park (Houston 1982). Human harvest regimes
dramatically influence nearly all demographic attributes and processes within
a population. The only anthropogenic influence that may have appreciably
impacted the natural dynamics of the Madison-Firehole elk population is the
extirpation of wolves from the Park in the early part of this century.
Reintroduction of wolves was initiated in 1995, with the first releases of wolves
into the Madison-Firehole drainages occurring in spring 1996. Elk and bison
are the only ungulates with substantial numbers in the area. A few mule deer
and an occasional moose may be seen, but do not constitute a significant prey
base.

Population data

In the fall of 1991, 5 years prior to initiation of wolf reintroductions in
Yellowstone National Park, intensive telemetry-based investigations of the
landscape-use patterns and demographic characteristics of the elk population
were initiated. The sedentary nature of these animals, combined with the
protection afforded by the Park and frequent contact with humans, has
resulted in animals throughout this drainage becoming relatively tolerant of
humans. This tolerance greatly facilitates opportunities to economically
capture and mark animals using ground-based delivery of immobilizing drugs
via dart rifle. Once marked, animals can be frequently monitored with hand-
held telemetry systems and observed for quantification of survival, cause of
death, habitat use and distribution patterns, feeding behavior, and the
collection of snow-urine and fecal samples for indexing nutritional and
reproductive status. These ongoing studies represent the most current and
extensive databases on elk in Yellowstone National Park.

A sample of 30-40 females, ranging from 1 to 15 years of age and
instrumented with radio collars has been maintained throughout the study.



14.10

Intensive field studies, involving one or more graduate students and 1-2
technicians have been conducted annually from December thru April, with
low-level monitoring of all animals occurring through the rest of the year.
Data on survival beyond age 1 has been accumulated along with reproductive
performance. Very high pregnancy rates have been observed, along with
high survival beyond age 1 for the first 5 years of the study.  Transmitter
performance has been nearly perfect, and no mortalities were observed in the
first 3 years of the study. These data provide an annual survival estimate for
prime-age females (1-11 years of age) of 97%. Survival rates for prime age
classes in the study were much the same as those reported by Houston (1982)
for the northern Yellowstone elk herd, but dropped off sharply after age 11,
while Houston's data suggest high survival continuing out to age 16 or beyond.
Preliminary findings from the Madison-Firehole study indicate that high
fluoride and silicate concentrations in area vegetation may induce accelerated
tooth wear and thus early senescence.

Pregnancy rates of all instrumented elk were also assessed each year
using serum and fecal steroid assays providing a pregnancy rate estimate of
92% for animals >2 years of age. As expected, yearling pregnancy was lower,
estimated at 40%. Both survival and pregnancy rates were reduced during the
6th year of the study (1996-97), which was the severest winter recorded in the
past 60 years. Reproductive rates observed in the Madison-Firehole area also
closely approximated those for the northern herd.

Population size was estimated from aerial surveys conducted during the
first 4 years of the study. These surveys utilized the radiocollared elk and
Petersen estimates. In April of 1997, estimates using ground counts were
begun. These counts were conducted just after the meadows became snow-free,
and elk ere concentrated at these sites. Petersen estimates were obtained from
10 such ground surveys conducted in the spring of each year, and used to
estimate population size after winter mortality had ended. Because survival
over the summer and early fall is virtually 100%, similar counts in October
were used to estimate recruitment of calves born in the summer, and thus
approximate a total population size.

The  estimates of recruitment and early survival depend on large
samples (1,000 to 1,500 observations each year) of calf-cow ratios, taken during
the months of December through April. In all years calf-cow ratios decreased
from about 42-48 calves per 100 cows in December to April ratios ranging from
38 to <1 calves per 100 cows. The April ratios are closely related to cumulative
snow depth data, with the highest observed ratio associated with the year
(1993-94) of lowest snow depth.  Because adult cow survivals were very high,
the drop in calf-cow ratios is evidently mainly a function of over-winter calf
mor ta l i ty .

Snow depth records (an automated weighing system is used) are
available for the last 30 years (see graph below). These records can be used to
demonstrate that the calf-cow ratio decreases markedly with increasing
spring snow depths. The mild winter of 1994 was associated with a high spring
calf-cow ratio (38), while the severe winter of 1996-97 resulted in the lowest
such ratio reported (<1 calf per cow in the spring).
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In spite of the dramatic effect of over-winter snow depths on calf
survival, the population has remained remarkable constant due, we suspect, to
a density-dependent mechanism which most likely results from a strict
limitation on numbers of individuals that can be accomodated in the thermal
refugia. This impact appears to fall principally on calves, inasmuch as adult
cow survival has remained high. Wolves have begun to take significant
numbers of calves, and some adult elk, so it will be particularly interesting to
see how they influence this relatively stable population.

14.7 Isle Royale wolves and moose.

An appraisal of the Isle Royale moose and wolf data using eqs. (12.34)
and (12.35) suggests the possible utility of these equations for further wolf-
ungulate studies (Eberhardt 1998, Eberhardt and Peterson 1999). Further
examination of the data suggests that eq. (12.35) seems to be roughly
satisfactory as a model for the moose data, at least up to the point where a tick
epizootic influenced the population for several years (starting in 1989), but
the ratio-dependent model for wolves does not give a very good fit to the trend
of the Isle Royale wolf population. Hence, the issues of how to test such a fit
need to be further examined with the data. The concept of ratio-dependence
has been criticized in the literature (as well as defended), and thus needs
further attention. It is also quite possible that the Isle Royale wolves may be
influenced by the limitations of an island (544 km. sq.) habitat, and be
responding to that limitation to the point where it limits utility of the ratio-
dependent model.

Several papers (Messier and Crete 1985; Messier 1994, Gasaway et
al.1992) have proposed models for wolf-ungulate interactions having two
equilibrium states, one (the upper) induced by resources available to the
ungulates, and the second (lower) presumably induced by predation. The data
thus far analyzed do not support these models (Eberhardt 2000), and need to be
further assessed, along with the prospects for a "predator-pit" type of lower
equilibrium. The analysis will necessarily be somewhat speculative for lack of
data on multiple-prey situations, but it does seem that there is enough data to
raise questions about the possible existence of such an equilibrium in wolf-
ungulate interactions.

For purposes of the present assessment, however, it may be instructive
to compare the trends of Isle Royale moose and wolf populations (shown
below) with the theoretical model of Fig. 12.5. That model predicts an
equilibrium would be reached after about 20 years, starting with a large moose
population and a few wolves. On Isle Royale there has been little indication of
an equilibrium state as yet. However, parvovirus was reported in the wolf
population in about 1980 (Dr. R. Peterson, personal communication) and
apparently drove it to low levels which have persisted until quite recently.
The moose population then increased steadily and ultimately crashed in a very
severe winter. If the “predator pit” models are correct, one might expect the
moose population to continue to be suppressed by wolves. It will be interesting,
and hopefully instructive, to see how the trend of Isle Royale moose and wolf
populations compare with those of Yellowstone elk and wolves.
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Trend of moose and wolf populations on Isle Royale.
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APPENDIX A BOOTSTRAPPING

This Appendix provides some programs to do bootstrapping and data-
fitting. The bootstrap programs depend on EXCEL macros, but users do not need
to know details of the programming. All one needs to do is insert the data in a
spreadsheet and run the macro. This is accomplished by opening the “TOOLS”
menu, and selecting “MACRO” from the submenu. A window labeled “Macro”
comes up, and hitting the “run” button starts the program. A keystroke
alternative is available on computers running Windows (in some machines it
is ALT F8). This brings up the same “Macro” window, and is a little faster than
going thru the TOOLS menu. When you open one of these programs, a window
may come up indicating that the program contains macros, and warning about
viruses. Hit “Enable Macros” to use the program. Some virus protection
software will also detect the code used and bring up a warning window.

GENERAL PURPOSE PROGRAMS

There are 4 programs available to produce the results of Chapters 2 and
3. The first, BOOT1,  bootstraps single columns of data. It computes the
bootstrapping example of Section 2.1. Contents of the EXCEL window are as
follows:
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The 5 left-hand columns of the worksheet should be reserved for the program.
Various calculations can be carried out in the remainder of the spreadsheet,
and will ordinarily be used to perform intermediate calculations in
bootstrapping, as described below. To modify the program, one inserts the data
in the lefthand column, the number of observations under NOBS and the
number of bootstraps to be run under NBOOT. The actual bootstrap results
appear in the 4th column which usually will have 1,000 to 2,000 entries (so
nothing should be entered under this column in the worksheet, and one needs
to remember to print out only the first page as simply hitting “print” may get
you 40 pages or so!). The program presently is set up to provide bootstraps of
the average as in Section 2.1.

Ordinarily there is little reason to bootstrap averages, and this
worksheet is used only to show how to use the program and to correspond to
the example of Section 2.1. The first column contains the actual observations so
NOBS has to conform to the number of observations entered (10 here). Under
NBOOT, enter the number of bootstraps you want to run. Ordinarily this will be
1,000 or so, but only 30 are used for illustration. The second column will show
the serial number of the observation randomly selected by the program, and
the third column shows the bootstrap sample (or “bootstrap replication”). Run
the program and you will see these numbers change as each sample is drawn.
Any function you want to bootstrap needs to be inserted somewhere. Presently
it is in the third column below the bootstrap sample. In the present example,
the average is calculated there. For convenience in keeping track of things, a
label “AVE” has been inserted to the left of the average calculated from the
bootstrap sample. Note, however, that if you use a larger number of
observations, the program will write over the word “AVE”, and over the
calculated value of the average, so you have to be careful to remove both
“AVE” and the calculation to the right of that word before you change the
number of observations.
In general, be careful what you do in the left-hand 5 columns or you may get
some strange results. It is wise to save copies of the program as you experiment
with changes, so that you can go back if something seems to be wrong with the
current version.

 The actual input to the program is in cell E3 (shaded in the worksheet,
and just below “PARAM INPUT”) and if you highlight that cell you will see that
it is directed to cell C14, which contains the function =AVERAGE (C4:C13) which
averages the bootstrap replication. You can remove this cell and substitute
another function. Try it with the variance function, =VAR(C4:C13) and run the
program. It should produce 30 bootstrap values of the variance in column 4.
The basic idea here is that you can compute anything that can be done directly
on the EXCEL spreadsheet and enter it in cell E4 (“PARAM INPUT”) and 30
bootstrap values will be produced in column 4. Change NBOOT to 1000, and run
the program. Then order the entries in column using the SORT function in the
DATA window, and locate entries 25 and 975. These are the percentile
confidence limits as described in Section 2.5.

Suppose you want the bootstrap standard error of eq.(2.1) for variances
computed as above. The equation is:

                                          se^  boot = { Σ [s(x* b) - s(.)] 2

B-1  } 1/2                            
(2.1)
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Find the bootstrap mean (average of the bootstrap values in column D; this is
s(.) in eq. (2.1)), and the calculation is shown in the following table:

NOBS NBOOT BOOTSTRAP 12861.2PARAM
1 0 3 0 SAMPLE 14468INPUT

DATA 12173.7 6754.84444
1 3 1 3 301 7102.1

106 1 1 6 1 9249.78
203 8 160 4737.57
131 1 0 6 7 8640.27
160 1 1 6 1 10479.2

8 5 106 8991.57
6 7 9 8 6107.61
6 1 1 0 6 7 5704.9
1 1 7 131 14642.4

301 8 160 6204.9
VAR 6754.8444 7834.23

13931.7
2359.88
4403.33
16701.6
8079.73
8469.73
4544.71
6070.67

4557.6
5182.44

5182
8124.77
13266.1
9682.27
5299.43
6754.84

MEAN 8393.61

You can then conduct the calculation in column F by subtracting the
overall mean from the individual values of variances [s(x*b ) in the equation
above]  and squaring (remember to use the $ notation to “freeze” the value of
the bootstrap mean), sum up the column of squared values, divide by B-1 and
find the square root. This is illustrated for the variance below [all we do is add
a column to the table above , sum, divide by B-1 (30 - 1= 29 here) and take the
square root]. Note that the additional calculations are simply added to the
worksheet after the actual bootstrapping is done. However, if you want to see
how the bootstrap standard error behaves in repeated runs, just run the macro
repeatedly and observe how the result varies.
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Bootstrap standard error calculation:

NOBS NBOOT BOOTSTRAP 12861.2 PARAM 19959076
1 0 3 0 SAMPLE 14468.0 INPUT 36898367

DATA 12173.7 6754.84444 14289344
1 3 1 3 301 7102.1 1667994

106 1 1 6 1 9249.8 733026
203 8 160 4737.6 13366642
131 1 0 6 7 8640.3 60840
160 1 1 6 1 10479.2 4349738

8 5 106 8991.6 357554
6 7 9 8 6107.6 5225784
6 1 1 0 6 7 5704.9 7229153
1 1 7 131 14642.4 39047395

301 8 160 6204.9 4790445
VAR 6754.84444 7834.2 312901

13931.7 30670826
2359.9 36405907
4403.3 15922296

16701.6 69022169
8079.7 98518
8469.7 5795
4544.7 14814011
6070.7 5396059
4557.6 14714961
5182.4 10311575
5182.0 10314429
8124.8 72276

13266.1 23741173
9682.3 1660640
5299.4 9573920
6754.8 2685548

MEAN 8393.6 393698361.5 SUM
3684.536 BOOTSTRAP.

STANDARD
ERROR

In the above case we produced the bootstrap values and then operated
on these to find the bootstrap standard error. In other situations one may want
to insert several stages of calculations before doing the bootstrapping.
Consider the “parametric regression” calculations of Section 2.6. One needs
first to find the residuals about regression. This can be done separately or on
the same worksheet. For convenience the regression calculation is listed
separately here, as follows.
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EXCEL  calculation  for a regression line:

ORIGINAL DATA Regression Statistics

X Y Multiple R 0.9172596

10 12.672 R Square 0.8413651

12 8.9391 Adjusted R Square 0.8215358

14 13.934 Standard Error 1.9880968

15 16.377 Observations 10

17 13.252

21 19.121 ANOVA

23 17.821 d f SS MS F

28 18.879 Regression 1 167.70690 167.70690 42.4302

30 21.047 Residual 8 31.62023 3.95253

35 25.213 Total 9 199.32714

Coefficients Standard Error t Stat P-value

Intercept 6.15279 1.74062 3.53483 0.0076

X Variable 1 0.51574 0.07918 6.51385 0.0001

RESIDUAL OUTPUT

Observation Predicted Y Residuals

1 11.31021 1.36179

2 12.34170 -3.40260

3 13.37318 0.56082

4 13.88893 2.48807

5 14.92041 -1.66841

6 16.98338 2.13762

7 18.01487 -0.19387

8 20.59358 -1.71458

9 21.62506 -0.57806

10 24.20378 1.00922

Copy the residuals into the first column of BOOT1,  and copy the “Predicted” values in a
column to the right of the “active” part of the sheet (first 5 columns). Construct  new Y
values by adding the bootstrapped residual to the predicted values. Calculate a slope
(using the SLOPE function) from the new Y values and the X-values and enter this in the
PARAM INPUT box (one could calculate the slope directly in this box, but it may be
best to calculate it elsewhere on the spreadsheet and set PARAM INPUT equal to this
value. If you want to also bootstrap the intercepts, obtain means of the new Y and the X



6

values and compute an intercept using the slope value. For simplicity, the present version
of BOOT1 only handles one parameter, but one can run the program twice, tabulating
slopes and then intercepts. The modified program follows. One would usually also order
the slope values and find confidence limits, and make a histogram to plot the frequency
distribution. With a little effort all of this can appear on the same spreadsheet so you can
have all of your results together, and then pick off what's needed for a report. Run the
program as set  up above to try it out and better  understand the descriptions given here.

Regression bootstrap:

NOBS NBOOT BOOTSTRAP 0.5906 PARAM
10 20 SAMPLE 0.5250 INPUT

DATA 0.5118 0.57185669 PREDICTED NEW Y x
1.3618 5 -3.40260 0.5497 11.31021 7.90761 10

-3.4026 7 2.48807 0.4476 12.34170 14.82977 12
0.5608 7 2.48807 0.5756 13.37318 15.86126 14
2.4881 13 1.00922 0.4399 13.88893 14.89815 15

-1.6684 12 -0.57806 0.5550 14.92041 14.34235 17
2.1376 6 0.56082 0.5187 16.98338 17.54420 21

-0.1939 4 1.36179 0.4442 18.01487 19.37665 23
-1.7146 10 -0.19387 0.4936 20.59358 20.39971 28
-0.5781 7 2.48807 0.5645 21.62506 24.11314 30
1.0092 13 1.00922 0.5426 24.20378 25.21300 35

0.5342
0.5004 SLOPE 0.57186
0.4737
0.4817
0.4568
0.4901
0.5719

BOOT2
To use nonparametric bootstrapping for regression data one needs a

program that handles 2 columns of data. This is done in BOOT2  where the first
2 columns are input into a program. The version of BOOT2  furnished is set up
to bootstrap the same data set as used above. Parametric regression
bootstrapping should be used for smaller data sets (less than, say, 10 pairs of
observations). One can see why this is so by running the program and plotting
a frequency distribution of outcomes for smaller samples. This is an arbitrary
sort of rule, based on experience running the 16 sets of data in Eberhardt
(1987) with both BOOT1 and BOOT2.   Thus I believe BOOT2  should be used for
larger samples (say n > 10) inasmuch as it depends on less restrictive
assumptions. The parametric approach requires that the assumed model holds
for the data used. In the example shown here parametric and nonparametric
regression gave about the  same frequency distributions. For a more realistic
example we use the larger data set of Example 3.4 and bootstrap the variance
about regression. The first table below shows BOOT2 as it is currently set up,
while the second table gives it with the example used here (n = 19).
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BOOT2 WITH BEAR DATA

N0BS NBOOT 0.08994 PARAM
19 2000 0.07248 INPUT SUM OF

DATA X Y RAND NO X Y 0.02706 0.04643 SQUARES
1 2.8332 18 15 3.2189 0.09502 0.03354
2 2.5649 16 13 2.9444 0.04895 0.00143
3 2.1972 10 7 2.3979 0.04463 0.01468
4 2.5649 15 12 2.5649 0.04909 0.07679
5 2.4849 7 4 2.5649 0.04848 0.05740
6 2.6391 20 17 3.1355 0.07566 0.00087
7 2.3979 10 7 2.3979 0.04953 0.01468
8 2.5649 19 16 3.1781 0.06649 0.00604
9 2.8332 21 18 2.9957 0.10144 0.05468

10 2.1972 18 15 3.2189 0.06239 0.03354
11 3.2189 20 17 3.1355 0.05743 0.00087
12 2.5649 10 7 2.3979 0.04019 0.01468
13 2.9444 16 13 2.9444 0.06976 0.00143
14 2.7726 16 13 2.9444 0.04449 0.00143
15 3.2189 19 16 3.1781 0.05643 0.00604
16 3.1781 13 10 2.1972 0.01956 0.26588
17 3.1355 8 5 2.4849 0.05609 0.00903
18 2.9957 14 11 3.2189 0.02939 0.19490
19 2.9957 16 13 2.9444 0.05252 0.00143

MEANS 12.053 2.84541 0.06192 0.78934 SUM
SLOPE 0.0646 0.04643 VARIANCE
INTERCEPT 2.067 ESTIMATE
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To bootstrap the variance about regression, one adds calculations for means, slope
and intercept as above and uses these to calculate a sum of squares [eq.(1.10)] and
variance estimate which is then loaded into PARAM INPUT. The bootstrap results
(B=1000 here) can then be summarized by HISTOGRAM (not shown here) and a
frequency diagram constructed with the CHART WIZARD. The frequency plot indicates
that the estimate of the variance about regression is itself quite variable. The value for the
original data set is 0.0645 while the average of 1,000 bootstraps is 0.0583,  suggesting a
bias [eq.(3.2)] of 0.0062 which is likely not of much concern, considering the variability
of the estimate as displayed below.

FREQUENCY DISTRIBUTION OF VARIANCES ABOUT REGRESSION FOR BEAR DATA

The next two programs likely do not need much explanation. They serve
to jackknife one (JACK1) and two-column (JACK2) data. Applying JACK1 to the
data of Section 2.2 gives the result shown below. All one needs to do is load the
data in the left hand column and enter the number of observations. Running
the macro then produces the basic jackknife data set, and one can proceed to
add whatever calculations are desired. JACK2 is used in the same way, and is
demonstrated here with the bear data (only part of the 19 sets of output is
s h o w n ) .

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

VARIANCE ABOUT REGRESSION
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The two columns of input data are on the left and the first 6 jackknife results appear to
the right, with the first pair left out, then the second, third and so on. One can add various
calculations (e.g., slopes) directly on the spreadsheet. It is wise to clear out all but the
input columns before running the programs, i.e., JACK1 should appear as shown below
before you run it. Inasmuch as it only takes a few minutes to run most of the programs, it
is advisable to make a second run starting from the original program if anything looks
questionable in your results. When using 2000 bootstraps with some mildly complicated
secondary calculations, such as BOOT2  with the variance about regression calculations
as shown above, it does take some time for the program to run. On a MAC PowerBook
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G3 it took about 15 minutes, while a HP Pavilion portable (100mhz CPU) took about 10
min.

BASIC ARRANGEMENT FOR JACK 1

NOBS
19

DATA
1 2.8332
2 2.5649
3 2.1972
4 2.5649
5 2.4849
6 2.6391
7 2.3979
8 2.5649
9 2.8332

10 2.1972
11 3.2189
12 2.5649
13 2.9444
14 2.7726
15 3.2189
16 3.1781
17 3.1355
18 2.9957
19 2.9957

SPECIAL PURPOSE PROGRAMS USING BOOTSTRAPPING

The programs given above are general purpose in that they are written
to use one or two columns of data, and the results can be modified on the
spreadsheets to provide a variety of results. Some further programs follow,
designed for more specialized purposes. However, the same underlying theme
is pursued. That is, the MACROS bootstrap a data set, and the user makes
changes on the EXCEL spreadsheet to accomplish a variety of different
purposes .

Approximating the Lotka-Leslie model                                                                      

The first special purpose program to be considered here is APPLMB,
which has been prepared to bootstrap eq.(11.9), the approximation suggested
by Eberhardt (1985) and further evaluated in Eberhardt (2002). The
underlying equation is:

   λa  -sλ a - 1  -la m [1 - (
s
λ) 

w - a + 1
] = 0                                   (11.9)

An example of the program using data on manatees follows, with the equation associated
with the box labeled RES shown.
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PROGRAM  APPLMB:

The main program does not do any bootstrapping. All of the
bootstrapping is done in advance by using BOOT1 and BOOT2, and is done on the
three input variables, S, SJUV, and m before using APPLMB. The only purpose
of APPLMB is to to produce estimates of lambda from the input data. One thus
has to bootstrap adult survival data (S) and enter, say, 1,000 bootstrap values in
that column. Values of m are similarly bootstrapped and entered in the column
headed by m. The age of first reproduction (a) and the maximum age (w) are

fixed and need only be entered once. SJUV corresponds to la in eq.(11.9). If
survival is assumed to be at the adult rate after the first year of life then the
first-year survival can be entered in the column headed SJUV (this was done
for manatees as there were no estimates of early survival beyond age 1). In
some examples, however, there are at least 2 early survival values, so SJUV has
to be calculated as the product of two or more survival rates. Each of these
rates has to be bootstrapped separately and the results combined (multiplied)
to get SJUV, and the equation governing RES modified accordingly.
Consequently, one will have several different bootstrapping sheets containing
the data to be entered into APPLMB. In the example shown above there are
only 9 entries just to show how the program is set up; in the usual case there
will be at least 1,000 entries in the three left-hand columns.

The actual calculations are done by an equation in the spreadsheet
associated with the box headed RES. The program runs thru all 1,000 rows,
calculates lambda in the box headed lbd, and stores the estimates of lambda in
the column headed “Estimate of lambda”. The value of the residuals is also
listed to the right, so that one can check to see that the program converged
properly. A maximum of 2000 iterations is used to solve eq.(11.9), so if the last
column contains the number 2000, the program likely did not converge
adequately. Users need to understand that eq.(11.9) is nonlinear in nature, and
the program may thus fail to converge. Hence a very important item appears
in the box headed RATE. This is the initial “guesstimate” of lambda. I suggest
setting NOBS at 30 (which limits the number of bootstraps used to the first 30),
and running the program. If there are problems with convergence (i.e., 2000
shows up repeatedly in the box headed “Number of iterations”), then
experiment with the value used for RATE until the number of iterations is less
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than 2000. EXCEL contains the very useful program, SOLVER, in the TOOLS
menu. When you activate SOLVER, a box comes up asking for the “Target” cell,
and this should be set as the box under RES. It also asks for the cell to vary and
this is the box under “lbd”. When you run the program APPLMB, you will note
that it sequentially loads all of the data into the first line and solves eq. (11.9)
with this data. Hence if you want to use SOLVER to check a result you have to
copy data corresponding to the case in question into the first 3 columns of the
first row (columns headed S, SJUV, and m), and then activate SOLVER. Be sure
to read the “help” items associated with SOLVER, as there are various things
that you can do to facilitate getting a solution, and to check that the solution is
appropriate. I have used the routine built into APPLMB on many data sets, and
have not had any important problems, so long as I used good “guesstimates” to                                                                        
start with. You can demonstrate failure of the routine by putting in an                    
unreasonable values of RATE – -it will yield all sorts of strange outcomes.
Incidentally, λ  should never be set equal to s. I usually start with λ  = 1.01.  If
you get error messages, usually the box that comes up will have a button titled
“END”, and pressing this gets you back to the spreadsheet.

 For an example, we use the data on Yellowstone grizzly bears that
produced the frequency distributions of Fig. 11.8. The data shown there were
produced by a program written especially for the purpose. Using the programs
given here reduces the effort required considerably and does not require a
knowledge of a programming language.  Applications of BOOT1 and BOOT2
produce the basic data. Survival can be estimated in various ways, but in this
case radiotelemetry was used, so  the individual records are those of  “radio-
days” of observation per individual bear. Some of the individuals died during
the course of the study, and a simple estimator was used:

                                                   S = (1 – d/days)3 6 5

Where d = number of deaths observed and days = number of “radio-days”
tallied. The bootstrapping program contains a series of records of individual
bears with deaths tallied as 1’s and survival tallied as 0’s in the y-column while
the corresponding days of observation for the individual appear in the x-
column. The data are as shown in the table below, and were inserted in BOOT2
or BOOT1 (for reproductive rate) and 1,000 bootstrap samples drawn. Bootstrap
values (means of 1,000 bootstraps) are shown in the table along with the direct
estimates of the several parameters.

When running APPLMB, be sure to pick the correct Macro out of the list
that comes up when you select Macro in the TOOLS menu. When you copy in
data from the various individual bootstrap sheets (for adult survival, etc.), the
Macros for each such subset become available, so if you select the wrong one,
you will get an error message.
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INPUT DATA FOR PROGRAM APPLMB APPLIED TO DATA ON YELLOWSTONE GRIZZLY BEARS
AD SURV SUBADULT SURV CUB SURV REPRO
DEATHS DAYS DEATHS DAYS SURVIVE DEATHS RATE

1 521 1 488 2 0 0.5
0 730 1 363 2 0 0.6
0 863 0 130 2 0 0.888889
1 143 0 259 3 0 1
1 126 0 342 2 0 1
0 732 0 187 2 1 0.571429
1 447 0 930 1 1 0.714286
0 1684 0 190 3 0 0.571429
0 2512 1 248 2 0 0.833333
0 1100 1 209 3 0 0.8
0 540 0 238 2 0 0.666667
0 977 0 967 1 2 1
0 1056 0 49 3 0 0.833333
0 2182 1 80 2 0 0.571429
0 1462 0 465 2 0 0.6
0 1097 0 229 3 0 0.777778
0 17 0 259 2 0 1
0 1053 0 952 2 0 0.5
0 961 0 951 1 1 1
0 713 0 441 0 2 0.666667
0 715 0 196 2 0 0.666667
0 537 0 89 3 0 1.2
0 775 0 70 1 2 0.5

0 924 5 8332 1 0 0.4

0 951 1 0 0.5
0 699 surv 0.803 1 1 0.4
0 831 BOOT 3 0 1.25
0 840 MEAN 0.798 2 0 0.666667
0 29 3 0 0.75
0 868 1 1 1

0 647 58 11 1

0 650 0.333333
0 655 SURVIVAL 0.810 0.333333
0 935 BOOT 1
0 491 MEAN 0.843 0.75
1 58 0.666667
0 786 0.333333
0 500 0
0 415 1.5

5 31222 0

0.333333
S= 0.943 0

BOOT 0
MEAN 0.942 0.5

1
0.666667

1.5
1

AVE 0.695
BOOT MEAN 0.695
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As noted previously, cub survival was multiplied by subadult survival to get
the data to enter for JSURV in the final program, using the equation:

                               JSURV = (cub surv)(subadult surv)3

The final program was adapted from APPLMB by changing the formula
attached to RES, so that the reproductive rate was divided by 2, to use female
births per female. Also, there is a single entry for SJUV due to the calculation
shown above being done on a separate spreadsheet. One has to be sure to get
the proper equation in place for RES, but this makes it possible to use one
program here instead of several variants. The first part of the final program
follows, showing the input data and estimates of lambda (the full output
contains 1,000 values).

Observant readers will note that this example varies a little from that shown earlier in that the
box for RATE was inserted after this example was run (the starting value was originally in the
program, and has now been moved to the spreadsheet.

The bootstrap value of lambda was 1.053, as is the value calculated from
the original data, using SOLVER. The 95% confidence interval for lambda is
0.97 to 1.12. These wide limits are a consequence of the limited data on subadult
survival. Using the delta method shows that 77% of the variability of the
estimate of lambda is due to the small sample for subadult survival (Eberhardt
2002:Table 2). Radiotelemetry has been continued on the population since the
above data were collected, and hopefully a better estimate will eventually be
available (a trend estimate provided by Eberhardt et al. (1999) gives a
somewhat better notion of the likely status of the population). It is assumed
here that the different sets of data used for inputs are independent. If they are
not independent, the confidence limits will be narrower than they should be.
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Hence, it is a good idea to check the correlations between the bootstraps. In
this example, they were all quite small (less than 0.10).

Survival estimation with the Jolly-Seber method                                                                                         

Estimating survival is  an essential feature of any study of population
dynamics. The program  used here (BOOTSURV) follows the approach of Seber
(1982), and provides survival estimates by the Jolly-Seber method. There is a
necessary dichotomy in applications of capture-recapture methods. The
original theory assumes that all previously unmarked animals are marked and
released as they are captured. This is usually not feasible with large mammals,
where studies usually begin with a substantial marked sample, with new
"batches” marked when it is practicable to do so. When the actual capture-
recapture study begins, the first capture of a marked individual is then
effectively regarded as the initial capture and marking.

The essential equation for the Jolly-Seber method is (Seber 1982:200):

    
               1)-s2,3,..., = (i                      ˆ
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Here RI denotes the number of marked individuals released at time i, zi is the
number captured before and after i, but not at time i, ri  denotes those animals
released at i, and caught again later, and mi are previously marked animals
caught at time i. The zi and  ri are usually obtained by constructing two
intermediate tables as illustrated by Seber (1982:206). A different approach is
used in the present program, in that z is estimated from two other parameters,
i.e., z = C – k in the table produced by BOOTSURV (see Section 8.5 for an
exp lana t ion) .

The basic data are represented by a rectangular matrix in which the
rows represent the capture history of individuals with 1 denoting capture on
the ith occasion and zero, no capture, and the columns contain the data for  the
capture occasions.

The Jolly-Seber method estimates survival as (Seber 1982, eq.(5.9), p.
200):
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BOOTSURV uses 3 different worksheets. The first one (DATA) contains the
original data, which will be, as noted above, a matrix of zeros and ones. The
data must start in the upper left-hand corner of the sheet, and no other
information appears on the sheet – it is called by the programs associated with
the other two sheets. The second sheet is titled “Original Data” and calculates
survival by the equations given above. The box titled “NROWS” contains the
number of rows of data (number of individuals for which data is available),
and the second box, titled “NCOLS” contains the number of columns of data,
which correspond to the number of capture occasions. When you run the
program associated with this sheet, it prints out the data on the right,
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permitting one to check to be sure that the data are correct. The program is
illustrated with data on the Florida manatee collected at the Blue Springs site.
There were 15 capture occasions, and the equation for survival above produces
survival estimates for occasions 2,…,s-2 (where s is the number of capture
occasions), and these 13 values appear in the right-hand column of output, and
are averaged below. You start the program either by using the Macro call in
the Tools menu, or by hitting Alt & F8. When you do this a box comes up that
says “ Bootstrap1” and “Original data”. Be sure to highlight “Original data” in
order to carry out the analysis described above. “Bootstrap1” is automatically
highlighted, so if you just hit “return” you will get an error message (just
press “End” in the box that comes up to get back to the worksheet). You must
highlight the appropriate name to run the corresponding program. The
picture on the next page shows the Original Data worksheet for the Blue
Springs manatee data. Note that the columns headed M-hat to Jssurv contain
calculations, so do not erase these in preparation for a new run. The program
calculates C, k, R and m from the DATA sheet.

Once you have run the analysis on the sheet titled “Original data”,
switch to the sheet titled “Bootstraps” ( a picture of that sheet follows the
Original Data sheet below). The box labeled “NBOOT” in the upper left-hand
corner determines the number of bootstraps. I suggest starting out with 30
until you are sure you have the program running properly. The program
obtains the number of rows and the number of columns from the previous
sheet (“Original data”) and operates only on that part of the data. However, if it
has been used for a different data set at some previous time, there  may be
more rows of data than called for by “Original data”, which can be confusing. I
suggest clearing the columns below C,k,R,m and r before  you start. If you
clear more columns you will destroy the outputs you want (just close down and
start over to restore the computations). When you run the sheet the above
columns are filled in and the survival rate is computed under “surv”. This
program is set up to tally only an average survival rate, so you need to be sure
that an average of the presently used data is calculated below the “surv”
column and that the box under “PARAM INPUT” is set equal to this average.
Another program is available that prints out ALL of the bootstrap survival
estimates and does not average them. It can be used to study the pattern of
survival over time, but is not considered here for the present. The data shown
here are in the copy of the program included with this Appendix, so readers
can experiment with running the program with this data.
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Another example of the use of the approximation to the Lotka-Leslie equation                                                                                                                                              

The Blue Springs manatee data provide another example of the use of
APPLMB, using the survival data obtained above with the Jolly-Seber method.
The bootstrap results were used to introduce use of program APPLMB and the
survival data were used to illustrate the use of BOOTSURV above, with the
original survival data incorporated in the appended copy of BOOTSURV.  The
bootstrap means were very close to the estimates from original data, with the
adult survival estimate from original data being 0.965, the same as the
bootstrap mean. The same applies to reproductive data with both averages
being 0.151. The original data for first year survival gave 0.822, while the
bootstrap mean was 0.821 (a second run gave 0.824).  The adult survival data
appear in the picture of the Original Data sheet above, while first year
survival was computed from 37 survivals from 45 individuals tagged. Thus the
first year survival was bootstrapped by using an input table with 37 values of
1, and 8 zeros in BOOT1. The reproductive rate data (births per female per year)
are shown below for use by anyone wanting to duplicate the bootstrapping.
Just copy the data below into the clipboard – remember to divide by 2 to get
female births per female.

0.3333
0.3571

0.25
0.5

0.3077
0.3333

0.2
0.2222
0.1667
0.2857
0.2857
0.3333
0.3333

0.5
0.3333

0
0.25

0.3333
0.2
0.5

Estimating a parameter using values of lambda from trend data.                                                                                                                    

When data are not available to estimate a parameter other than lambda
(early survival, for instance), it may be possible to substitute estimates of
lambda from trend data. This is readily done by rearranging eq.(11.9).

    λa  -sλ a - 1  -la m [1 - (
s
λ) 

w - a + 1
] = 0                                   (11.9)
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For the Blue Springs manatee data, la was estimated by assuming survival
beyond the first year to the age of first reproduction (a) was at the adult rate,
so that
                                             l s sa juv

a= −1

Thus we can estimate first year survival from [rearranging eq.(11.9):

                                   s
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and m can be estimated by a similar rearrangement. Estimating adult survival
(s) would require an iterative solution, but, while APPLMB can be revised to do
that, I do not recommend it because adult female survival is such an important
parameter that it should be estimated directly. Bootstrapping can be arranged
by using the above equation. Nineteen years of trend data were available for
Blue Springs manatees and were bootstrapped with BOOT2 to get 1,000 estimates
of λ  from trend data. These can then be used with the available bootstraps of
adult female survival and reproductive rate, arranged on a worksheet, and
first year survival estimated from the above equation.

Most of the estimates of SJUV are unreasonably high. Why this should
be the case can be appreciated by comparing a frequency plot of the bootstrap
estimates of lambda estimated from reproductive and survival data with one
estimated by bootstrapping trend data from Blue Springs manatees. These plots
are shown below. The trend data give much higher estimates of λ  than were
obtained by bootstrapping reproductive and survival data. Eberhardt and
O’Shea (1995) reported indications of immigration to the two sites for which
trend data were obtained (Crystal River and Blue Springs). Estimates of early
survival from the Crystal River site were not available, so the main indication
that there might be immigration likely has to come from the failure of the
above program to produce satisfactory estimates for that site, too, along with
the impressions recorded by Eberhardt and O’Shea (1995).
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BLUE SPRINGS BOOTSTRAPS
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Frequency plot of bootstraps of estimates of λ  based on reproductive and
survival data.
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Frequency plot of estimates of λ  obtained by bootstrapping trend data.

Bootstrapping multiple regressions                                                                 

Multiple regressions may be useful in assessing trend data, as indicated
in Section 9.10. Hence it is worthwhile to have two programs to bootstrap
multiple regressions. MREGNONP takes the usual bootstrap approach, in which
the set of observations is randomly sampled n times with replacement, and a
multiple regression is fitted to each of the B bootstrap samples. The
calculations are done on the sheet titled “DATA”, and the bootstrapped values
of the regression calculations appear on a  sheet titled “BOOT”. It is convenient
to attach another sheet containing the usual EXCEL regression calculations,
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and that sheet is labeled “REGRDATA” in the attached programs, which are
based on the grizzly bear data of Example 9.6. The regressions are calculated by
matrix operations which appear of the right of the sheet titled “DATA”. Up to 5
independent variables can be accomodated, but note that the box under NVAR
should show p+1 where p is the number of independent variables. The first
column (labeled Xo) has to contain a column of ones for calculating the
intercept by matrix methods. The sheet labeled “DATA” is as follows (without
the matrix calculations which are off to the  right of the sheet):

Note that the estimates of regression coefficients appear as the lowest set of
values just to the right of the material shown in the picture above. These
values (4 in the example) are loaded into the sheet labeled “BOOT” as the
bootstrapping proceeds. They can be compared with the values obtained from
the original data on the sheet labeled “REGR DATA”. Usually the focus is on the
second parameter which estimates the rate of change of the population, so one
would obtain bootstrap confidence limits on that estimate. The trend data in
this example give a narrower confidence interval than did the data used to
illustrate APPLMB, which used survival and reproductive data to estimate λ .

The second program, MREGRPARA, uses the parametric approach to the
same data set, with the deviations from regression and “predicted” values
calculated by the usual EXCEL regression program (attached to the program as
sheet “REGRDATA”) in the lefthand 2 columns. The deviations are bootstrapped
and attached to the predicted values to generate a new y-value next to the
values of the independent variables as follows:
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Multiple regression calculations are then done on this data set.

Calculations for the Jolly-Seber and Manly_Parr methods                                                                                                         

Calculations for these methods as given in Sec. 8.2 are accomplished
with the program JSMP. The data used are those of Examples 8.5 and 8.6, so that
readers can compare outputs to those given there. The program is arranged in
the same manner as the other programs presented here, i.e., with the data in a
sheet labeled DATA, the basic calculations in a sheet labeled “Original data”,
and bootstrapping is accomplished in the sheet labeled BOOTSTRAPS. Equations
for variance estimates are given by Seber (1982) and Pollock et al. (1990), but
are not included in the present programs. This is because these variance
equations are “large sample” results, whereas bootstrapping may be more
efficient with smaller samples. In order to accommodate both the Jolly-Seber
and Manly-Parr methods in one program, some of the final calculations are
left to the user, with the essential data calculated on the sheets. Equations
(8.25) and (8.26) and eqs. (8 .29) to (8.32) can all be calculated from the data
generated on the “Original data” sheet, recalling that zi = Ci – ki. The desired
calculations can be installed to the right of the parameter estimates C thru r
(but do not insert or remove any columns). Note that “batch” tagging requires
insertion of the total number (n) caught each day as that information is not
available from the DATA sheet, which only contains capture histories of those
animals marked and subsequently caught at least once. Note that several basic
calculations are already present on the sheets to the right of the basic items C
thru r.  In repeated use of the programs one needs to be careful to be sure that
outputs from earlier uses with a larger number of capture periods do not carry
over to a new use (i.e., make sure you do not have any extra rows in the
“Original data” sheet when you make a new run).

The BOOTSTRAPS sheet produces the desired number of bootstraps
(inserted below NBOOT in the left-hand corner of the sheet), with “M-hat”
already calculated for the Jolly-Seber method. Spaces labeled “p” and “N”
currently contain the remaining calculations for the Jolly-Seber method (“p-
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hat” and “N-hat’). To change to the Manly-Parr method, change the formulas
in these two spaces (“p” and “N”) by eqs. 8.30 (“p-tilde”) and eq. (8.31) for “N-
tilde”. The column with heavy borders just to the right of the column headed
“N” should contain the value to actually be bootstrapped. That is, if you want to
bootstrap whatever is in the column headed “N”, simply set  the values in the
column with heavy borders equal to those in the column headed “N”. When a
data set with more than the three rows of the present program is to be
bootstrapped, make a run with a small number in NBOOT and copy down those
entries to the right as needed before running the program with NBOOT set
equal to 1,000 or more(those entries under columns headed C thru r are set by
the entries under NROWS and NCOLS on the “Original data” sheet).

Two additional sheets are attached to the program (“Laysan data” and
“Lisianski data”) which contain the original data for two sets of censuses of
Hawaiian monk seals. These data can be transferred to the DATA sheet and the
program run to see how it behaves with a large data set. The Laysan data were
used in example 8.6 which gives the calculations from the “Original data”
sheet and bootstrap confidence limits.
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APPENDIX B 
 
SOME DATA-FITTING PROGRAMS 
 
 The text includes various references to data-fitting programs, such as 
non-linear least-squares, maximum likelihood, and a data-smoothing 
program (“lowess”). Many of these procedures are available in commercial 
“packages”, such as SYSTAT, SAS, MINITAB, etc. Those used in various 
chapters were written in QUICKBASIC, but that language is no longer 
supported by Microsoft, being largely replaced by VISUAL BASIC and 
VISUAL BASIC FOR APPLICATIONS (which underlies the bootstrapping 
programs given in Appendix A). Readers who have access to one of the 
commercial packages may want to use them to analyze data. An alternative, 
used here, is to take advantage of the “R-language” which is now available 
free over the internet. It is much the same as the S-language which is, 
however, a proprietary commercial package. Both “S” and “R” require some 
effort to utilize efficiently. All  that will be attempted here is to provide the 
essential statements that are needed to do some data-fitting. 
 
  Users need to download the language (look up CRAN on the web 
with a browser). It may take an hour or more to download. Once the 
program is downloaded and installed, you should see a bold “R” on your 
desktop. Double-click it and the “workspace” or “console” opens up, with a 
symbol > as a prompt. In Windows there should be drop-down menus at the 
top. Under “help” you can find a number of items, one of which is 
“Manuals” which contains an online manual. Various other manuals are 
available online. Another drop-down menu is “packages” which provides 
access to some “packages” that are not continuously available from the 
“console”, but are stored on your computer and can thus be brought up as 
needed. Below the drop-down menus there are a number of symbols, 
including “load image” and “save image” which let you save and recall 
programs that you work on.  
 
  There are a few basic commands one needs to know before doing any 
data-fitting (a summary of some useful commands is included at the end of 
this Appendix). One feature is that the “workspace” is automatically saved 
when you quit, so one needs to check to see what is there when you start 
again. Use the command ls() to see what’s in the workspace. If you don’t 
want to use what is there, type rm(list=ls()). This clears out the workspace 
[type ls() and you should get “character(0)” which means nothing is there]. 
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You can also use rm(y) to remove an individual data set or whatever is 
labeled “y”. There is a menu at the top of the workspace that provides some 
useful features. You can also get some help by typing ?rm or ?lowess, but it 
takes awhile to figure out what some of the statements in the help files mean. 
When you are working in R it is very convenient to use the “arrow keys” to 
change or correct statements. Use the up arrow key to locate a statement, and 
the left-arrow key to find a position in the statement. Make a correction or 
change by using the delete key, and type in the change. Then use the right 
arrow key to return to the end of the statement, followed by a return. IT IS 
IMPORTANT TO NOTE THAT THE R-LANGUAGE IS “CASE SENSITIVE”, 
I.E., WHEN LOWER CASE IS CALLED FOR AND YOU MISTAKENLY TYPE 
CAPS, IT DOESN’T WORK. 
 
LOWESS 
 
 It is assumed initially here that you will have data in an EXCEL file to 
work with, or will copy data from the text. You can enter data directly, too 
(see the attached list of handy statements for instructions). The first program 
to be  considered here is “lowess”, discussed in Section 1.14. Note that 
section says that “lowess” and “loess” are used interchangeably in the 
literature (and they were). However, there are now two different R-programs 
under those names. The one given here, and labeled “lowess” is described in 
Section 1.14, but a new program is present in R, called “loess”. It is more 
complicated, including optionally different weighting and possible use of a 
quadratic for projections in addition to the linear regression used in the 
earlier version. We will use “lowess” here. The example is artificial, being 
constructed from a sine curve with a small added component, i.e., 
sine(x)+0.1*x. The basic data are on the following sheet, with headings of 
“Time” (which is x) and “Amplitude” which is the value of the sine of x. 
Copy the data into the clipboard , including the headings. The data given 
here was copied from EXCEL and you can copy it directly from the table 
below, or reconstruct it in EXCEL by using the formula given above. You 
may need to look up the Adobe instructions for copying from a PDF file, if 
you are using the PDF version of this Appendix.  
 
 
 
 
 
 



 3

 
 

Time Amplitude 
1.00 0.941471 
1.30 1.093558 
1.60 1.159574 
1.90 1.13630 
2.20 1.028496 
2.50 0.848472 
2.80 0.614988 
3.10 0.351581 
3.40 0.084459 
3.70 -0.15984 
4.00 -0.3568 
4.30 -0.48617 
4.60 -0.53369 
4.90 -0.49245 
5.20 -0.36345 
5.50 -0.15554 
5.80 0.115398 
6.10 0.427837 
6.40 0.756549 
6.70 1.07485 
7.00 1.356987 
7.30 1.580437 
7.60 1.72792 
7.90 1.788941 
8.20 1.760731 
8.50 1.648487 
8.80 1.464917 
9.10 1.229098 
9.40 0.964775 
9.70 0.698239 

 
Start R, and type: z<-read.table(“clipboard”,header=T) 
 
The arrow comprised of < and – means “assign to”, and you should see the 
above data as soon as you type z at the prompt sign (>). (You can replace 
this “assign” statement with an equals sign (=) in most work in R).  The 
statement “header=T” means that there is a header in the data (T stands for 
TRUE). If you don’t have or want a header, use “header=F” (actually you 
don’t need to do this, as the “default” condition is “header=F”). The program 
inserts headings of V1 and V2 over the data if you don’t use “header=T”. 
Now type “plot(z)”. You should get the following graph, with the exception 
that I have added a statement “abline(h=0)” in order to draw a horizontal line 
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at zero (use“abline(h=x)” to draw a vertical line at point x (insert a number 
for x). We now have a plot of the basic sine curve.  

 
In order to introduce some variability into data to use with LOWESS, I 
added uniform random variables (but reduced by multiplying the tabulated 
(RND in EXCEL) value by 0.2). These new values are as follows: 

Time Amplitude 
1.00 0.881425 
1.30 0.838022 
1.60 1.208425 
1.90 1.391595 
2.20 1.268166 
2.50 1.195099 
2.80 0.178271 
3.10 0.304744 
3.40 0.303463 
3.70 -0.37718 
4.00 -0.49484 
4.30 -0.82425 
4.60 -0.90307 
4.90 -0.68798 
5.20 -0.51816 
5.50 -0.57913 
5.80 0.001813 
6.10 0.347028 
6.40 0.78352 
6.70 1.001751 
7.00 1.291588 
7.30 1.506389 
7.60 1.996448 
7.90 1.771884 
8.20 1.723499 
8.50 1.545846 
8.80 1.85936 
9.10 1.402233 
9.40 1.439906 
9.70 0.567258 
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Copy the data to the clipboard ,and use the command 
 “y<-read.table(“clipboard”,header=T)”, and then the command “plot(y)”, 
and you should get the following plot. 

    
This is the sine curve with some added variability, and we now can try 
“lowess”. It is most conveniently introduced by way of a “lines” command, 
which draws the line generated by lowess on your plot. Type 
“lines(lowess(y,f=.2),lty=1)” and you should get the fitted lowess line. Put 
on another line “lines(lowess(y,f=.6),lty=5) to get a second fitted line. The 
added “lty=5” makes the line dashed whereas the first line was solid (you 
don’t need to use “lty=1” as the program automatically draws a solid line if 
you leave off the lty command).  There are a number of lty choices, which 
you can see by trying different numbers in the lty command. In order to 
identify lines on the plot, use the handy “locator” command. It places text on 
the plot. Type “text(locator(1),”f=0.2”,adj=0) and hit return. Nothing 
happens until you move the cursor next to the solid line and again  hit return. 
Then the text is printed on your plot at that location. The parentheses 
determine the number of locations – use (1) for a single introduction. Using 
“adj=0” makes the text start at the cursor location. The plot is as follows: 
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The broken line shows the results for f=0.6. Using f=0.2 seems to give a 
better fit, as it uses only points in the immediate neighborhood. Comparing 
the fitted line (f=0.2) with the original sine values gives the following plot: 

 
 
The title on this graph was produced by the statement 
“title(main=”LOWESS CURVE vs. ACTUAL”) This is a somewhat better 
approximation than one might expect to get in many practical applications.  
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SPLINES 
 
 We can consider another “smoother” on the same data as used to 
illustrate the lowess method. As with lowess, it is conveniently executed 
with the “lines” statement. There are 3 versions, but we will illustrate with 
one and add it to the plot of lowess: 
 
>lines(spline(z,n=10,method=”natural”),lty=2) 
 
This gives the following plot: 

 
 
where the broken line shows the “spline” fit from the above statement, and 
the solid line is the earlier fit of lowess to the same data. The value of n 
determines the number of points used in interpolation for the fit, i.e., 10 
points are uniformly spread over the range of the data. Using more points 
results in line that follows the data points more closely. One can restrict the 
range of points fitted by a statement like the following: 
 
> lines(spline(y,n=5,xmin=4.5,xmax=7,method="natural")) 
 
This gives the following plot (after using “plot(y)” to get just the points on a 
new plot): 
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There are two additional “methods”. Use “periodic” or “fmm” to experiment 
with them. The latter fits a cubic to the first and last 4 points to produce the 
end conditions of the fit. Note that leaving off the “lines(   )” part of the 
statements used above results in the program printing out the points used for 
interpolation and the corresponding y-values. One can thus get interpolated 
values accurately, and can use this approach to get a better understanding of 
the methods. Using this on the plot above, i.e. 
 
>spline(y,n=5,xmin=4.5,xmax=7,method=”natural”) 
 
gives the 5 points used to approximate the line and the corresponding y-
values: 
$x 
[1] 4.500 5.125 5.750 6.375 7.000 
$y 
[1] -0.92033436 -0.52407423 -0.09690946  0.75362089  1.29158847 
 
 
NONLINEAR LEAST-SQUARES 
 
Exponential curve 
 
 Using nonlinear least-squares was briefly discussed in Sction 1.13, 
and a method for simulating the exponential distribution appears in exercise 
1.14.6.  To demonstrate fitting by nonlinear least-squares we use the 
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exponential, and the data on muskoxen from Fig.9.3. (Use “rm(list=ls())” to 
clear the previous work from the console). The model is: 

bxy ae=   
where a and b are the parameters to be estimated. While the model looks  
simple, one has to have fairly good initial estimates of the parameters to 
avoid non-convergence in the fitting process. These are easy to get as one 
can take logarithms of the values and use linear regression to get initial  
parameter estimates for the fitting (but remember to transform the intercept 
(a) from the linear fit by taking exp(a) to get the initial value to use for that 
parameter in the nonlinear program).  
 
Thus far, we have used data in matrix form (i.e., we read two columns of 
data into a single “object”, z, and worked with z. Now we need to bring in 
single columns to correspond to x and y above. The data are as follows: 
YEAR NUMBER 

1 61 
2 76 
3 77 
4 90 
5 100 
6 116 
7 126 
8 143 
9 181 
10 206 
11 256 
12 293 
13 353 
14 406 
15 467 

 
Read in x and y separately, using the “read.table” statement. There is a 
problem here in that one has to use statements: x=as.matrix(x), and 
y=as.matrix(y) before the data will plot. Whenever, one reads in data it is a 
good idea to plot it before trying anything else. That way, it is possible to 
identify difficulties with the “read” statement early on. Now try: 
 
> plot(x,y,ylab="Number of muskox",xlab="Year") 
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to get a plot of the data: 

 
To get the fit one can use the following statement: 
 
fn<-function(p)sum(y-(p[1]*exp(p[2]*x)))^2 
 
There are several things to note here. One is that there is no punctuation 
between “function(p)” and “sum”. This is unusual in R, and may thus be 
confusing. Also the parameters are identified by numerals in SQUARE 
brackets. Be sure to get the parentheses right, or you may get some strange 
results! Most R commands won’t work unless things are “right”, but these 
are an exception. 
 
Now type >out<-nlm(fn,p=c(50,.2)) 
 

“nlm” is the program that minimizes a function (fn), and the trial parameters 
are included in the vector “ c(50,.2)”. Type “>out” to get the results: 
>out 
$minimum 
[1] 0.0002419648 
$estimate 
[1] 49.9999575  0.1469777 
$gradient 
[1] -1.66196345  0.09648096 
$code 
[1] 2 
$iterations 
[1] 12 
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The first entry is the minimum sum of squares (note that fn is set up to 
calculate a sum of squared deviations), the second gives parameter 
estimates, and the third gives slopes at the parameter estimates, the fourth is 
the number of parameters, and the final entry (12) gives the number of 
iterations used. As noted above, you need reasonably good initial estimates, 
or you may get some strange results. You can check your results by typing: 
>xfit<-seq(1:15) 
> yfit<-50*exp(.14698*xfit)  
The sequence in xfit is any convenient sequence of points that covers the 
range of the data. In this case it is exact, but in others it may not be; the point 
is to select a sequence of x-values for plotting, while yfit produces a plot 
using the parameter estimates over that range. Then use the “splines” 
function: 

 
>lines(spline(xfit,yfit)) 
 
to get the following plot: 

 
It is often desirable to use the xfit and yfit statements along with the 
lines(spline(xfit,yfit)) to try out some trial parameters before beginning the 
fitting process, just to be sure that  you have reasonable starting parameters.  
 
Note that the nonlinear model (nlm) uses the Newton-Raphson approach and 
is, like all nonlinear fitting procedures, not always guaranteed to find the 
“best” result. It is used here to demonstrate the function statement: 
 
fn<-function(p)sum(y-(p[1]*exp(p[2]*x)))^2 
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which is useful in programming in R. For nonlinear fitting purposes, it 
seems preferable to use “nls” as follows: 
 
out=nls(y~a*exp(b*x),start=list(a=50,b=.2)) 
 
because this lets one write the equation directly in a simple form, and also 
because more detail is obtained. Use 
summary(out) 
Formula: y ~ a * exp(b * x) 
Parameters: 
   Estimate Std. Error t value Pr(>|t|)     
a 45.217910   1.804085   25.06 2.17e-12 *** 
b  0.156102   0.003134   49.81 3.15e-16 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 8.038 on 13 degrees of freedom 
Correlation of Parameter Estimates: 
        a 
b -0.9748 
 
There is a lot more information available: Type “fitted(out)” to get: 
 
[1]  52.85725  61.78721  72.22584  84.42803  98.69171 115.36518 134.85553 
 [8] 157.63869 184.27094 215.40258 251.79375 294.33301 344.05908 402.18610 
[15] 470.13340 
attr(,"label") 
[1] "Fitted values" 
These are values of the curve fitted at the x-values. 
Also, “residuals(out)” gives: 
residuals(out) 
 [1]   8.1427546  14.2127924   4.7741587   5.5719711   1.3082861   0.6348242 
 [7]  -8.8555341 -14.6386890  -3.2709418  -9.4025779   4.2062548  -1.3330147 
[13]   8.9409232   3.8138963  -3.1333954  
attr(,"label") 
[1] "Residuals" 
 
Use plot(x,residuals(out)) and abline(h=0) to plot the residuals as in the 
graph below. This is valuable in that it suggests that the observations may be 
“oscillating” around the trend line, rather than being “random errors”. 
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Note, too, that the parameter estimates from “nls” differ from those of 
“nlm”, so that the two fitting methods do not give exactly the same results. 
 

 Logistic function 
Another example, the logistic function, has 3 parameters. The function is: 
 

rxbe
Ky −+

=
1  

 
where K is the  asymptotic value, b is determined by the initial population 
size, and r is the rate of increase. Examining a plot of the data (Fig. 9.2) 
suggests the asymptote might be around 2200. However, the last 5 
observations are rather erratic so are dropped here, and the data used are 
given on the next page. We can regress the logarithms of the first dozen 
observations on time and get a rough notion of r (the slope of a regression on 
the log scale) as about 0.3 (using just the first 12 counts).  
 
> z1<-read.table("clipboard",header=T)  
> lm.mod<-lm(log(y)~x,z1) 
> lm.mod 
Call: 
lm(formula = log(y) ~ x, data = z1) 
Coefficients: 
(Intercept)            x   
     2.6214       0.3039   
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Note that this brings in something new, a regression model (lm.mod), but 
using log(y) instead of y, and giving the data (z1) as part of the “command 
line”: lm.mod<-lm(log(y)~x,z1) 
 

x y 
1 12 
2 23 
3 32 
4 60 
5 75 
6 100 
7 143 
8 188 
9 247 
10 301 
11 310 
12 367 
13 395 
14 480 
15 605 
16 690 
17 814 
18 994 
19 1173 
20 1353 
21 1225 
22 1469 
23 1566 
24 1685 
25 1701 
26 1742 

 
Copy y from the table above, and set x=seq(1,26). Be sure to use 
rm(list=ls()) to clear the R-console before starting, and remember to convert 
y by y=as.matrix(y). Check by plotting x,y.  
 
An estimate of b can be obtained from setting K=2200, x=0,y=12 (initial 
value) in the model: 

                                        rxbe
Ky −+

=
1  

 
This gives: 
 
out=nls(y~k/(1+b*exp(-r*x)),start=list(k=2200,b=180,r=.3)) 
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and: 
summary(out) 
Formula: y ~ k/(1 + b * exp(-r * x)) 
Parameters: 
   Estimate Std. Error t value Pr(>|t|)     
k 2.056e+03  8.739e+01  23.529  < 2e-16 *** 
b 8.698e+01  1.493e+01   5.827 6.15e-06 *** 
r 2.432e-01  1.384e-02  17.575 7.93e-15 *** 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 50.06 on 23 degrees of freedom 
Correlation of Parameter Estimates: 
        k      b 
b -0.6385        
r -0.8552 0.9345 
 
Set yfit=2056/(1+87*exp(-.243*x)) 
And use lines(spline(x,yfit)) 
to get the fitted curve: 
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Michaelis-Menton curve 
 
For another fit, consider the equation: 
 

xb
axy
+

=  

 
and the data of Fig. 1.15, loaded with the vectors: 
 
>x<-c(1,2,3,4,5,6,11,23) 
> y<-c(.217,.462,.5,.6,.692,.4,.824,1) 
 
Note that you can plot x,y directly without the conversions involved in 
getting data in from the clipboard. 
 
Trying  a=1 in the equation suggests b=4 might give an approximation, and 
we plot the data and try  these parameters with: 
> xfit=seq(1:25) 
> yfit=xfit/(4+xfit) 
> lines(spline(xfit,yfit)) 
which gives the solid line on the plot below. Then enter the function: 
 
out=nls(y~a*x/(b+x),start=list(a=1,b=4)) 
 

summary(out) 
Formula: y ~ a * x/(b + x) 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
a   1.1041     0.1758   6.280 0.000758 *** 
b   3.9446     1.6461   2.396 0.053568 .   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 0.1229 on 6 degrees of freedom 
Correlation of Parameter Estimates: 
       a 
b 0.8988 
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Now plot the data with: 
 
> yfit=1.104*xfit/(3.9446+xfit) 
> lines(spline(xfit,yfit),lty=2) 
 
and we get: 

 
where the broken line now is the fit by nonlinear least-squares, and the solid 
line comes from the “guesstimates” used to run nls. This fit can be compared 
to Fig. 1.15.  
 
Logistic regression 
 
Another fit uses the model: 

)(1
1

bxae
P +−+

=  

 
discussed in Section1.11, and originally used as a bioassay model. This is 
the logistic function used earlier here on the elephant seal data, but with the 
asymptotic parameter set equal to 1. The same data are used as above for the 
Michaelis-Menton model. An easy way to get trial values is to fit eq.(1.31) 
by linear regression to get estimates of a and b. One can go to EXCEL for 
the calculations, but instead we use the linear model in R. The data are given 
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in the last column of Table 1.9 and are shown again below (note that the last 
observation has to be dropped to avoid a calculation involving infinity).  
 
Make  new vectors using the data of the last column of Table 1.9: 
>Y=c(-1.281,-.154,0,.405,.811,-.405,1.54) 
>X=c(1,2,3,4,5,6,11) 
Note that the fact that R-language is “case-sensitive” lets us use cap Y and X 
as new variables, without disturbing the full data set on the R-console as x 
and y from fitting the Michalis-Menton curve. 
 
The linear regression model is: 
>lm.mod<-lm(Y~X) 
> lm.mod 
Call: 
lm(formula = Y ~ X) 
Coefficients: 
(Intercept)            X   
    -0.8715       0.2193   
and we use these values in: 
out=nls(y~1/(1+exp(-(a+b*x))),start=list(a=-.87,b=.2)) 
to get: 
 

summary(out) 
Formula: y ~ 1/(1 + exp(-(a + b * x))) 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)   
a -0.80842    0.39391  -2.052   0.0860 . 
b  0.21003    0.08397   2.501   0.0464 * 
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 0.1259 on 6 degrees of freedom 
Correlation of Parameter Estimates: 
        a 
b -0.8527 
 

and plot the output with: 
> plot(x,y) 
> xfit<-seq(1:25) 
> yfit<-1/(1+exp(-(-.8084+.21*xfit))) 
> lines(spline(xfit,yfit)) 
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The broken line shows the plot using the parameters from the regression fit, 
which are nearly identical to the least-squares fit. Note the large standard 
errors in the nls fit. 
 
Monomolecular curve 
 
This curve has the form (eq.(12.8)): 
 

y = a(1 - e-bt) 
 
Using the same data as for the Michaelis-Menton curve:                                           
>x<-c(1,2,3,4,5,6,11,23) 
> y<-c(.217,.462,.5,.6,.692,.4,.824,1) 
Clearly the asymptotic value will be roughly 1.0, and expanding the 
exponential term as in Section 12.3 gives y=abx, so one can estimate b as 
about 0.1. We can then get a trial plot from: 
> xfit<-seq(1:25) 
> yfit<-(1-exp(-.1*xfit)) 
and plotting x and y, plot the trial curve with: 
> lines(spline(xfit,yfit)) 
This gives the solid line on the plot below. 
Using nls: 
out=nls(y~a*(1-exp(-b*x)),start=list(a=1,b=.1)) 
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summary(out) 
Formula: y ~ a * (1 - exp(-b * x)) 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
a  0.92554    0.12398   7.465 0.000298 *** 
b  0.22419    0.06967   3.218 0.018185 *   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 0.1382 on 6 degrees of freedom 
Correlation of Parameter Estimates: 
        a 
b -0.8086 
  

and we can then plot the resulting curve with: 
 
> yfit<-.9255*(1-exp(-.2242*xfit)) 
> lines(spline(xfit,yfit),lty=2) 
 
with the results as follows: 

 
 
where the solid line shows the plot with trial values and the broken line the 
fit from “nls”. 
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Another exponential-type curve 
 
We can add yet a 4th curve: 

xbaey /−=  
taking logarithms, we can again construct new variables for initial parameter 
estimates: 
 
Y<-log(y) 
 X<-1/x 
 
> fit<-lm(Y~X) 
> fit 
Call: 
lm(formula = Y ~ X) 
Coefficients: 
(Intercept)            X   
    -0.1831      -1.3608 
converting the intercept estimates a as exp(-.1831)=0.8327 and we insert 
these parameter estimates: 
out=nls(y~a*exp(-b/x),start=list(a=.8,b=1.4)0 
summary(out) 
Formula: y ~ a * exp(-b/x) 
Parameters: 
  Estimate Std. Error t value Pr(>|t|)     
a   0.9279     0.1183   7.844 0.000227 *** 
b   1.7551     0.5731   3.063 0.022148 *   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
Residual standard error: 0.1397 on 6 degrees of freedom 
Correlation of Parameter Estimates: 
       a 
b 0.7802 
 

and plotting with: 
>xfit<-seq(1:25) 
> yfit<-.9279*exp(-1.7551/xfit) 
> lines(spline(xfit,yfit)) 
gives: 
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Note that three of the lines evaluated above are very similar, the Michelis-
Menton (solid line below), monomolecular (broken line), and the last, 
exponential-type curve (heavy broken line). Hence, it is useful to have more 
data if one wants to try to find the “best” curve. 

 
As was noted earlier, one can often use an equals sign (=), instead of the 
“assignment operator” (<-). This substitution seems to work in most cases, 
but some references insist on the assignment operator, as used in the S-
language.  
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MAXIMUM LIKELIHOOD ESTIMATORS 
 
Normal distribution 
 
The normal distribution is one of the most commonly used frequency 
distributions, and estimates of its two parameters are usually derived in 
textbooks that discuss maximum likelihood estimators. It is assumed that the 
observed random variables, xi, are independent, and the process starts out 
with the product of frequency distributions of n such random variables: 
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and logarithms are taken to obtain the log-likelihood.  
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This equation is then differentiated with respect to σ2 and µ, the resulting 
equations set equal to zero and solved for the parameters σ2  and µ, which 
locates the maximum likelihood values. We can equivalently take the 
negative value of L, and find a minimum, which is what is done with the R-
language program nlm. Some artificial data were generated to demonstrate 
the program, using “rnorm”, which generates normal random variables with 
zero means and unit standard deviations. The statements used and output 
follow (copy the list of values given below for x in order to get the same 
results as given below; generate a new set from e<-rnorm(20) to experiment 
further if you want to change the outcomes): 
 
> e<-rnorm(20) 
> x<-8+4*e 
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    x 
9.2934 

8.4137 
13.21 

12.595 

11.778 
10.026 

1.6196 

7.3556 
5.7192 

10.437 

1.4914 
12.316 

3.1239 

5.4366 
11.235 

7.0967 

9.0129 
10.635 

8.2053 

6.5455 

 
The negative log-likelihood is inserted in R (the first term in L does not 
contain either parameter so has no effect on the results and is thus not 
included, similarly the magnitude of n does not affect the location of the 
minimum). We now use nlm to find a minimum: 
 

>fn<-function(theta){sum(.5*(x-theta[1])^2/theta[2]+.5*log(theta[2]))} 
 

and we insert guesses at the parameters in: 
 

>out<-nlm(fn,theta<-c(8,12)) 
 

which gives the output; 
 
$minimum 
[1] 34.50804 
$estimate 
[1]  8.277286 11.597658 
$gradient 
[1] -1.321974e-07 -1.286587e-08 
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$code 
[1] 1 
$iterations 
[1] 7 
 
The parameter estimates can be checked with: 
mean(x) 
     V1  
8.27729  
 sum(((x-mean(x))^2)/20) 
[1] 11.59766 
 
This is because we already know that µ is estimated by the mean of the xi, 
and σ2 is estimated  by: nxxi /)( 2−∑  (note that the maximum likelihood 
estimator of the variance is biased and is usually corrected by using n-1 
rather than n in the denominator).  
 
Exponential distribution 
 
The exponential distribution is a one-parameter function, and, like the 
normal distribution, parameter estimates can be obtained directly by 
differentiating the log-likelihood function. Estimates are obtained from the 
following: 

    ii xn
n

i

x ee Σ−

=

− =∏ θθ θθ
1

 

the log-likelihood is: 
     ixnL Σ−= θθlog  

differentiating and setting the result equal to zero gives: 
 

   0=Σ−=
∂
∂

ixnL
θθ

 

the estimate is then: 
 

                                                 
ix

n
Σ

=θˆ  

 
For an example we use 30 observations generated using the RAND() 
function in EXCEL, transforming the uniform random variables by taking 
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the negative logarithm and dividing by 3 (the parameter of the simulated 
exponential distribution).  
x 
0.720755 
0.035991 
1.063578 
0.444527 
0.342697 
0.868936 
0.117598 
0.143798 
0.012229 
0.27057 
0.118674 
0.297912 
0.495389 
0.789919 
0.224876 
0.230535 
0.406611 
0.634387 
0.239877 
0.337368 
0.123611 
0.447395 
0.567364 
0.171177 
0.036534 
0.120707 
0.189452 
0.322679 
0.227388 
0.021487 

Write the function as: 
>fn<-function(theta){theta*sum(x)-30*log(theta)} 
and try nlm (inserting a trial value as 2): 
> out<-nlm(fn,p=c(2)) 
> out 
$minimum 
[1] -2.886392 
$estimate 
[1] 2.992809 
$gradient 
[1] -2.409779e-07 
$code 
[1] 1 
$iterations 
[1] 6 
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The direct estimate is that given by the maximum likelihood estimator 
derived above with the sum of the x’s obtained from the 30 “observations”: 
 

99.2
10.02402

30ˆ ==θ  

 
The above two examples illustrate the basis for maximum likelihood 
estimation. These examples are constructed from the actual probability 
models (normal and exponential distributions). Many of the procedures used 
in statistical analysis assume that the “error structure” is normally 
distributed, but this is not necessarily the case, and going further with 
maximum likelihood methods involves linking models with various types of 
error structure, e.g., Poisson, binomial, gamma, etc.  
 
BOOTSTRAPPING 
 
A ratio estimator 
 
Bootstrapping is available in the R-language, and offers some advantages 
over the “macros” available in Appendix A. As with the R-language in 
general, there are various difficulties in learning the methods, so the 
presentation here has been kept simple. Once users become familiar with the 
approach, it should become feasible to handle more complex examples. The 
“boot” package may have to be unloaded from the internet (if that was not 
done in the original installation – check in the pull-down menu under 
“packages” for “boot”). If necessary, activate your internet access, go to 
CRAN and download the available packages. When you begin a new session 
in R, it is again necessary to pull down the “packages” menu and hit “boot”, 
as the package does not stay loaded in the R “environment” between uses, as 
do the other features used thus far. If you forget, R will return a message 
saying “boot not located”, and you can just pull down the “packages” menu 
and load it. 
 
Type ?boot to get a description of the package. As with all of the “help” 
features, this is likely to be confusing to the non-initiate. However, at the 
end there is a simple example which is used here. 
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Type “data(city)” and then “city” which prints out the trial data: 
> city 
     u   x 
1  138 143 
2   93 104 
3   61  69 
4  179 260 
5   48  75 
6   37  63 
7   29  50 
8   23  48 
9   30 111 
10   2  50 
 
Now type in: 
 
 > ratio<-function(d,w){sum(d$x*w)/sum(d$u*w)} 
 
This is the function to be bootstrapped, which is the ratio of the sums of the 
two columns.  
 
The actual bootstrapping is accomplished with: 
 
>result<-boot(city,ratio,R=5000,stype="w") 
> result 
ORDINARY NONPARAMETRIC BOOTSTRAP 
Call: 
boot(data = city, statistic = ratio, R = 5000, stype = "w") 
Bootstrap Statistics : 
    original     bias    std. error 
t1* 1.520313 0.04035454   0.2213885 
 
Because bootstrapping is a sampling process, results will vary a little 
between trials. The first item (the “statistic” given in “?boot”) is just the 
ratio of the sums of the original data, as one can confirm by adding up the 
two columns and finding the ratio of the sums. The second item is the bias, 
defined in eq.(3.2), and is the mean of the bootstrap samples minus the value 
of the original “statistic”, i.e., the ratio of sums of the original data. The term 
labeled “std error” is the square root of the variance of the bootstrap sample 
(eq.(2.1)). The “w” is inserted to permit use of weights which was not done 
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here (weights are automatically assumed equal by the program if they are 
not specified in the “call” statement).  
 
For comparison it is useful to run BOOT2 with the same data and 5,000 
bootstraps. It gave:  
 
1.520313 Estimate 
1.549695 Bootstrap mean 
0.029383 Bias 
0.04692 Bootstrap variance 

0.216611 Standard error 
 
The bias appears smaller, but another run gave a bias of 0.0436, in line with 
the values from the R-language program. A frequency diagram of the 
BOOT2 data is given below and shows how skewed the results are. The 95% 
percentile confidence interval from BOOT2  was 1.247 to 2.091. 
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Non-parametric regression 
 
We can illustrate nonparametric regression with the grizzly bear data used to 
illustrate BOOT2 in Appendix A. The data are: 
 

x y 

1 2.8332 

2 2.5649 

3 2.1972 

4 2.5649 

5 2.4849 

6 2.6391 

7 2.3979 

8 2.5649 

9 2.8332 

10 2.1972 

11 3.2189 

12 2.5649 

13 2.9444 

14 2.7726 

15 3.2189 

16 3.1781 

17 3.1355 

18 2.9957 

19 2.9957 

  

Read in the data with 
>beardat<-read.table("clipboard",header=T) 
Then calculate the regression with: 
> lm.mod<-lm(y~x,data=beardat) 
and print out the results with: 
> lm.mod 
Call: 
lm(formula = y ~ x, data = beardat) 
Coefficients: 
(Intercept)            x   
    2.37756      0.03752 
plot the data with: 
> plot(beardat,xlab="Year",ylab="Logarithm of count") 
 and add the regression line with: 
>abline(2.3776,.03752) 
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We now have a plot of the data as follows: 

 
So far, this is just ordinary regression. To accomplish nonparametric 
regression by using bootstrapping, we need to use a simple program which 
follows: 
 
 linreg.1<-function(data,indices) 
{tmp.dat=data[indices,] 
z=lm(y~x,data=tmp.dat) 
coefficients(z)} 
 
Here we have another function, but it takes several lines to include the 
details, and these are enclosed in “curly brackets”, which are useful to 
delineate entries. This is the first case where it has been necessary to use 
several lines in a program, and one needs to copy the entire program and 
enter it as a unit.  
 
Now type linreg.1 and you should see: 
> linreg.1 
function(data,indices) 
{tmp.dat=data[indices,] 
z=lm(y~x,data=tmp.dat) 
coefficients(z)} 
 
This only tells you that the program has been loaded properly. No computing 
is done yet. 
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The data are stored as “tmp.dat” for the bootstraps  which are accomplished 
by: 
 
>z=lm(y~x,data=tmp.dat), and the last line of the little program above stores 
the coefficients. 
 
Be sure to load the “boot” package from the “packages” menu. 
The actual bootstrapping is accomplished by entering the following 
statement. Note that there is a perceptible pause before the prompt symbol 
(>) comes up. This means that the program is running. In most of the 
examples so far, the time to run the programs has been short enough that one 
might not notice.  
 
> out<-boot(linreg.1,data=beardat,R=1000) 
 
print out the results with “out”: 
 
> out 
ORDINARY NONPARAMETRIC BOOTSTRAP 
Call: 
boot(data = beardat, statistic = linreg.1, R = 1000) 
Bootstrap Statistics : 
      original        bias    std. error 
t1* 2.37755965 -0.0091140901 0.118493057 
t2* 0.03751825  0.0006573894 0.009504197 
 
t1* is the intercept, t2* is the slope, and these are the same as the regression 
calculation given earlier here. Notice that your estimates of bias and 
standard error differ somewhat from those given here. Try another run with: 
 
> out<-boot(linreg.1,data=beardat,R=5000) 
 
and notice how long it takes for the prompt (>) symbol to come  up. 
A run with R=5000 gave the following results: 
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ORDINARY NONPARAMETRIC BOOTSTRAP 
Call: 
boot(data = beardat, statistic = linreg.1, R = 5000) 
Bootstrap Statistics : 
      original        bias    std. error 
t1* 2.37755965 -0.0107787913 0.121005448 
t2* 0.03751825  0.0006637228 0.009579154 
 
Running BOOT2 with the bear data and calculating slopes gave the 
following results: 
 
BOOT MEAN 0.039878 
VARIANCE 0.0001135 
SE 0.0106525 
BIAS 0.002359 

 
A frequency diagram of the output of BOOT2 is: 
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and this can be compared with one from the R-language bootstrap program: 
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These plots are of the slopes of the regression lines (remember the log-
transform) which estimate rate of change of the bear population. The 
intercepts are of very little interest. The two programs (BOOT2 and the R 
version) thus give similar results, as they should (but the data are quite 
variable).  
 
If you type: 
>names(out) 
the following list comes up. 
 [1] "t0"        "t"         "R"         "data"      "seed"      "statistic" 
 [7] "sim"       "call"      "stype"     "strata"    "weights"   
 
 >out$R produces the number of bootstraps used: 
[1] 1000 
 
>out$t yields the bootstrap results,while hist(out$t[,2],breaks=40) 
produces a histogram of the slope values from the latest run (“breaks=40” 
determines the number of bars in the histogram).  
 

 
This plot was produced from a later “run” of the BOOT program with  R = 
5000, so looks a little different from the one given earlier. 
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SOME USEFUL STATEMENTS IN THE R-LANGUAGE 
 
It is advisable to store statements in Microsoft Word (or any other word-
processing program), and copy them with the clipboard to load into the R-
workspace. That way you can go back and change statements if they don’t 
work properly. Similarly, if something “works” in R, you can copy it from 
the R-workspace and store it in the word-processing program for later 
reference. If there is a problem, you can go back to the Word file and try 
changes. Working only in the R-console soon gets one into trouble 
remembering details. 
 
rm(list=ls())                             ## clears the workspace of everything. 
 rm(z)                                      ## takes out the single item, z. 
 

The ## symbols can be used to add a comment to a line if you save a 
program. They can appear on the “command line” (after any commands) or 
on following or preceding lines as in most programming languages, e.g. 
 
 ls()                         ## prints a list of the contents of the current workspace. 
 
z<-read.table(“clipboard”,header=T)         ## assigns the contents of the  
                                                                   ## clipboard to z.  
 
Using “header = T” lets one carry a header into R. Just using 
read.table(“clipboard”) gives the same result as including “header=F”. Some 
references indicate that you should spell out TRUE or FALSE if there is a 
prospect that the symbols T or F will be used in the same program (we 
haven’t done much actual programming here!). If you just transfer a vector 
of data, (y) by “y=read.table(“clipboard”), and try to plot it, you may get a 
confusing message – use the statement “y=as.matrix(y)” to fix it. You can 
also use the formula “is.matrix(y)” to check; if the answer is “FALSE”, there 
is a problem somewhere.  
 
plot (z)                         ## produces a plot of the contents of z  
 
(assuming there are two columns in z, if not you will still get a plot with an 
x-axis supplied). It is wise to always plot data when you enter it just to be 
sure you have what you thought you entered or computed. 
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plot(z,ylab=”Amplitude”,xlab=”Time”)                         ##       Adds labels  
if they were not in the material transferred via the clipboard.  
 
title(main=” text”)                                                ## adds a title to the plot 
 (with “text” being the title you want). 
 
text(locator(1),”Label”,adj=0)                               
 
followed by a line return lets you position the cursor on a plot whereupon 
another line return prints “Label”  to the right of the cursor position. 
 
abline(v=x)  
adds a vertical line at point x on the graph (use h=x to get a horizontal line). 
 
abline(a,b)           ## adds a line with intercept a and slope b to a graph.  
 
You can use the regression program in EXCEL to fit a linear regression to 
data. The “abline” command is handy if you want to then do the plotting in 
R, after doing your regression analysis in EXCEL. However, it is at times 
desirable to get the regression coefficients directly while working in R. The 
simple statement lm(y~x) will produce estimates of the intercept and slope.  
 
lines(z)                    ##connects points  on a graph of z.  
 
locator(n)            ##lets you get coordinates of n  points on a plot. 
 
 If you want x,y coordinates for a point on a graph, use locator (1). Nothing 
happens until you hit return; then put the cursor on the first point that you 
want to locate and hit return. The location is printed out.  
 
x<-c(x1,x2)                ##loads any number of values in an x-vector.  
y<-c(y1,y2)               ##loads in the y-values. 
 
 If you cannot load data using the “read.table(“clipboard”) command, you 
can type it in directly with the above command. A statement useful with 
vectors is the data.frame statement. You can combine vectors x and y by 
>df<-data.frame(x=x,y=y). df is then equivalent to z, as used above. Use just 
df<-data.frame(x,y) unless you want to rename the vectors being transferred. 
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points(x,y,pch=1,cex=2)  
 
Serves to put points  on a graph. pch=1 gets a circle, cex=2 makes it fairly 
large. Try different values of pch and cex. 
 
lines(x,y,lty=2,lwd=2)  
 
Draws a line connecting points in the two vectors on your plot. “lty” 
determines line type and “lwd” line width. 
 
An example using data shown previously (under “lowess”) follows, 2 points 
were located with locator(2), plotted with points(), and connected with 
lines() as shown above. 

 
If you have data stored in z, as with the sine curve above, you can get the x-
values from: x<-z[,1]  This statement will pick off column 1 from a matrix, 
z. The statement >fix(z) brings up a handy data-editing table. The same 
statement will also load a “function” statement for editing, assuming that it 
is in the workspace.  

Figure margins can be adjusted by resetting a parameter before making the 
plot. One statement is >par(mai=c(.75,.7,.05,.05)). This sets margins 
(bottom, left, top, and right) in inches. Users should experiment as needed 
(i.e., if you use a title, the top margin should be wider). The default margins 
are wider, as evident in the graphs given above. There is a huge array of 
statements to set parameters [see ?par()] for a list. Two useful such 
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commands are las() which sets orientation of the axis labels (1 for 
horizontal, 2 for vertical), and lab() which controls tick-marks. These can be 
combined in one statement, e.g., 

 
>par(mai=c(.7,.7,.05,.05),las=c(2),lab=c(10,6,1)) 
 
The first 2 numbers in lab() determine the number of tick marks on the x and 
y axes, and the last governs the length of the axis labels. 

 When one issues a plot command, the R-program sets up axes according to 
the data to be plotted. This can be unsatisfactory if there is more than one 
data set to be plotted, as any data in further commands that are outside the 
range of the set first plotted won’t appear. The trick is to decide in advance 
what range of variables is to be used and set these by statements like: 

z3<-data.frame(x2,y2) 
where x2<-c(1989,2004) 
and y2<-c(7.5,9.2), so that  
> z3 
    x2  y2 
1 1989 7.5 
2 2004 9.2 
 
All of these commands can be loaded into a single program which will 
produce the desired plot. Using the data for a sine curve shown earlier, we 
use the following program (set off by curly brackets{}): 
 
{y3=c(-1,2)                                        #range of y-variable 
x3=c(1,10)                                         #range of x-variable 
z3=data.frame(x3,y3)                        #frame for graph 
par(mai=c(.8,.7,.4,1),las=c(1),lab=c(10,6,1))  #bottom,left,top,right margins 
plot(z3,type="n",xlab=”TIME”,ylab=" AMPLITUDE") 
points(y) 
lines(lowess(y,f=.2)) 
title(main=”SINE CURVE”) 
} 
 
This yields the following plot: 
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The program can be kept in a word processor document and loaded into R as 
needed. An important advantage is that the plot takes less space than those 
used thus far, which give much wider margins than one might want, and this 
approach controls the margins, labels, etc. to give a much better plot.  
 
Under the “help” pull-down menu in R, one can find “Manuals”, and “An 
Introduction to R”, in which Chapter 12 gives more detail on graphs, 
including “Multiple figure environment” which shows how to include a 
number of graphs in one figure. 




