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The attached pdf files are chapters for a course in quantitative ecology. Drafts of all 14
chapters are now available. A date is included in the chapter designator to make it
possible for readers to determine whether they have previously downloaded the chapter.
The chapters are simply text files so that students can print them out as needed.
Modifications to take advantage of various web features will be added later. The first
order of business has been to make the textual material readily available. Inasmuch as
there are over 400 pages, some users may prefer to look up a topic in the Table of
Contents and scan it in the pdf files without printing them all out. For classroom use,
students will no doubt prefer to print out assigned and relevant chapters.

The text is intended to be essentially self-contained, but quite a few references have been
included. These serve several purposes. One is to supply more information on a topic,
and further sources. A second is to provide support for the text. Textbooks produced by
the major publishing houses are usually reviewed by independent authorities in the
subject matter field before being published (and are often reviewed in journals after
publication). Also, editors and proofreaders normally go over the text quite carefully
before publication. This text has not benefited from such services, so readers may want to
check back to sources on occasion (I would appreciate being informed of any apparent
errors, etc., at the email address linked to my name above).

The text stems originally from notes used in teaching a course in 1983 at the Center for
Graduate Studies in Richland, Washington (now the Tri-Cities Branch of Washington
State University). Before the most recent (1996) use, I reviewed current issues of the
journal, Ecology, in an effort to determine just what statistical procedures might be most
prominent in ecological papers. This turned out to be the analysis of variance by a very
wide margin, so we spent a great deal of time on that subject in the course that year.
While a chapter is devoted to ANOVA in the present version, I do not now believe that it
should be a major component of the course. I think frequency of analyses of variance in
ecological publications has more to do with editorial insistence on evidence of “statistical
significance” than it does with utility as a research tool.

In my opinion, a major weakness in ecological work today stems from the use of
“canned” programs without adequate understanding of the underlying techniques.
Certainly the computer saves a huge amount of time and effort, and makes it possible to
do computations that were not possible in the past. But it is essential to understand the
basis for an analysis before applying it. Consequently the present course depends on
EXCEL spreadsheets for exercises, and students are required to work through problems
by direct computations so that they see how the equations “work”. There is, of course,
no objection on my part if you use software to check your answers! The most tedious
aspect of this course is doing bootstrapping in EXCEL. Anyone who wants to use
bootstrapping extensively will quickly realize the advantages of learning a programming
language. Because many ecology students do not know how to program, it has seemed to
be necessary to use spreadsheets to explore bootstrapping. After students learn how to
bootstrap, they may want to use the Visual Basic for Applications (VBA) programs
attached as EXCEL files, and described in the Appendix, for further applications of
bootstrapping.



Two final comments: I suspect that most graduate programs in Ecology and Wildlife
Management will not accommodate more than 4 semester hours of a “quantitative
ecology” course. I have assumed that such a course will have as prerequisite one course in
elementary statistics (but experience shows that most students require a refresher, hence
Chapter 1). I don’t believe that 4 semester hours is nearly enough background if students
are to be grounded in the quantitative techniques that they will need. I suspect that this is
why there are so many rather dubious analyses in the literature that appear to be based on
blind use of sophisticated commercial software. I am thus uncertain how the course
should be taught. In earlier efforts I tried to cover a very large amount of material.
Subsequently, I felt that bootstrapping is such an important and useful development for
ecologists that it “had” to be included. Doing so is likely to make it impossible to cover all
the material included here in one semester.

The second comment is that the course has much about large mammals in consequence of
my own recent experience. I hope it will be possible to use more examples dealing with
other components of ecosystems in future revisions, and would welcome suggestions and
general comments.

Dr. D. P. DeMaster kindly arranged for inclusion of the text in the National Marine
Mammal Web Pages (National Marine Fisheries Service), and Chris Boucher
accomplished the actual installation. Keith Brenden has been handling revisions. Anyone
is welcome to download and use the pdf version, but the usual copyright restrictions
apply insofar as further duplication is concerned.

L. L. Eberhardt
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1.0 STATISTICAL BACKGROUND
1.1 Introduction

In most of the following chapters, it will be assumed that readers have at least taken an
introductory course in statistical methods. Some basic concepts will nonetheless be reviewed in this chapter
to provide background for the following material. Some essential definitions are listed here. Students should
look these up in any introductory statistics textbook, but preferably in atext that they have used in the past.
An effort has been made to keep the introductory terminology to a minimum, and it will be supplemented as
we go along, and by auxiliary reading.

1.2 Some basic statistical concepts
Random variables

In even quite simple situations, we need to be able to distinguish between an abstract label for an
observation, and the observations that we actually make in some real-world situation. Statisticians do this by
using capital letters (X1, Xo, X3, ..., X)) for the abstract label and lower case letters (x4, Xo, ..., Xp) for the

observations we make in practice. Note that the ellipsis (...) means that some letters are left out -- from the
first three given, we can infer that these are X4, Xs, €tc., thru X.1). More importantly, note that thisis a

series of finite length -- N random variables in all. In some cases, we need to consider an indefinitely long
series of numbers, and write X1, X2, X3, ... to indicate that fact. Also, note that the random variables run

from X1 to X, but that the observations end in xp. This is because we often want to sample a large
population and thus only record n of the N possible observations.

Exanmple 1.1 Coi n-tossing Consider a sinmple coin-tossing exanple. Put 10

coins in a jar, shake well, spill them out and count the nunber of
heads. You will get observations like the followi ng table (note that the
i ndi vi dual observation, x,, is the total nunber of heads out of 10 coins

and that the table is based on 100 tosses of 10 coins):

1214131415;6,5,6

ONPWRODUTO WU
OPUTOONAUTW
~NUIORUIUTWN N
CINO~NWONUTA
WARUIODUTNTOD
CIOWoO RN WU
ORROOWUTWW
~ U100 W U1~ U1 O U
WoOWRRNWNA

POOWUIUIUIo AUl

One can continue this process indefinitely, so we may have to consider
an infinite sanple space. In many cases, we will be considering finite
sanpl e spaces, although we often will not know N. In this case, we do
know that N = 100, but if we are considering some natural population
over a large area, we likely will not know N, and we nmay in fact have
estimating N as our objective. There is sonme anbiguity in notation here
in that N can be considered to be a fixed popul ation of the outcones of
100 tosses, or a sample (n) of the infinite number of possible tosses.

Much of statistical methodology consists of describing the outcomes of "experiments' like coin-
tossing, and making inferences about the process that led to the set of observations. Most of the theory
underlying statistical methods depends on having a model for the underlying process. Such models are
described as probability density functions ( abbreviated as pdf). Such a model for the coin-tossing example
isthe binomia distribution, often written as Bi(n,p) which says that the probability that a randomly obtained
observation denoted as xj takes the valuek is:



1.2

Prob{x; = K} = fik = (1 JPK(L-p)TK (12)

|
where () is evaluated as W inwhich, for example, 5! (read as "five factorial") is calculated as
5x4x3x2x1 = 120.

This eguation gives the pdf for a binomial having n trials (10 in the coin-tossing example). In the
example, the random variable can take 11 possible values 0,1,2,3, ..., 10, but in the 100 trials listed above,
we observed no zeros and no 9's or 10's. In many practical examples, we won't know the value of p, and
want to estimate it from the observed data. If we can somehow establish that it is appropriate to assume the
model of eg.(1.1), then we can calculate its expected value, defined as:
since we are here considering a discrete random variable that is only defined on the sample space
0,1,2,...,10, the integral can be replaced with a summation, and this can be evaluated with some agebra to
find that E(x) = np. We can then turn this around to estimate p from the mean value of our sample, whichis

X=00 x=10

E(x) = [k dx= on(;‘)px(l- p)"x (1.2)
X=0 X=

calculated as the sum of the observations (496) divided by the number of observations (100) or E(X) = np =
4.96. Since n=10, we estimate p as:

4.96
P =55 =0.496.

The "hat" over p denotes that it is an estimate of the parameter, p, of the binomial pdf. From the structure of
the experiment we can infer that the value of p should be about 0.5, that is, if the coin is "unbiased”, the
probability that it turns up heads should be 1/2.

The sample mean, X = Zx;/n is often described as a "statistic" derived from a set of observations.
Other commonly used statistics are the sample variance:

2
%= 2 (X =X)
n-1

12
and the standard error of the mean, s.e. = [%] . Note that statistics are functions of the data. The mean

can be written as x =n (X1 +x2+x3+ ...+ Xpn) , which is alinear function of the random variables x1, X2,

..., Xn. There are some simple rules from probability theory about linear functions of random variables that
make it easy to derive useful results about means.

No doubt the most important probability density function (pdf) in statistics is the normal
distribution, which is written as:

_em?
0 0_2E|
f(x):%me 78 (13)

The parameter | is the mean of the distribution and ¢ the standard deviation. Tables of the frequency
distribution (f(x)) of this distribution are available in amost any statistics text, but with parameters p = 0



13

and o = 1, which is described as the unit normal distribution or standard normal distribution, often
represented by the notation N(0,1), while observations drawn from eg.(1.3) are described as N(u,oz).

1.3 The Central Limit Theorem

A very useful result from mathematical statisticsis the Central limit theorem:

"Let X be a random variable with mean g and variance o2, then the random

variable Z:
X— UNN
/=
g
has a distribution that approachesthe standard normal distribution as n approaches
infinity.

This says that, if nislarge, then we are virtually guaranteed that the sample mean will have nearly a normal
distribution. Inasmuch as the great bulk of modern statistical methods depend on the normal distribution,
this result is very reassuring. The important question then is "how large must n be for approximate
normality?", and the answer depends very much on the frequency distribution underlying the observed xj.

Example 1.2 Frequency distributions Consider the data from the coin-
tossing experinment (Exanmple 1.1). The random variable tabulated is the
nunber of heads in 10 tosses. W can tabulate the frequency of each

outcome (0,1,2,3,...,10 heads) and compare it wth the expected
frequency calculated fromeq.(1.1), giving the followi ng result:
30
25
9 EXPECTED
< 20 VALUE
vd
— 15 V
b 10 N
i
g ° ’4’4 FQ’\\
)
= Q +—o— v v v v v v v v T -
0 1 2 3 4 5 6 7 8 9 10

NUVBER OF HEADS
Fig. 1.1 Frequency distribution of number of heads observed in 100 tosses of a coin compared to
number expected from eq.(1.1), Bi(10,0.5).

The observed data are not as symetrical as the expected binoma
di stribution, but the variance (2.34) is a reasonably good approxi mation
to the variance fromthe theoretical binonmal (2.5) and the mean (4.96)
of 100 trials is very close to the theoretically expected value (5). The
expect ed bi nom al variance of the random vari able x, the nunber of heads
in 10 tosses, is readily calculated as np(1-p) = 5(.5)(.5) = 2.5. It is
worthwhile to conpare (Fig. 1.2) the expected binomal distribution with
a normal distribution with the theoretical nmean and variance, as
calcul ated fromeq. (1.2).
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Fig. 1.2 Expected values from a binomial distribution of outcomes of 10 tosses of coins compared
to frequencies calculated from a normal distribution (broken line) with the theoretical mean (5) and
variance (2.5) for the binomial distribution.

Note that the normal distribution is continuous, i.e. that it takes on
all values over the interval <considered and is thus only an
approxinmation to the discrete distribution of the results of coin-
tossing, in which only integer values can be observed (i = 1,2,3,...,n
heads). Hence the points representing the binomal distribution in Fig

1.1 properly should not be connected by lines. Because the nornmal
distribution has an infinite range it isn't strictly proper to use it in
Fig. 1.2 because there is only a finite possible range of outcones (0 to

10). However, it is often used as an approxinmation. Note, too, that
there is less area under the normal distribution in Fig. 1.2 because
theoretically some observations will be greater and |esser than the

range plotted.

1.4 Simple linear regression

Simple linear regression follows the model:
Yj = O + BXj + & (1.4)

whereyij is the dependent variable and x;j the independent variable and the error term (€) isadeviation from

the “true” relationship. Estimates of a and 3 are frequently written asaand b, giving the estimated or fitted
relationship as:
yj = a+ bXj (1.5)

Estimates of regression parameters, a and [3 do not require any assumptions, and can be calculated from any
set of X,y pairs. However, tests of significance and confidence limits require adding some assumptions,
which center around the €j being normally distributed with mean zero and variance 02. The assumptions
will be discussed after we consider the "machinery" of regression analysis.

The estimates are obtained by the method of |east-squares, an important and useful tool that traces
back to Legendre and Gauss (known also for the normal distribution) in the early 1800's. Other ways of
fitting a straight line to data are available, but seldom used. The approach is based on minimizing a sum of
squared deviations, written as:
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S=2[yj (a + x()]2 (1.6)

where the summation runs from 1 to n. This is accomplished by the methods of calculus, finding the partial
derivatives:

Ez 22 (y; - a -Bx) =0 (1.7)
3_22 22 x(y; - a -Bx)=0

these give the normal equations (a and 3 are replaced by the symbols for estimates, a and b):

Zyi =na+ bei (1.8)
2 YiXj = ain + beiz

and these can be solved jointly to give the estimates:

a=y-bx (1.9)
b= 2O %)
- \2
Z(X, —X)

Note that the deviations of eq.(1.4) are in the vertical plane, being deviations of y; from the fitted line. Fig.
1.3 shows two of the deviations from a regression line fitted to some counts of deer. The fitted line appears
on the graph along with a measure of the fit, R2, which will be defined below.

300 A
y = - 41.714 + 32.179x R'2 = 0.936
o
L 200 - DEVIATION —>
B
o
Eé 100 - < DEVI ATI ON
S
=
[ ]
O 1 1 1 1 1 1 1 1
0 1 2 3 4 5 6 7 8

Fig. 1.3. Simple linear regression fitted to successive counts of the number of deer on a study area by the
method of least squares.
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Table 1.1 gives the analysis of variance results for the deer data from EXCEL, in ANOVA format (the
analysis of variance is discussed in Chapter 6). Figure 1.4 shows the deviations from the mean of the y-
values, and a comparison with Fig. 1.3 shows why the reduction in Sum of Squares from regression is so
substantial (compare Total SSwith Residual SS). Theresidual S.S. is computed

from the residuals from the fitted regression line, i.e.:

n

Residual S.S.= 3 [y, - (a+bx )1?

=1

n
= > 1%~ ((7-bX) + YT’

=1

n
= S —y) = b(x = X))°

i=1

n n _ n _
=S - (@bl = Y (- by (xR
i=1 i

Residual SS

Eq.(1.11) can be obtained by introducing the definition of b after squaring the intermediate step above.

=1

=Tota SS - Regression SS

Table 1.1 Analysis of variance in regression of deer data of Fig. 1.3 as obtained in EXCEL.

ANOVA
df SS P value
Regression 1 28992.89 73.25 0.0004
Residual 5 1979.11
Total 6 30972.00
Coefficie Standard Error P-value Lower 95%  Upper 95%
nts
Intercept -41.71 16.81 0.06 -84.94 151
Slope (b) 32.18 3.76 0.00 22.51 41.84

(1.10)

(1.11)

EXCEL gives the dope coefficient (b) as "X Variable 1" because the regression program is also set up to
handle multiple regression, where there will be 2 or more independent variables. ANOVA is discussed in

detail in Chapter 6.
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Fig. 1.4 Deer dataasin Fig. 1.3 but showing deviations from the mean of the y-values, y . This shows why
the Residua S.S. is ordinarily much smaller than the Total Sum of Squares, which is calculated from the
deviationsillustrated here.

If the F-value is not significant, there clearly is not much to be gained from the regression line. For
simple linear regression, the square root of R-squared (R) is Pearson's product-moment correlation, usually
simply referred to as "the" correlation coefficient (but written as alower-case r), and calculated as follows:

_ 2=V =X)
[Z(x —%)*2(y, -y)°T"”

The correlation coefficient is related to the slope of the regression line (b) by the following expression:

(1.12)

_o)2
p =[ 2 W pe (L13)
Z(x —X)

Y

Sx
R2 is also used for multiple regression (described below), where the square root is not the ordinary
correlation coefficient, so it is useful to have another expression for R2. Thisis:

this is sometimes expressed by r, i.e., theratio of the sample standard deviation of y to that of x timesr.

n . _
> - y)’
2_1=1
R™ ="+ — (1.14)
> -y
i'=1

The quantity R? is often described as measuring the "percent of variance accounted for by regression”, in
conseguence of the fact that it is the ratio of the Regression SSto the Total SS.

Another valuable expression is that of the estimated variance of the slope:
2 S

S — (1.15)
> (% —x)°
1=1
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This expression is particularly useful because it makes it possible to suggest how the
estimate of b with smallest variance might be obtained. Concentrating the selection of values of xj at which

to observe y; at the ends of the possible range of x will evidently give the smallest obtainable variance on b

(by giving the largest possible value of the denominator in eg.(1.15)). However, such a course is
recommended only when one can be virtually certain that the underlying relationship is linear. We will
consider ways to test for nonlinearity in the regression line in a section below. Note, for example, that the
data of Fig. 1.3 seem clearly to follow a curved relationship. Concentrating the observations at x-values at
the ends of the range of observable y would make it impossible to detect such curvature. Whether we can
concentrate observations depends, of course, on the nature of the data. In the case of the counts of deer, we
normally make only one observation per year, if the data are an actual census (i.e., a complete count of the
deer on an area). In the case of a sample estimate of the number present, it may be possible to take repeated,
independent samples and thus get several estimates per year (replicates).

A confidence interval for the slope, b, uses the t-distribution:
b+ LS (1.16)

Note that o now represents the significance level for the t-distribution, and not the parameter of aregression

line. Additional confidence intervals for values predicted from the regression line of y or y for a given x
are given in standard references (e.g., Snedecor and Cochran). Much more detail on regression anaysisis
given in texts on the subject. An extensive treatment is given by Draper and Smith (Applied Regression
Anaysis, J. Wiley and Sons Third Edition, 1998). The main parts of the book are presented in matrix
algebra notation, but the authors do give a short introduction to the matrix algebra that is adequate to let one
follow their presentation of regression topics, and not difficult to understand.

In order to justify any significance tests in regression analysis we must consider the assumptions.
The model now becomes:

Yj = 0 + PBXj + € (2.17)

where, as with the ANOVA model, we now assume that the €; are normally distributed with mean zero,

variance 62, and are uncorrelated (independent). An important additional assumption is that the x; values
are al measured without error. If the xj are subject to measurement ("sampling") variation, then the
regression line can still be calculated as given above, but its interpretation changes, as do the tests of
significance. For the most part, the assumptions for linear regression are somewhat less troublesome than
for ANOVA in general. However, we usualy need large numbers of replicates to do any testing of the
assumptions. Possibly the most important precaution is to be sure that any replicate values of y are indeed
obtained independently. In much ecological data it appears likely that the variances of sets of y-values may
be proportional to the xj at which they are taken, or that the coefficients of variation of the replicate y-
values may be approximately constant. The F-tests will then be less-reliable. However, simple linear
regression is quite "robust” to uncertainties about the assumption of normal errors, so long as the x-values
are not subject to error.

A simulation is useful in appraising the assumptions for ssimple linear regression. Using eq. (1.17)

Vi =2+ 0.30% + €
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with the xj as 1,2,3, ... ,10 and the €j generated as observations from a normal distribution with mean 0 and
variance = 62 = 1, one can generate a table of "data' as before. This was done to produce a set of data for
20 regression lines.

Thefirst 5 data sets are as follows:

Simulated yj

X Truey 1 2 3 4 5

1 2.30 2.86 1.28 2.61 3.26 1.88
2 2.60 0.90 2.08 2.58 1.68 111
3 2.90 1.56 3.35 1.35 4.28 3.50
4 3.20 3.85 2.84 2.02 3.67 2.46
5 3.50 1.62 4.20 4.87 1.49 4.68
6 3.80 4.39 5.78 5.22 2.77 3.62
7 4.10 3.66 261 4.70 4.24 4.99
8 4.40 3.95 3.90 5.98 2.59 381
9 4.70 4.45 6.15 6.41 5.53 3.72
10 5.00 4.50 5.53 6.09 3.54 4.32

Note that the simulated data vary appreciably from the "true values' computed from y; = 2 + 0.30xj, which

appear in the second column above. The simulated data points should follow a normal distribution around
the true regression line. Plotting the data (Figl.5) suggests a certain amount of clumping near the center in
some cases, but also shows considerable variability around the true line. If we plot all 200 deviations used
to construct the simulations (20 simulations for each of 10 x-values (Fig. 1.6) then it does appear that the
underlying distribution is roughly symmetrical, but it should be apparent that one cannot do much testing
for normality with smaller sasmples (say 10 or 20) of deviations from aregression line.

8 —
REGRESSI ON SI MULATI ON
6 -
> i
S 4
u i
3 -
S |
0 -
i * TRUE REGRESSION LINE: Y =2 + 0.30 X
-2 T T T T T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9
VALUE OF X

Fig. 1.5 Simulated regression data plotted with the true regression line from which the data were simulated
by adding normal deviates with mean zero and unit variance.
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Fig. 1.6 Plot of 200 normal deviations with mean zero and unit variance used to obtain 20 regression
simulations.

The regression program in EXCEL used to produce Table 1.1 was run on all 20 sets of generated

data and the estimates of intercept (a) and slope (b) were tabulated along with the residual M.S. (32) and the
confidence limits for b. The error M.S. estimates ranged from 0.5 to 2.41, but averaged 1.05, very close to
the expected 1.0. Estimates of the intercept (a; true value 2.0) ranged from 0.2 to 2.83, averaging 2.02,
while dope estimates (b; true value 0.30) ranged from 0.11 to 0.54, averaging 0.31. The 95% confidence
limits (Fig. 1.7) for the 20 regression estimates of the slope (b) vary considerably, but include the true value
in 19 of 20 cases, as expected (0.95(20)=19). It should be noted that this was a fortuitous outcome -- much
larger simulations would be needed to be sure that the confidence limits actually include the true 8 in 95%
of cases.
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Fig. 1.7 Confidence limits (95%) for slope of 20 simulated regression lines, shown with the true value
(0.30). Note that confidence limits for the 3rd data set do not include (are above) the true value.

1.5 Multipleregression
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Multiple regression is somewhat of a risky proposition for ecologists, inasmuch as relationships
between several ecological variables tend not to be linear. However, it can be used to explore curvilinear
relationships (which we will do below and in the Exercises) and there are various circumstances where a
linear model may be useful. It is also true that a multiple regression model is behind many other kinds of
analyses. The analysis of variance can be obtained through a multiple regression model, but with a different
structure than that used here.

The general model is like that for simple linear regression, but adds more independent variables.
We will use 2 here, but EXCEL will compute models with many x-variables. The basic model is:

and the same assumptions are made. We again minimize the sum of squares leading to normal equationsin

Y =a+ B +BX, + g (118

three variables and the following solutions for the parameters (a, b1, b2):

a=y -bix1- boxo (1.19)
by = [ (% = X2)*Z(y; = Y)(Xy —X1) = Z(X; = X1)(Xy = X2)Z(Y; = Y)(%; = X2)]/ D

b, = [(Z(%; = X1)?Z(Y; = Y)(%,; —X2) = Z(X; = X1)(X,; = X2) Z(Y, = Y)(X, = )]/ D
where:

D= 3(x; —X1)" Z(X5 = X2)* = [Z(%; =X1)(Xy = X2)]’

Our first use of the above equations will be with x = x; and x2 = x2, which may look suspicious, but the
purpose is legitimate inasmuch as we can now fit a second-degree polynomia (a "quadratic" to many
statisticians) as an aid in studying curvature in regression data. To illustrate, we use the deer data of Fig. 1.3
getting the curve of Fig. 1.8. Snedecor and Cochran (1967) show how to do the Analysis of variance in
regression in stages, fitting first x1 and then x2 to see whether there is any gain in adding a second variable.

In the present case, we know that the second variable is necessary to yield a curve.

300 -

y = 12.429 - 3.9167x + 4.5119x"2 R*2 = 0.991

NUVBER OF DEER

Fig. 1.8. Second degree polynomial fitted to deer data of Fig. 1.3, using multiple regression with x1 = x, and
=2
X2 = X4,
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Multiple regression can be used for a wide variety of analyses. For example, the analysis of variance can be
represented and computed in a multiple regression format. A wide range of analyses based on multiple
regression equations are described in some statistic texts under the heading of "General Linear Hypotheses'.

1.6 A test for significant deviations from regression using replicate points.

A test for significant deviations from linearity depending on fitting a curve and testing to see
whether the improvement in fit might simply be due to chance will be discussed in the next section. In some
cases, however, replicate counts may be available, so that one can use the variability within years to test
significance of deviations from linearity. This is the preferred approach, when available. The advantage is
that we do not need to specify an alternative model like the quadratic or cubic, which may very well be the
wrong model. Note, for example, that population growth data such as that of Fig. 1.8 are known to follow
an exponential or geometric curve rather than the second degree polynomial used in Fig. 1.8. Some counts
of brown bears at spawning streams provide an example for the test (Fig. 1.9). In this case, the test consists
of making the usual analysis of variance to test for significance of the linear regression (Table 1.2), and then
using the pooled variance of individual observations within years to estimate "pure error” (Draper and
Smith 1998:49). The data for calculation of pooled error appear in Table 1.3. A sum of squares of
deviations from the mean is calculated for the data in each year where there are two or more observations
and these values are summed to give an overall sum of squares, which is subtracted from the "residual" sum
of squares in Table 1.2 to yield the "lack of fit" sum of squares (i.e., the variability not accounted for by
"pure error"). The number of counts used to calculate pure error (32) is similarly subtracted from the
degrees of freedom for residual error to get the degrees of freedom used to calculate a mean square for
"lack of fit". The resulting F-test indicates significance at the 0.05 level, but there does not seem to be much
evidence of a consistent pattern of changein Fig. 1.9.

Table 1.2 Test of significance for deviations from regression

df S MS F Prob.
Regression 1 0.127 0.127 6.258 0.016
Residual 47 0.954 0.020
Total 48 1.081
Lack of fit 15 0.479 0.032 2.150 0.034
Pure error 32 0.475 0.015
4.4
BROMWN BEARS
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Fig. 1.9 Logarithms of counts of brown bears on salmon spawning streams.

Table 1.3 Datafor computation of "pure error” for brown bear counts.
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Sum of
Year Bears/hour In (bearg/hr) squares  d.f.
3 39.85 9.5219
3 64.04 4.1595
3 61.88 4.1252
3 61.2 41141
3 55.24 4.0117 02819 4
4 68.7 4.2297
4 59.3 4.0826
4 67.9 4.2180
4 65.3 4.1790 0.0134 3
5 494 9.9000
5 51.4 9.9396
5 61.6 4.1207
5 474 9.8586
5 52.45 9.9599 0.0400 4
6 51.88 9.9489
7 45.14 9.8098
7 62 4.1271
7 48.13 9.8739
7 49.58 9.9036
7 51.21 9.9359 0.0572 4
8 62.06 4.1281
8 66.59 4.1986
8 62.32 4.1323
8 66.88 4.2029
8 65.03 4.1748
8 64.58 4.1679 0.0051 5
9 54.17 9.9921
9 67.49 4.2120
9 66.67 4.1998
9 62.8 4.1400
9 61 4.1109
9 62.42 4.1339 00311 5
10 48.68 9.8853
10 51.47 9.9410
10 58.51 4.0692
10 57.65 4.0544
10 54.08 9.9905 0.0238 4
11 61.12 4.1128
11 55.15 4.0101
11 68.29 4.2238
11 61.52 4.1194 0.0229 3
Sums 2386.08 166.2194 04753 32

1.7 Testing for curvilinearity without replications
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Trend data are often collected without replications. Occasionaly this is because an absolute count
is made annually of individuals on an area; more often it is because the investigators cannot afford to make
replicate sample counts (seasonal changes limit the time that such "replicates’ are likely to be valid, too).
In such circumstances, checking for nonlinearity of regression depends on fitting a straight line and a curved
line, and appraising the improvement, if any, provided by the curve. The simplest curve available is the
second degree polynomia ("quadratic) considered in the section (1.5) on multiple regression above.
Sometimes it may be worth trying a third-degree polynomial (“cubic"), which is readily computed by
multiple regression in EXCEL. The modél is:

where x1 = x, x2 = X2, X3 = x3. If a graphics program that fits polynomialsis available, it is worthwhile to
use it for a quick preliminary check. Often the 3rd degree polynomial has too much curvature, and the

Vi =0+ Bxy + ByXy + BoXg € (1.20)
practical approach isto stick with the quadratic.

The procedure is straightforward. One first fits the simple linear regression model, obtaining the
ANOVA of Table 1.1. Then fit a quadratic, and obtain the fit illustrated in Fig. 1.8, along with the
corresponding regression ANOVA (Table 1.4).

Table 1.4 Analysis of variance in regression based on a multiple regression fit of a second degree
polynomial (Fig. 1.8) to the deer data.

ANOVA
df SS MS F Significance
F
Regression 2 30702.90 15351.45 228.19 0.0001
Residual 4 269.10 67.27
Total 6 30972.00

From the linear regression table (Table 1.1), extract the residual sum of sguares and use it as the
first entry in a new table (Table 1.5). From the ANOVA table giving the multiple regression fit (Table 1.4)
also extract the residual sum of squares and make it the second entry in the new table. Use the
corresponding degrees of freedom in both cases. Subtract the S. S. for curvilinear regression from the S.S.
for linear regression. This quantity, with 1 degree of freedom, represents the improvement in fit provided by
curvilinear regression and is tested against the M.S. for curvilinear regression by an F-test. Table 1.5 gives
the new arrangement for the deer data.

Table 1.5 Test for curvilinearity of regression using the difference between Residual Sum of Squares in
linear regression and multiple regression.

TEST FOR CURVILINEARITY-ORIGINAL SCALE

SOURCE d.f. S.S. M. S.

Dev. from linear regr. 5 1979.11

Dev. from curvilin. regr 4 269.10 67.27

Difference 1 1710.01 1710.01
F-RATIO 25.42

SIGNIFICANCE LEVEL 0.0073

Note that the F-ratio in this table is reversed from the usual regression case. Previously we
calculated the F-ratio from M.Syegr/M.Sresid, With 1 and n-2 degrees of freedom. Now we use

M.S.diff/M. S.dev from curvil. regr., With 1 and n-3 d.f. (n-3 because the 3 parameters of eq.(1.19) arefit to

the data). In the rare case of using a cubic model, one would use the same procedure, but n-4 d.f. because a
4th parameter isfitted in the cubic (3rd degree polynomial) model.
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It is worthwhile to look at the equations for residual S.S. on which the test is based. From eq.
(1.10) the S.S. for linear regression is:

S. S. Residual (linear regr.) = S[yj -(a + Bx{)]2
The corresponding S.S. for the quadratic (2nd degree polynomial) would be:
S.S. Residual (quadratic) = Z[yj -(a + B1x1j + B2x2i)]2 (1.20)

From these eguations, it can be seen that an improved fit with the quadratic model should reduce the S.S.
considerably. If not, then the F-ratio should be small and non-significant.

There are various difficulties in using this test on real data, mostly associated with the inaccuracies
of censusing animals and the very real prospect that a population may cease to grow for a variety of reasons.
Ecological data are like that! Some statistics books and editors advise checking assumptions before analyses
are published. As noted previously here, such tests require more data than are ordinarily available, and may
thus be misleading and contradictory.

Following the advice to test assumptions, one might well use the above test to see whether
population growth data are linear or non-linear. It is worthwhile to conduct such atest as a way to explore
the data. An Exercise asks the student to conduct these tests on actual data on growth of a number of
populations. Theoretically, the outcome should be that the test will show nonlinearity and thus lead to using
a transformation. In the real world, the results are confusing. The moral is that experience and accepted
theory dictate the advisability of a transformation.

1.8 Basic modelsfor population growth

Most ecology textbooks describe population growth by the familiar exponential model:
Nt = Nge't (1.22)

Where Nt is population size at time t, Ng the starting population size, and r the "instantaneous' rate of

population growth. It is worth pointing out that a great many populations do not follow the commonly
assumed model, inasmuch as they reproduce only during a short annual period, and thus follow what has
been called a "birth-pulse” model, spurting up in numbers at the time of reproduction, and then decreasing
through the rest of the year due to mortality. Eq. (1.22) describes continuous change, with reproduction and
mortality assumed to be going on constantly in any short time period. A model closer to the truth is of the
"compound interest" type:

Nt = Ng(1 + )t (1.23)

Thus, where equation (1.22) describes a smoothly ascending continous curve, eq.(1.23) describes a "step
function”" jumping up at specific times and then staying flat in the interim. Neither model is correct at all
times, but they do agree at specific times. Figure 1.10 sketches out the likely actual time trend of a

population, along with the results of egs.(1.22) and (1.23). Either model can be described by Nt = NAt,

with A representing € or (1+r). When we use a log transform to represent population growth data as a
straight line (thus performing "log-linear" regression), it is important to have in mind this interpretation of
the slope of the regression represented by the two models. Note that eq. (1.23) is actually only defined at the
time of reproduction or recruitment, but the plot (dashed line) connects these “jumps’ by a straight line.
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Fig. 1.10 The two population growth models of egs. (1.22) and (1.23).
1.9 Testing for differences between regression lines

An essential feature of regression analysis is the ability to determine whether a number of fitted
regression lines differ. We start out by considering whether the slopes (3;) of several lines are significantly

different. If not, then it islogical to test whether the intercepts (aj) are different. This leads to the Analysis
of Covariance, discussed in the next section.

Most of the data for testing equality of slopes comes from the calculations presented in Section
1.4. The main new feature lies in estimating a common slope. In order to compare the several sopes, we
will first need to combine individual slopes to obtain a "pooled" value to compare with the individual
values. This also can be obtained by weighting the individual slopes inversely by their variances. The
weights come from the variance estimate for individual slopes, eq. (1.15). A basic assumption in assessing
regression lines is that they all have the same variance about regression, as estimated by the residual (error)
mean square of eq. (1.10). As aways, if there is enough data it is worthwhile to test that assumption.
Usualy only gross differences can be detected with small to moderate sized data sets. If we assume a

common variance (52), then the weights can be taken as:

n
wo= Y (x —X)° (1.24)
i=1
Thus the slope based on the widest spread of x-values gets the most weight, and the pooled slope becomes:
= 2W,
b= 2w (1.25)
2W,

where we have k regression lines to analyze so the summations run from 1 to k. In the analysis, we pool
familiar sums of squares for the k regression lines, namely:

SSy = Z(y, — ), SX = Z(x —X)*,and SSxy = Z(y; —Y)(% —X)

and use these to arrive at a pooled estimate of the residual (error) sum of squares. The resulting mean square
isthen used as the denominator in an F-test, where the numerator is:

S.S.giff = 2wij(bj - b)2 (1.26)

with k-1 degrees of freedom.
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For an example, we compare rates of population increase for data on deer, horses, and elk. Models
for rate of growth (eg. (1.22) or (1.23)) indicate that the data should be log-transformed (using logarithms to
base e), whereupon the slope of a ssimple linear regression line will estimate a rate of population growth.
This rate of increase for deer (Fig. 1.11) is apparently appreciably higher than those of the other two
species. Note that there will be a difference in interpretation of the dopes (b) depending on whether
€g.(1.22) or (1.23) is assumed to hold. Details appear in Section 11.2.

10 ELK
y = 8.0006 + 0.19067x R*2 = 0.965

-]
HORSES

{y = 5.6388 + 0.19292x R*2 = 0.995

LOG NUMBER

y = 2.1160 + 0.48799x R*2 = 0.956

2 T T v T T v T v 1

0 2 4 YEAR 6 8 10

Figure 1.11 Loge transformed data on numbers of three species with fitted regression lines.

The first 3 columns of datain Table 1.5 are calculated from the individual data sets and summed to
get the "pooled” data. The slopes (bj) are calculated from eqg. (1.9), and the first 3 sums of squares (S.S.) on

the right are calculated from the right side of eg. (1.11), i.e., from SSy - b2SSx, and summed (totalling
0.363). The fourth S.S. (2.039) in this column is also calculated from eq. (1.11), but using the "pooled"
data, while the S.S. labelled

"Difference between slopes’ (1.676) is obtained as the difference between the pooled value (2.039) and the
sum (0.363) of the individual sums of squares. The F-test is the ratio of 2 mean squares, 1.676/0.113 =
14.79 with 1 and 18 d.f., and is highly significant (P = 0.001) as might be expected from the difference in
regression lines (Fig. 1.11).

Table 1.5. Datafor atest of significance of equality of slopesfor 3 regression lines.
Source  SSx SSxy SSy Slope d.f. S.S. M.S.
Horses 17.5 3.3760 0.6548 0.1929 5 0.00348 0.00070

Deer 28.0 13.6636 6.9713 0.4880 6 0.30359 0.05060

Elk 42.0 8.0081 1.5830 0.1907 7 0.05608 0.00801
0.36315

Pooled 87.5 25.048 9.209 0.2863 18 2.03884 0.11327

Difference between slopes 1 1.676 1.676
F 14.794
Prob. 0.0012

The "Difference between slopes' S.S. of Table 1.5 can be calculated directly from eq. (1.26), using

the weights calculated from eq. (1.24) to calculate the weighted slope (b) of eg. (1.25). The calculations
appear in Table 1.6. Note that Table 1.6 is not needed for the F-test but provides some further insight into
the basis for calculations.
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Table 1. 6. Calculations for eg. (1.26).

Weights bj wibi  (bj-B )2 Wi(bj -b )2

Horse 17.5 0.193 3.376 0.0087 0.1525
Deer 28.0 0.488 13.664 0.0407 1.1394
Elk 42.0 0.191 8.008 0.0091 0.3838
875 Sum 25.048 SS. 1.6757

b-bar 0.286

Another example concerns a situation where it seems likely that the regression intercept (a) should
be zero. The data come from a study of Hawaiian monk seals. These seals occupy 5 sites spread over about
1300 miles northwest of the main Hawaiian Islands, and are classified as Endangered under the Endangered
Species Act. To monitor their abundance, "beach counts' are conducted annually on most of the sites.
These amount to tallying all seals seen in covering all beaches on a site. Only a fraction of the seals using a
site are ashore at any given count. However, individual seals can be identified by tags, scar patterns, and the
use of temporary bleach marks. In those instances where many counts can be made over 6 weeks or so, it
becomes possible to achieve a virtually complete tally of the population using the site. A further description
of monk seal dynamics appearsin Section 14.5 (Case Histories).

The analysis in this example thus contrasts the mean beach counts against population totals for 3
sites, using regression through the origin. Because a is now assumed zero, the regression model becomes y;

= BXj + §. The least-squares estimate of B is;

2y %
%2

b= (1.29)
which is eg. (1.9) without the means, e.g., X(Xj - X )2 is how inz . Apart from this change in definitions, the
analysis (Table 1. 7) proceeds as in the previous example, with one other exception. Inasmuch as a is not
included in the model, we use n-1 d.f. where regression analyses with 2 parameters (a and ) use n-2 d.f.

Table 1. 7 Datafor atest of equality of slopes for 3 regression lines relating mean
beach counts to total abundance for Hawaiian monk seals at 3 sites.

Source SSx SSxy SSy Slope df. S.S. M.S.

KURE 63431 26670.2 11782.3 0420 11 568.50 51.68

LAYS 6576511 98198.4 60015.10.301 9 283.36 31.48

FFS 1338292 410254.5 126842.6 0.307 4 1078.76 269.69

1930.62
Pooled 2059374.0 635123.1 198639.9 0308 24  2764.196 115.17
Difference between slopes 1 833.580 833.58

F 7.238
Prob. 0.013

It thus appears that there is a significant difference among sites, with one site (Kure) having a
significantly greater dope (b) than the other two, where the dlopes are virtualy identica. The two
relationships appear in
Fig. 1.12. The site with the largest total counts (French Frigate Shoals) contains many small islands, some
of which are small enough that it has been difficult to approach seals for identification. The "total" counts at
that site have thus not been considered compl ete, but the data for the recent 5 years (1991-1995) considered
here now suggest that the apparent total counts do agree with the relationship between beach counts and
totals at Laysan, suggesting that the FFS data may now approximate actual totals.
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Fig. 1.12. Relationship between mean beach counts and total counts at three monk seal population sites.
Regression through the origin for Kure is shown by a solid line, while the same regression for Laysan and
French Frigate Shoal s appears as a broken line.

One other issue illustrated by the monk seal data should be discussed here. This is the aggravating
guestion of "outliers'. In some data sets, there are points that seem evidently to lie well away from a trend
evident in the bulk of the points. Thisis the case with the Laysan data. There are two years (Fig. 1.13) that
are well away from the trend line (and were not used in the analysis of Table 1. 7). Simple and direct
methods are not available for deciding to exclude "outliers’. However, in extreme cases like this one, we
can simply consider the probability of such a deviation. The standard deviation of the distribution of points

around the regression line for Laysan is the square root of the Mean Square of Table 1.7, which is 31.48 12
= 5.6. Deviations of the two suspect points from the regression line are 65 and 62 units, or about 10
standard deviations away from the line. Clearly these two deviations have an extremely low probability of
arising by chance alone. Corroboration is also available in that the two points (they occurred in successive
years) represent an increase in population size that is simply not feasible, and a subsequent decrease that
surely would have been detected (dead seals) if it occurred.

150 A

A

N

a1
1
[ ]

[En
o
o

1

[ ]

()
o
1

N
(631
1

MEAN BEACH COUNT
~
o
[}
[ ]

0 50 100 150 200 250 300 350 400
TOTAL COUNT



1.20

Fig. 1.13. Position of two aberrant counts at Laysan Island relative to the regression line and data from
which it was calcul ated.

1.10 The Analysis of Covariance

The analysis of covariance depends on the availability of an auxiliary measurement linearly related
to the variable of interest. Consider a one-way analysis of the yield (y;) of fruit trees subjected to several

different treatments (different types of fertilizer or perhaps insecticides) that presumably will increase yield.
Yield of individual trees may vary with the size and location of the tree, so a useful auxiliary variable may
be the yield (xjj) of a given tree in the year before the treatments were applied. Hence, a one-way model

without information from the auxiliary variableis:
Yij = Hi + &jj

but the auxiliary variable can be introduced by:

Yij = Hi + B(Xjj - X ..) + & (1.28)
so that the adjusted mean for a given treatment becomes:
Yi-=Hi +B(Xj.-X.) +€j.

The ANOVA for a covariance adjustment then tests whether adjusted means are significantly different. The

dot notation is used with multiple subscripts to indicate which subscript is involved in averaging. Thus X j.
Denotes the average over j for the ith group.

A key assumption in the analysis of covariance is that the same linear relationship holds in all of
the treatment groups. Thus we need to use the methodology of Section 1.9 to test the hypothesis that 3;

within treatment groups are not significantly different. Some investigators may proceed with the analysis
without testing homogeneity of the slopes. This is not wise unless there is a good deal of prior experience
on which to base such a decision. Inasmuch as both analyses depend on much the same computations,
prudence calls for computing the results givenin Table 1.5 and 1.7 in any case.

The data are arranged in the same way as in the previous section, but we here assume the same
number of observations in each treatment group, giving atable like the following:

A B C
X y X y X y
X11 yi1 X21 y21 X31 y31
X12 Y12 X21 y21 X32 y32

X1j Yij X2 i X3 Y3
X1n Yin X2n y2n X3n ¥3n
To provide an example, atable of data from Snedecor and Cochran follows:

A D F

16 13

(o2}
(o2}
o

11
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5 2 7 3 11 18
14 8 8 1 9 5
19 11 18 18 21 23
6 4 8 4 16 12
10 13 19 14 12 5
6 1 8 9 12 16
11 8 5 1 7 1
3 0 15 9 12 20
Means 9.3 53 10 6.1 129 12.3

From the ANOVA for simple regression we had the following results (eq.(1.11):

> 0= =3 G- =y 09

Total S.S. - Regression S.S. = Error (Residua S. S)

The error term can be written in various ways

2 (%)= 2 Iy ~(a+ b))
=2 (019" =b" (x =%
[y 0= 9)(x - R

3 (% =%’

with the last result being most useful here. It is obtained by using the definition of b in developing eg. (1.29)
from equation for the Residual (Error) Sum of Squares above. The above calculations are expressed for one

group of data, so in dealing with several groups below, a subscript for thejth observation in the ith group
needs to be added.

)? (1.29)

<l

:i(yi—

The calculations proceed by computing the 3 components of eg.(1.29) and arranging them in an
ANOVA type of table in which the Total S.S. is calculated from the entire set of data, using overall means
of x and y, e.g.with the other values SSy, and SSxy calculated in the same manner. Thus,

sy=3 5 (70, HeSF>) 5 (v, -5 ~%).

The Error lineis calculated by using the group means, e.g.,

s&:iim ~%)°

The Between S.S. are readily obtained by subtracting the line for Error S.S. from Total S. S. These
calculations then give the following table from the data above:
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Source df. SSx SSxy  SSy M.S.
Total 29 665.9 731.2 1288.7

Between 2 729 1458 293.6

Error 27 5930 5854 995.1 36.86

The M.S. due to error is calculated from SSy/d.f. = 995.1/27 = 36.86 in the Error line of S.S. just as it
would be done without the auxiliary variable. The other entries in the table are needed to obtain a reduction
in the error sum of sguares as shown below.

The "reduction due to regression” is obtained from (SSxy)ZISSx in the Error line, and is subtracted
from the Error sum of squares as computed without the auxiliary variable, giving an estimate of error mean
square adjusted by the regression data. The complete calculation of an adjusted error mean square is thus:

Source df. SSx SSxy SSy M.S.
Total 29 6659 731.2 1288.7

Between 2 729 145.8 293.6

Error 27 593.0 585.4 995.1 36.86
Reduct. due to regr 1 577.9

Dev. from regr 26 417.2 16.05

An estimate of acommon slope is also obtained from the error line,

b= SSxy/SSx2 = 585.4/593.0 = 0.987. This value then can be used to get adjusted values of y from the
following:

Viadj = YVi--b(Xj.- X.)

The adjusted mean for the first group of data (group A in the table above) is thus:
5.3-0.987(9.3-10.73) = 6.71 = ¥ j ]

The results of the covariance adjustment can then be assembled to produce a covariance-adjusted F-test, as
in the following table:

Table 1.8 Covariance F-test in one-way classification

Deviations from regression

df. S SSxy SSy Reduc. df. SS.  M.S.
Treatments 2 72867 1458 2936
Error 27 593.000 5854 9951 5779 26 417  16.05
T+E 29 665.867 7312 1288.7 802.94 28 486

2 686 34.28

The F-ratio is 34.28/16.05 = 2.14 with 2 and 26 d.f. and does not suggest a significant treatment effect (P =
0.14).

The whole purpose of the exercise is to get a more sensitive F-test of main effects than would be possible
without the auxiliary variable. Such an improvement depends, of course, on the presence of a significant
linear relationship between the variable of interest (yj) and the auxiliary variable (x;j), and this relationship

needs to be checked out first (i.e., do regressions on the datain each group (A, D, and F) first).

1.11 ANOVA as aregression model
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To sketch out a basis for doing an analysis of variance with a regression model, we need the
concept of a "dummy variable" which is simply a variable that takes only values of 0 or 1. Consider the
multiple regression model:

Yi = B+ Baxqj + B2xoj +B3xz
and let xj = 1if yj belongsto a particular group in a one-way ANOV A and 0 otherwise. Then we can write:

y1=p+p1
y2=p+pB1
y3=p+pB1
ya=p+pB2
y5=p+B2
y6=H+PB2
y7=p+B3
yg=H+pB3
yo=p+pB3
y10=H+ B4
y11=H+ B4
y12=H+ B4

and thus have a regression model conforming to a one-way ANOV A with three observations in each of 4
groups, giving the general model of E(yj) = p + Bj, as is appropriate for one-way analysis of variance.
Draper and Smith (1998) give extensions to two-way and higher analysis and methods of fitting. The
approach is likely not of much importance here, but is mentioned to emphasize an earlier remark that
models of the multiple regression type can be used for awide variety of purposes, often subsumed under the
heading of "General Linear Hypotheses'.

1.12 Stepwiseregression

This is an approach to regression that permits adding variables one step at a time while searching
for the "best" model for a given data set. Consider the test for curvilinearity of Section 1.7. We first fitted a

linear regression of the form yj = a + B1x1j and then extended the model to become a second degree

polynomia yj = a + B1x1j + BZXZiZ, using multiple regression to fit the model. We then tested for a

significant "improvement of fit" by comparing the reduction in Sum of Squares obtained by subtracting the
deviations from curvilinear regression (Residual S.S.) from the deviations from linear regression, and tested
significance of the improvement by an F-test. We noted that the process could be extended to a third-degree

polynomial yj = a + B1x1j + Bleiz + ng1i3 to test for a more extreme curvature. We used multiple

regression to fit the models, letting x2j = x1i2, (and x3j = x1i3 if the model were extended to test the further
improvement of adding a "cubic" term). This kind of procedure is employed in stepwise regression, but is
not, of course, restricted to polynomials. Any series of variables can be tested successively for the
improvement of fit produced as each new variable is introduced. Computer programs are available that will
test all combinations of a set of candidate variables but the results are practically guaranteed to be
misleading, as enough manipulation will almost always produce a "good fit". One should use stepwise
regression only when there is a logical sequence of models to test, and even then it is likely that the final
model will be "over-fit" (i.e., have too many independent variables). One useful approach is to develop a
model on half the data and check it on the other half. Usually, ecologists do not have enough data to hold
half of it in reserve while studying a model. An alternative is known as "cross-validation”. In it a series of
fits are used and each observation is left out in turn, and used to check the error variance estimate from the
fitted model. Such a test is "computer-intensive', i.e., depends on the ability of the modern computer to
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conduct many calculations in a short time. Anyone planning to use stepwise regression should consult
references like Draper and Smith (1998) first.

1.13 Logistic regression

This is a form of regression analysis developed for data of the binomial form, i.e., in which the
variable of interest is either 1 or O (or "yes' or "no", "present or absent", etc., which can be coded as 1 or
0). Usually we express results as a proportion, e.g, the proportion surviving after some time interval or some
treatment. Logistic regression originated in the field of bioassay, in which the response to a given dose of
some substance is studied quantitatively. If one plots the response (proportion surviving or otherwise
responding to some treatment) against the dose (often quantity of some substance given an individual) the
resulting curve is usually sigmoid (s-shaped). The cumulative normal curve provides a convenient s-shaped
model, and is used in bioassay in "probit" analysis. Details of methods used for bioassay are given by D.J.

Finney (Statistical Method in Biological Assay, 3rd Ed. 1978, Charles Griffin and co., Ltd. London).

Joseph Berkson proposed using the logistic function as a bioassay model in 1944. The basic
moddl is:

1

(atbx) (1.30)

P=—
1+e

where P denotes the dependent variable and x is the independent variable ("dose" in bioassay). Because Pis
aproportion,

(@t
Q1P e
and we can now consider the ratio of P and Q:
g =gl + Bx (1.32)

The ratio of P to Q is sometimes called the "odds ratio”, no doubt because it expresses the odds for a
particular outcome.

Now the natural logarithm of this*oddsratio” {eq.(1.32)]isalinear function,
P
In(a) = o+ Bx (1.33)

Thisiscalled the "logit" transformation.

Thereisan interesting sidelight to the logit transform. Consider a table of proportions (e.g., severa
species of plants classified by whether they have flowers, fruits or neither). One can then calculate the
natural logarithm of the "odds ratio” and analyze the linear model of eq. (1.33). This is termed log-linear
regression by some authors and can be extended to behave like the analysis of variance. It has been used
largely in the social sciences, but could well be of interest in ecological circumstances where one must
analyze tables of proportions (or tables in general, for that matter). It should be noted that we will also use
the term “loglinear regression” to refer to the log transform of eg.(1.22).

Exanple 1.3 An exanple of logistic regression
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In aerial counts of wildlife populations, the nunber of
individuals in a group has a marked effect on visibility. This has been
studied by using animals with attached radiotransnitters and recording
the frequency of observation of groups containing these individuals.
Such a study of elk has been used to correct for visibility (M D
Sanmuel et al. 1987. Visibility bias during aerial surveys of elk in
northcentral Idaho. Journal of WIdlife Management 51:622-630). The
following table shows the data (only small sanples were available so
that |arger groups had to be conbi ned).

Table 1.9 Sighting data froman aerial survey of radi o-marked el k.

Logi t

Group Proportion transformation

size Mssed Seen seen | 0ge(P/ Q)

1 18 5 0. 217 -1.281

2 7 6 0. 462 -0.154

3 5 5 0. 500 0. 000

4 4 6 0. 600 0. 405

5 4 9 0. 692 0.811

6 6 4 0. 400 -0. 405

11 3 14 0.824 1. 540

23 0 10 1. 000
The sinplest way to fit this data is to use eq. (1.33), i.e., regress
the logit values (right-hand columm) against x. In this case, the

i nvestigators used the logarithm of group size in their analysis, so we
use In (group size) for x in Fig. 1.14, which shows the regression fit.

Due to the fact that the independent variable is from a binom al
distribution the linear nodel inplied by eq. (1.33) does not give the
best fit to the data. Instead, the technique of naximm |ikelihood
estimation is recomrended. If we assume a particular frequency
distribution (probability distribution function in Section 1.2)
underlies a set of observations, then it may be possible to find
expressions that often mininmze the variance of an estimated quantity.
Met hods of mathematical statistics are required to derive such
estimators, but many of the commonly-used estimates are also nmaxi num
likelihood estimates. In the present case, there is no sinple expression
for estimating the paranmeters of eq. (1.32) so that an iteritive nethod
is required to solve the maxi mum likelihood equations. The method used
here is due to J. Berkson (Tables for the maxi numlikelihood esti mate of
the logistic function. Bionetrics 13:28-34, 1957). Maxi num |ikelihood
estimates for logistic regression can also be obtained in sone of the
avail abl e statistics programs (e.g., SYSTAT).

3 A

LOE T TRANSFORMATI ON

p y = - 1.1180 + 0.97394x R*2 = 0.706

- 2 v Ll v Ll v Ll v Ll v Ll v Ll v Ll v Ll v Ll v Ll v Ll v Ll v 1

0.0 0.2 04 06 08 1.0 1.2 1.4 1.6 1.8 20 2.2 24 26
LOG GROUP SI ZE
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Fig. 1.14. Regression of logit values on logarithm of group size
fromaerial survey of elk

The paraneters obtained from the regression analysis (Fig. 1.14)
are o = -1.118 and B = 0.974, while those obtained from the maximm

likelihood fit are sonewhat different, being a = -1.305 and B = 1.155
Fits to eq. (1.30) are not substantially different (Fig. 1.15).
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GROUP SI ZE

Fig. 1.15 Fits of eq. (1.30) to observed data on elk sightability
using regression (eqg.(1.33) and nmaxi num | i kel i hood net hods.
Example 1.4

Two further exanmples (Fig. 1.16) are based on reproductive rates
in Hawaiian nmonk seals at two sites. The curves were fitted as above
usi ng regression and maxi mum | i kel i hood esti nates.
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Fig. 1.16 Logistic fits of reproductive rates against age of the
femal e for Hawaiian nonk seals at two sites.

In the upper curve, it appears that the regression and naxi num
i kelihood methods give about the sane results, while neither
provides much of a fit in the Ilower curve. Deteriorating
conditions (poor food supplies and survival) at the site may be
changing the curve, so that it does not represent a stable
situation. G rcunmstances at the site shown in the upper curve have
been reasonably good, but there is no particular reason to suppose
that reproductive rates should follow a | ogistic curve.

For conparison, sone data on judging sound intensity were
fitted by the two methods (Fig. 1.17). These data appear to fit

the logistic very well, and the two methods of estimation give
virtually indistinguishable results.
1.2

0.0 - T T T T T T T T T T T T T 1
3.15 3.20 3.25 3.30 3.35 3.40 3.45 3.50
LOGARI THM OF SOUND | NTENSI TY

Fig. 1.17. Logistic curve fitted to data on judging sound
intensity.

1.14 Locally weighted regression

When there is no suitable model for a curve, locally weighted regression provides a way to fit a
smoothed line. The method is varioudly called "loess" or "lowess'. Some authors use "loess’, but ecologists
will no doubt be confused by the implication of wind-deposited soil!. Weighted linear regressions are fit at
each point on the graph (e.g., if the data span 30 years, then such regressions are fit at each of the 30 years)
by selecting data points in the immediate neighborhood of each point on the x-abcissa. The number of
points in each such neighborhood might be taken to be, say, about 30% of the total number of observations.
However, this can be varied in the fitting program, and depends on the purpose at hand. If one wants a
thorough smoothing, then 50% or more of the points might be used in each regression. If the smoothed
curve isto follow the data point closely, then asmall fraction, perhaps as little as 10%, of the points should
be used in each fitting. Experimentation with the fitting program will help in developing an approach for a
particular data set. Weights diminish by a cubic function, so points very near to the selected point get by far
the most weight. The fitted regression line determines only the y-value for the selected abcissal value. In
effect, the technique behaves much like a moving average, but has various advantages. Programs to produce
lowess fits are available. SYSTAT has a routine for lowess fitting in the plotting routine (after loading the
data in a file, bring up "plot", and select the "smooth" function. It will then be necessary to indicate the
fraction of the data points to use in each neighborhood). The lowess method was developed by W. S.
Cleveland (Journal Amer. Statistical Assoc. 74:829-836).
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The smoothed line in Fig. 1.18 illustrate the technique. This approach to smoothing is preferable to
the usual moving-average smoothing because it does not leave blanks at the end of the series, and uses what
seems to be a better averaging approach. The lowess technique can be illustrated by smoothing French
Frigate Shoals monk seal beach count data. At each point along the line (here, each year) the nearest n
points are used to form aweighted linear regression (9 points were used in producing Fig. 1.18). The
regression lineis used only to determine the smoothed value for the given point. Inasmuch as the weights
and the regression line must be computed for every point used along the x-axis (the years 1957 to 1993 in
the present example€), enough calculations are involved to make use of a computer desirable.
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Fig. 1.18. Locally-weighted regression line ("lowess" smoothing) for the French Frigate Shoals monk seal
beach counts. For each year on the graph, aweighted linear regression is computed from the n nearest
points, with the contribution of each point weighted by a cubic function of distance of the data point from
the base point. The regression line for 1987 is shown on the graph, along with the weights assigned to the 9
nearest points. The regression line determines only one point on the smoothed line.

1.15 Non-linear least-squares

The method of least-squares was discussed in Sec. 1.4, and eg.(1.6) was used to develop least-
squares estimates for linear regression. The same approach can be used to fit non-linear functions, starting
with the same equation for sum of squares:

S=2yi f(x)]12

where f(x) is now some non-linear function, such as the logistic function of eq. (1.30). One could find a
minimum for the sum of squares, S, by a direct search routine. Thisis labor-intensive, and there are various
computer programs that do the job very quickly and efficiently. Some of these call for partial derivatives of
the function (used to "linearize" the function so that the approach to a minimum can be done in successive
iterations). Others use numerical approximations to the partial derivatives, or direct search routines.
SYSTAT contains two such routines under the "nonlin” function. It requires that a model be furnished, but
this can be written in the notation used in EXCEL (realy statements in BASIC language, which underlies
EXCEL). Thuseg. (1.30) is entered as:

P = 1/(1+ EXP(-(A+B*X)))

The data need to be entered by using the Editor function (or can be read in from an EXCEL file, or copied
to the Editor via a clipboard). Names used for variables (P,X) above are used as column headersin the data
file, and the SYSTAT fitting routine recognizes the other labels (except built-in functions like EXP) as
variablesto fit (such as A and B above). Trial values can be furnished (i.e., rough estimates of A and B) and
the number of iterations can be set (these have built-in "default" values). It may be necessary to use trial
values if the program doesn't converge in, say 20 iterations (the default value)), but further iterations can be
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tried, first. Since the program is iterative, it may get stuck in various ways, and it is then desirable to quit,
and start over with different guesses at starting parameters.

1.16 Exercises

1.16.1 Coin-tossing. Students should try a coin-tossing experiment like the one reported in example 1.1. Put
10 coins in a jar and make 100 tosses, recording the number of heads in blocks of 10. Make a frequency
distribution and compare it with Fig. 1.1. Try another set of 100 and compare the two frequency
distributions. Compute the sample means and variances, and compare them with the theoretical values.

1.16.2 Simulating the binomial on a computer. Coin-tossing gets tiresome after awhile, and it isimportant to
look at a different probability model. In order to get large samples without the tedium of mechanical
approaches, we can resort to the computer. Students familiar with a programming language will likely prefer
to write a simple program. However, useful results can be obtained in EXCEL and are readily in reach of
those without programming experience. Those with only a passing experience with EXCEL may have to
resort to the HELP function (or a colleague with experience) but it is important to carry out the following
exercise because it should provide a capsule view of “monte carlo” simulations. Also, the next two chapters
on bootstrapping depend on use of EXCEL. Insert the statement “=RANDBETWEEN(0,1)” in acell in an
EXCEL spreadsheet, and copy down to fill 10 cellsin a column. This generates a series of 0’'s and 1's with
probability 1/2 of getting either. Now copy the row to the right for 100 columns (it is convenient to use the
automatic numbering system in a column above the 10 entries to keep track—a handy little number pops up
beside to indicate how many numbers you have entered). Now sum the columns (use the summation
function in the legend at the top of the sheet). This row of numbers (the sums) is now equivalent to the table
of datain Example 1.1. Now use the histogram procedure (in the Tools menu) to construct a histogram of
frequencies of results. These should approximate the bars in Fig. 1.1. Note that every time you make a
change in the worksheet it recalculates the table of random values (this function can be turned off). It is
worthwhile to calculate several histograms just to get a notion of how variable the outcomes are. Next
calculate the expected values from eq.(1.1). Find the factorial function (“FACT” in Math and Trig
functions). Actually, all you need to know is that FACT(5) gives the value of 5! Use this function to
calculate the factorial part of eg.(1.1) next to a column numbered O to 10. Then enter the rest of the
equation in the next column (because p=0.5=1-p these entries will al be the same, but we'll use the
approach for a case where p is not 1/2 below). The product of the two columns gives the proportions of
eg.(1.1) which add to unity. Now multiply 100 times the proportions, and you have the expected values,
which should approximate what you have in the histograms. The Chart Wizard in EXCEL will plot
expected and observed values (you need to look under “Custom Types’ to find one that plots a line and
bars). One last chore is to recalculate the expected values using a value of p=0.9 which gives a distinctly
asymmetric graph. It is always useful to put the numerical value of p above the calculations and use the “$’
(e.0.,$A$30) notation to denote p in calculations for the equation. This lets one experiment with different
values of p. Students should save a worksheet with the above calculations in order to have it for further
reference when we consider other frequency distributions.

1.16.3 Random sampling There will be a great deal of emphasis on random sampling in this course. A
relatively new topic in statistical methodology called bootstrapping will be used extensively. It depends on
random sampling with replacement. Courses and books on sampling methodology usually depend on
sampling without replacement. Consider using a number of sample plots to make counts of plantsin order to
estimate overall density of some species of plant. Such plots should be located at random in order to assure
an unbiased estimate of density, and secure areliable estimate of variance. Ordinarily, an investigator would
find some way to assign a number to all possible plots in the area to be studied, and locate the sample plots
by consulting a table of random numbers. If the same plot is drawn twice, it would not be counted twice, as
this usually makes no sense. Hence we describe this as sampling without replacement. Textbooks on
sampling show that it usually doesn't make much difference whether we do in fact sample with replacement,
inasmuch as as the sample usualy is a small fraction of the total population. Bootstrapping, however,
depends on sampling with replacement as a way to reflect the underlying frequency distribution.
Consequently, most of our samples will be with replacement. We will be taking repeated random samples
with replacement of a data set. The individual entries in the data set will be in a computer file, and we will
randomly select individual entries from thisfile. It is convenient to number the data items from 1 to n, and
we then need to generate random numbers. To illustrate the approach, enter “RANDBETWEEN(1,10)” ina
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cell in EXCEL and copy down the column for 100 entries. Make a histogram of the data, as in Example
1.16.2. This is a sample from a uniform distribution, i.e., a frequency distribution where the probabilities
are all equal. It is the distribution underlying random sampling. It is easy to extend the process to, say,
1,000 draws as in the frequency distribution plotted below. Note that it is still quite variable, even with
1,000 draws. Make a graph of your data like the following using the Chart Wizard and post it on a
spreadsheet with the calculations.
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1.16.4 Simulating a discrete skewed distribution. In Exercise 1.16.2 students were asked to calculate
expected values for a binomia frequency distribution [eq.(1.1)] with p=0.9. A skewed freguency
distribution is not hard to simulate, requiring two changes to the methods used in Exercise 1.16.2. Instead of
RANDBETWEEN(0,1) we use “=RAND()” (don't put anything in the parenthes) which provides random
numbers between 0 and 1. We also need an “IF” function which is the basis for a lot of computer work. 1t
evaluates an expression and chooses between two output values, depending on whether the expression is
true or false (there are a number of different expressions working along these lines, but we use the simplest
here). Set up a spreadsheet with a column of 10 values of “=RAND()”, and copy it to the right 100 times.
We again need a numerical value of p above this table for reference, which may be say 0.9. If the first entry
in the first column is in position, say, D9, then in the column just below this first column the first entry
should be “=If(D9>=$A%$3,1,0)" where the value of p is in $A$3. Copy down 10 and across for 100
columns and sum these entries. The IF function checks to see if the entry in D9 exceeds p and enters 1 if
true and 0 if false. The sums then provide the basis for a histogram of a skewed discrete distribution. Make
histograms with p=0.1, and p=0.5. Compare the histogram with p=0.5 with the one you made in Exercise
1.16.2. Make a new calculation of eq.(1.1) with p=0.9 and compare it with the histogram with p=0.1
(actually you should have made one in Exercise 16.1.2 and need only copy it over to this worksheet for
comparison. Plot the datain Chart Wizard (expected and observed values). It should look like the following
graph:

1.16.5. Do the agebrato calculate the expected value of eg.(1.1) asgiven in the right side of eq.(1.2).

1.16.6 Simulating a continuous skewed distribution. A continuous random variable is one that has valuesin
the real domain. For our purposes, this means values like those generated by RAND() -- any number within
the range considered (i.e., from O to 1). We will consider one way to generate random variables from an
exponential distribution here. Consider the function:

F(x) = 1-eBX (1.34)

SKEWED DISTRIBUTION

45
40
35
30
25
20
15
10

HUMEER




131

Thisis an example of a cumulative distribution or cumulative distribution function. It takes values from O
to 1, and has one parameter, 3, which controls the rate at which the function approaches unity. The graph
below shows the function for 3 = 0.1 and 3 = 05.

0 10 20 30 40 X 50 60 70 80 90 100

Fig. 1.19 Plot of cumulative distribution function for the exponential distribution for values of 3 = 0.1 (solid
line) and 3 = 0.5 (broken line).

We use the cumulative distribution function here because it takes values from 0 to 1, and we can take a
random sample from that range (using RAND()) and translate that to find the corresponding x value, by
rearranging eg. (1.34) as

X = % log.(1— F(x)) (1.35)

Thus the procedure is to draw a random sample of values from RAND() and look up the corresponding
values of x. Eq. (1.34) is the integral of an exponential distribution over the range 0 to x, hence the name
"cumulative'. To compare the outcomes of a simulation with the equation for the frequency distribution,
one runs a simulation as described in Exercise 1.16.4, and plots the results. Differentiating the cumulative
yields the frequency distribution:

= peBx (1.36)

Students whose calculus is a little rusty may want to look up the formula for finding a differential of an
exponential; others may want to accept the statement without derivation. We need the right side of eq.(1.36)
only to be able to compare simulation outcomes with the theoretical model, given in the figure below.
Produce a column of 1000 random variables [F(x)] from RAND() and convert them with eg.(1.35), make a
histogram of the results (using 30 “bins’) and then calculate the expected values by multiplying eq.(1.36)
times 1000. Plot these as before and see how your result compares with the graph below.
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Fig. 1.20. Simulated exponential data compared to theoret|ca| curve.

1.16.7 Simple linear regression. Data on counts of deer on a study area are given below. Fit the linear
regression of Fig. 1.3 by using egs. (1.9). Thisisreadily done in EXCEL (in fact, EXCEL has a regression
fitting routine which we will use for additional exercises, but students should do the calculations directly
from the definitions in order to see how they “work” and then check by using the built-in fitting routine).
Some graphics programs will also do the fitting automatically.

Year Number of deer
Xi Yi

10

21

52

71

97

146

212

~No o~ WNE

1.16.8 Check the fact that a and b give minimum values of eq.(1.6), the sum of squares, for the deer data of
Exercise 1.16.7. Copy the results of Exercise 1.16.7 into a new worksheet and compute eq. (1.6) for a and
b, setting up the worksheet so that a and b are listed as separate entries on the worksheet as shown below.
Then vary aand b by small amounts and write down the resulting sums of squaresin the table. That is, make
a table like the following and fill in the entries. It is easiest to first make your entries in pencil as
transferring them individually to a summary table in EXCEL calls for alot of tedious use of “Paste Special”
in the menu, and/or provides opportunities to forget which cell you were working with. Y ou should find a
minimum in this table. If you want to try to get closer to the values of a and b found in Exercise 1.16.6,
make a new table with fractional values in the row and column headings (e.g.,31.1, 31.2, etc.) and fill in the
new table. This approach provides a device that is sometimes useful to solve a pair of more complex
equations without needing to use a non-linear least-squares fitting routine. It is tedious unless you can guess
reliably in advance just which part of the “Sums-of-Squares’ space the answer lies. But the purpose here is
just to show how things work.

Sums-of-Squares tabl e(eq.1.6)

30 31 32 33 34
-39 2046
-40
-41 2520
a -42 1987
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-45 2184

1.16.9 Use EXCEL and eg. (1.11) to calculate ANOVA for aregression equation for the data of Exercise
1.16.7 and compare your results with those given in Table 1.1. Now use the EXCEL regression program
(found in the same group of analysis tools as are the ANOV A programs) to see how it works, and add the
results to your direct computations.

1.16.10 Compute the correlation coefficient for the deer data from eg. (1.12). It can also be directly
computed using a function CORREL found in the functions menu.

1.16.11 Compute %, from eq. (1.15) for the deer data. Now compute it assuming that you have 3
observations (9,10,11) from year 1 and 4 observations (207,210,212, 219) at year 7 (and no observations
for years 2,3,4,5 and 6). You will need to recalculate everything for the new data. What do you conclude
about the effect of this arrangement of the data on s%,? Would you recommend this approach? Why?

1.16.12 Compute confidence limits for b from eq.(1.16) using the following set of data. Show details of
your computation (i.e., the components of the calculation on a spreadsheet).

2.86

0.90

1.56

3.85

1.62

4.39

3.66

3.95

4.45

10 4.50

Note that the ain eqg.(1.16) is not the same as a in the regression model. It is standard notation for the
probability level. Use a= 0.05 here. Y ou can obtain the needed t-value from the functions in EXCEL (f, on
the Toolbar) which is TINV (a,d.f.) where a is the desired probability for a 2-tailed t-test. Y ou can run the
regression analysisin EXCEL to confirm your results.

©CoOoO~NOUTA,WNE

1.16.13 Multiple regression. Calculate a multiple regression equation on the following data, using

€gs.(1.19) and check your results in EXCEL. The data were used in an early effort to construct an index of

abundance for grizzly bearsin Y ellowstone National Park. Use the logarithm of the count asy and “Yr.” As

x1 and “Freq. Sight” as x2. It isimportant not to use the actual 4 digit year as x1 because it can cause aloss

of accuracy when larger data sets are involved.

Year Count Incount Yr. Freg. sight.
1976 17 28332 1 1.64
1977 13 25649 2 1.50
1978 9 21972 3 1.28
1979 13 25649 4 1.08
1980 12 24849 5 1.40
1981 14 2.6391 6 1.58
1982 11 23979 7 1.62
1983 13 25649 8 1.20
1984 17 28332 9 2.29
1985 9 2.1972 10 2.00
1986 25 3.2189 11 3.12
1987 13 2.5649 12 1.64
1988 19 29444 13 2.12
1989 16 27726 14 1.86
1990 25 3.2189 15 1.95
1991 24 3.1781 16 2.65
1992 23 3.1355 17 1.65
1993 20 2.9957 18 1.67
1994 20 2.9957 19 1.47
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1.16.14 Perform thetest for curvilinearity described in the text (Sec. 1.7) and illustrated in Table 1.5 on the
following sets of data. Make a spreadsheet containing the ANOVA tables (as in Table 1.5); note that the
deer data are also included here so you have an example of the expected results at hand) and discuss the
results as they apply to the notion that one should test for the assumptions before doing an analysis. Do the
tests of the ANOVA tables provide convincing evidence of nonlinearity in the data?

Year Horses Year Deer Year Elk
1 340 1 10 1 3172
2 423 2 21 2 4305
3 482 3 52 3 5543
4 611 4 71 4 7281
5 762 5 97 5 8215
6 879 6 146 6 9981
7 212 7 10529
8 12607
Year Gray seals Year Muskox
1 751 1 49
2 854 2 57
3 869 3 65
4 898 4 61
5 1019 5 76

1.16.15 The following data are replicate monk seal beach counts from French Frigate Shoals. Conduct a
test for significant deviations from regression using the “pure error” model of Section 1.6. There may be an
advantage in using logarithms of the counts (to approximately “normalize” the data), as was done in Section
1.6, but try the analysis without the log transform. Report your results in an analysis of variance on a
spreadshest, asin Table 1.3.

1985 298 1990 264 1994 193
250 271 183
301 262 219
403 300 190
1986 401 299 196
285 300 198
278 1991 176 202
1987 351 191 232
285 216 222
316 217 249
301 197 1995 141
320 185 124
350 281 168
333 273 132
252 1992 204 140
362 202 144
1988 292 226 174
303 227 156
288 234 164
286 271
315 231

327 1993 156



1.35

327 195
354 186

1989 331 182
337 189
322 221
313 161
279 184
292 187
319 208
354 194
375 219
363

1.16.16 The following data are from three years of a survey of harbor porpoises in which there were replicate transects
flown and the transect lengths were recorded.

Year Km. Count Km. Count Km. Count
1986 552 48 1987 326.6 1 1988 199.1 1
318 31 117.5 12 66.5 12
445 9 752 30 374.7 5
399 59 384.4 24 685.7 71
195 1 58.5 0 333.7 0
150 10 223.2 6 311.9 18

1.16.17 Perform an analysis of covariance (Section 1.10) on the data of Exercise 1.16.15, and report your results on a
spreadsheet. Isthis alegitimate analysisin view of the results of Exercise 1.16.15? Explain.
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2.0 INTRODUCTION TO BOOTSTRAPPING
2.1 Introduction

There are alot of valuable statistical methods that are practially guaranteed to work well if the data
are approximately normally distributed and we are mainly concerned with linear functions of random
variables. As was remarked in Chapter 1, the mean or average of a data set is a linear combination of
random variables, and the central limit theorem says that we can expect means to converge on normality as
the sample size increases. However, ecologists often are forced to use small samples. Very often we want to
consider ratios of random variables, which are definitely nonlinear combinations, and difficult to deal with
in any consistent manner. Many models of importance in ecological studies contain products, ratios and
exponents, and are ssimply not susceptible to a standard statistical analysisin terms of the available theory.

A relatively new development in statistical methodology offers a way out of this dilemma. The
technique is called "bootstrapping”, which, according to Efron and Tibishirani (1993) was named from the
phrase "to pull oneself up by one's bootstraps’, i.e., to accomplish a physical impossiblity. Efron and
Tibishirani (1993:56) note that the bootstrap was introduced by Efron in 1979, making it quite a recent
development in contrast to many other statistical techniques. It was preceded by "jackknifing" which was
originated by Quenouille (1956) as a way to study bias in estimators, but named by John Tukey (1958) due
to its all-purpose applicahility, like one's handy jackknife. A related topic is the use of the "delta method" to
estimate variances for estimates based on complicated models. We will touch on these latter two methods
later, but will mainly depend on bootstrapping as the principal tool for handling difficult problems.

One of the nice things about bootstrapping is that it is simple to apply, so long as one has access to
a computer. Detailed application requires access to a desk computer and some knowledge of a programming
language. However, bootstrapping can be done in EXCEL, as used here. There are several programming
languages that can be used for bootstrapping. The BASIC language is simple and easy to use, particularly
because it is "interpreted”, i.e., one can issue the RUN command at almost any stage and find out whether
the code written up to that point works as expected. QUICK BASIC contains a built-in compiler, so alarge
number of runs can be made quite rapidly. QUICK BASIC runs using almost identical statements on both
MS/DOS and Macintosh operating systems, and has been issued with the Microsoft operating systems, but
unfortunately in the MS/DOS version which makes it awkward to use. Most of the examples given here
were aso done in EXCEL, which has a random number generator in the statement
RANDBETWEEN(N1,N2) where N1 and N2 represent the range of the random numbers to be generated.
Be sure the ANALY SIS TOOLPAK isloaded before attempting the EXCEL versions of bootstrapping. Pull
down the Tools menu and use the add-ins element to find the Analysis Toolpak. Details of use vary with the
version, so you may need to use the “help” function on occasion.

2.2 The mechanics of bootstrapping

Bootstrapping is easy to apply. The process for approximating the standard error of a mean is
illustrated in Fig. 2.1. An origina data set containing n items (here n = 10) is randomly sampled with
replacement B times. Four of these B samples are shown above the original data set in Fig. 2.1. Note that an
individual value from the original data set, such as 106 may appear repeatedly in a bootstrap sample. Each
of the B bootstrap samples is averaged, as shown above the individual samples. This is the bootstrap
replication. We then use these B replicate values to compute the standard error of the mean. The equation is

2 (xi - )2

exactly the same as that for calculating a variance, namely s2 = ] . However, Efron and Tibishirani

use a different notation to distinguish bootstrap variables from the original data, using x*1,x*2, ..., x*B to
denote the vectors containing the bootstrap samples of n observations (i.e., the four sets of bootstrap
samples of 10 items each shown in Fig. 2.1). Thusthe first bootstrap sampleis

x*1 =(203,203,106,106,106,160,106,8,301,160).
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The original datais represented by the vector x = (X1,X2, ... ,Xp)-

145.9 57.1 144.2 108. 3 BOOTSTRAP
REPLI CATI ONS

203 131 61 203

203 11 203 11

106 8 131 301

106 67 8 160 BOOTSTRAP

106 106 106 67 SAVPLES

160 8 11 11

106 160 301 L. 8

8 8 160 301

301 11 301 13

160 61 160 8

N/

13, 106, 203, 131, 160, 8, 67, 61, 11, 301 MEAN 106. 1

ORI G NAL DATA SET

Fig. 2.1 The bootstrapping scheme for estimating a standard error. An original data set containing n itemsis
randomly sampled B times with replacement using samples of size n. Each such bootstrap sample is
averaged, and these means are used to estimate the standard error of the mean of the original data set.

The quantity s(x*1) denotes a statistic computed from the corresponding bootstrap sample. In this

case s(x*1) is the average of the first bootstrap sample, 145.9. Using the bootstrap notation the standard
error of the mean estimated by bootstrap sampling is written as:

SE hoot =

A STs(x*bYy - (V12 7 1/2
Er 0 (2.)

where the summation runs from b = 1 to B, and $(*) represents the mean of the bootstrap sample, i.e.,
x*b/B, where again the summation runs from b = 1 to B. The important thing to remember here is that
S(x* b) represents the mean of the pth bootstrap sample, so that s() is the average of B such averages. Note,
too, that the standard error of a set of random variablesis computed as snl/2,

but here we are computing the standard deviation of a set of means and thisis the standard error of the mean
(i.e., don't make the mistake of dividing by the square root of B).

The first few columns of an EXCEL worksheet used to bootstrap the data of Fig 2.1 follow. The
first row shows the assignment of a serial number to the original data items, while the origina data appear
in the second row. The next 10 rows list random numbers from 1 to 10 obtained from the statement
RANDBETWEEN(1,10). The next set of numbers are random samples, with replacement, from the original
data set.

ITEM NUMBER 1 2 3
DATA 13 106 203
1 6 8 2
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RANDOM 3 1 3 10
NUMBERS 4 8 9 9
5 2 2 1
6 5 6 1
7 3 8 9
8 1 2 6
9 7 2 2
10 3 2 8
1 8 61 106
BOOTSTRA 2 11 67 8
P
SAMPLES 3 13 203 301
4 61 11 11
5 106 106 13
6 160 8 13
7 203 61 11
8 13 106 8
9 67 106 106
10 203 106 61
SUM 845 835 638
MEAN 845 835 63.8

These are obtained by using a "table lookup" function in EXCEL. It can be explained by referring to the
following formulas for the first column.

ITEM NUMBER 1

13
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)
=RANDBETWEEN(1,10)

O
>
|
>

RANDOM
NUMBERS

© o0 ~NOO UL WNPF

(=Y
o

=HLOOKUP(C3,$C$1:$L$2,2, FALSE)
=HLOOKUP(C4,$C$1:$L$2,2, FALSE)
=HLOOKUP(C5,$C$1:$L$2,2, FALSE)
=HLOOKUP(C6,$C$1:$L$2,2, FALSE)
=HLOOKUP(C7,$C$1:$L$2,2, FALSE)
=HLOOKUP(C8,$C$1:$L$2,2, FALSE)
=HLOOKUP(C9,$C$1:$L.$2,2, FALSE)
=HLOOKUP(C10,$C$1:$L.$2,2,FALSE)
=HLOOKUP(C11,$C$1:$.$2,2,FALSE)
10  =HLOOKUP(C12,$C$1:$L$2,2,FALSE)

BOOTSTRAP
SAMPLES

© O ~NO UL WNP



24

SUM =SUM(C14:C23)
MEAN =C25/10

The statement HLOOKUP(C3,$C$1:$L$,2,FALSE) specifies a horizontal lookup table (VLOOKUP
permits a vertical lookup table). Thefirst entry is the column entry for the value to be looked up in the table,
i.e., C3 denotes a random number entry, for which we need to find the corresponding entry in the original
data row. The lookup table is specified by the array, $C$1:$L$1 in which the first row is the index value
corresponding to a data entry in the next row. The subsequent value in HLOOKUP is the row containing the
data to be returned by the HLOOKUP function, and the final entry ("FALSE") insures that the function
returns the exact value required (using "TRUE" would permit returning the value nearest in numerical
magnitude to a lookup entry). As with any of the more complex functions in EXCEL, a little practice will
make the role of the individual entries clear. An important proviso with the HLOOKUP and VLOOKUP
functions is that the lookup table must be in the first rows (or first columns for VLOOKUP) of the
spreadshest. The last entries above give the sums and means of the bootstrap samples. The means are used
in eq.(2.1) to calculate the bootstrap standard error. Readers should understand that the example used here
is mainly intended to demonstrate the approach. The best estimate of a standard error of a set of numbersis
that calculated by the usual formula, i.e., from

2 (xi - )2
SE~<= n(n1)
Bootstrapping is used to calculate standard errors for more complex functions, for which a direct estimate of
avariance is not available from statistical theory.

Exampl e 2. 1. The ori gi nal dat a of Fig. 2. 1:
13, 106, 203, 131, 160, 8,67,61, 11, 301 represent data on survival times in
days. They can be considered to come from an experinent on the effect of
sone treatnment on survival of experinental animals (whereupon there
should be a corresponding set of data from a control group) or the
survival tinmes of a set of radio-tagged wild animals. It is a snall
sample, but this is common, inasnmuch as there is increasing public
pressure to reduce experinmental use of live aninmals, and collecting data
fromwi ld animals is expensive and can be quite difficult. W would thus
like to extract as much infornation as possible fromthe data. The data
in Table 2.1 are from an EXCEL worksheet that computes the bootstrap
standard error. It shows the first 10 columms of a total of 50, which is
likely the mnimm size that should be used to denonstrate behavior of
bootstrapping. In preparing such spreadsheets, one should change the
calculation nobde from automatic to manual (in the TOOLS menu, under
OPTI ONS or PREFERENCES dependi ng on the version of EXCEL) while building
the worksheet. The calculate command can then be used to see how the
result varies fromrun to run.

2.3 Empirical probability distributions

The probability distribution of a random variable, X, is any complete description of the
probabilistic behavior of x. In coin-tossing with a "fair" coin, there are two possibilities, each occurring
with probability 1/2. In rolling a die, there are 6 outcomes, each having Pr{x=k} = 1/6 for k = 1,2,3,4,5, or
6. It is convenient to define the sample space, Sx, as alist of possible outcomes. Thus for a fair die, S =
{1,2,3,45,6} and we assign probability 1/6 to each event in the sample space. Consider the binomial
distribution which assigns a probability to each sample point in the sample space {0,1,2,3, ... , Kk, ..., n} but
these probabilities depend on the parameter, p, of the distribution. The binomial distribution is:

Prob{x; =k} = fic = (g )pka-p™ (22)

|
where () is evaluated as W inwhich, for example, 5! (read as "five factorial") is calculated as
5x4x3x2x1 = 120.



Table 2.1 Sample from bootstrapping the data of Fig. 2.1.

ITEM NUMBER 1

DATA 13

17

2 10

RANDOM 3 2

NUMBERS 4 4

5 8

6 9

7 1

8 1

9 5

10 2

1 67

BOOTSTRA 2 301
P

SAMPLES 3 106

4 131

5 61

6 11

7 13

8 13

9 160

10 106

SUM 969

MEAN 96.9

2
106

oNvou~NoRr~NE©

61
301

67
13
8
67
160
61
106
8

852
85.2

2

w

WOWOoOORrA~APWFROW

13
203

131
131
13
11
8
203
8
203

924
92.4

4 5
131 160
6 5
8 10
10 7
4 5
6 7
4 4
9 10
2 10
6 9
8 7
8 160
61 301

301 67
131 160
8 67
131 131
11 301
106 301
8 11
61 67
826 1566
82.6 156.6

6 7
8 67
4 6
10 2
4 3
6 8
8 5
9 1
3 5
10 10
10 1
3 2
131 8
301 106
131 203
8 61
61 160
11 13
203 160
301 301
301 13
203 106
1651 1131
165.1 1131

= = o
NERrwNwEHOorDMR©

106
131

160
301
203
67
203
13
301
106

1591
159.1

= = =
NBErRrOooRrwHwoRo

61
203

301
203
13
8
11
13
301
106

1220

122

2.5

10
301

oOO0ON~NO B~

106

301
67
131
8
67
67
8
8

771
77.1

For convenience in discussing bootstrapping, we can describe a probability distribution as
F{f1,f2.,f3, ... .fk ... ,fN} where fj is the limiting frequency of the ith event. For asingle die, we infer that f; =
1/6, and would expect to eventually come very close to that value, given enough rolls of the die. If we
determine fj from observations, then it can be considered to be an empirical probability distribution. Instead
of rolling dice, we can set up a spreadsheet using RANDBETWEEN(1,6), copy this down through, say,
1,000 cells, and tabulate the outcomes by using the histogram function in the data analysis menu under
TOOLS. This gave the following results:

Bin Frequency

o U WN P

Proportion
181 0.1810
179 0.1790
162 0.1620
172 0.1720
152 0.1520
154 0.1540

F(x)
0.1810
0.3600
0.5220
0.6940
0.8460
1.0000
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TOTAL 1000

The column under proportion gives the empirical frequency distribution, with the corresponding cumulative
frequency distribution being shown under F(x).

It is necessary to note that, in mathematical statistics, F(x) represents the cumulative probability
distribution function, F(xg) = Pr{x < Xg}.The table above provides an example. We will use the description

F {f1.f2,f3, ... fk ... ,fN} for afinite number of events as a handy way to represent an empirical probability
distribution in discussing bootstrapping. The "hat",*, over a symbol means that the quantity is an estimate of
the true, but unknown, value, F. The cumulative, F(Xg) = Pr{x < Xg}, will mainly be used herein
simulations. It isimportant to remember that the sum of the frequenciesin F{f1,fo,f3, ... ,fk ... ,fN} isaways

unity, described as Pr{Xx€S} = 2_ fi = 1, where "€" means " contained in".

2.4 Sample sizes for bootstrapping

Bootstrapping is a resampling procedure, that is, we take repeated samples of the original data set,
calculate values of some statistic s(x*) and use these to infer something about the true, but unknown), value
of some parameter. In the example used thus far, the statistic was the standard error of the mean. How many
bootstrap replications are needed? Efron and Tibishirani (1993: Eq.(6.9)) give aformula for examining the
effect of varying sample size, but also indicate that, in their experience, B = 200 is usually adequate for
estimating the standard error, while B = 50 may provide useful information. In the problems | have dealt
with thus far by using bootstrapping, | tend to use B = 100 for exploring data and debugging programs, and
B = 1,000 or 2,000 for the published result. With desktop computing so cheap, one might as well resort to
"overkill" unless the statistic being bootstrapped is very complicated and requires a lot of computing time.
However, this choice of B > 1,000 is also largely driven by the fact that larger samples are needed to
compute confidence limits on a mean by bootstrapping, as we'll see in the next section. When making
calculations using EXCEL one can only get about 250 bootstraps in the horizontal plane, so it is necessary
to use VLOOKUP and set up the table in the vertical plane, whereupon it is possible to get 2,000 bootstraps
for confidence limits. If more bootstraps are needed, one can copy off data to another sheet and recalculate,
copy off those results, and recal culate again. Large samples can thus be obtained. However, as noted above,
2,000 is usually adeguate for confidence limits.

2.5 Percentile confidence limits

Calculating confidence limits by bootstrapping can be extremely simple, if the percentile method
is used. Follow the same process demonstrated in Fig. 2.1, generating at least 1,000 bootstraps (1 tend to use
2,000 if computing doesn't take too long), store the datain afile, arrange it in numerical order, and count in
aB/2 observations from both ends, where a is the chosen "significance level". These are the percentile
confidence limits. Although there is nothing in the underlying theory that dictates a choice, most biologists
tend to use a = 0.05, for 95% confidence limits.

To accomplish this in EXCEL, use VLOOKUP and put the data in the first 2 columns, the same
number of random numbers in the third row as there are data points, and the corresponding lookup values
in the fourth row. Calculate the function being bootstrapped in subsegquent rows. You can then order the
data and count in from both ends for confidence limits. In this case, the function being bootstrapped is
simply the mean. Confidence limits are obtained by ordering this column (use SORT in the DATA menu of
EXCEL) and counting in from the ends of the ordered data. To use a = 0.05 on 1,000 bootstraps, one would
count in 25 observations from each end. In this example, the approximate 95% confidence limits were 55.4
to 169 around the mean of 106.1 of the original data, based on 1,000 bootstraps. Using a BASIC program to
do the bootstrapping is faster and requires less effort once the programming is done. Results of 2,000
bootstraps from a BASIC program (Fig. 2.2) gave confidence limits of about 55-164.
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As noted previously, EXCEL will accomodate at least 2,000 bootstraps in the vertical
arrangement. However, if an older (and thus slower) computer is used, it may be best to do only 200
bootstraps at atime. That is, set up the operation as shown on the attached sheet, run 200 bootstraps, and
copy the results to a second worksheet. Do this 5 times (or 10 if you want 2,000 bootstraps) and then order
the data on the second worksheet to locate the confidence limits.

Students should review normal theory confidence limits in the statistics text of their choice at this
point. Under normal theory, we would calculate a standard error of the mean of the original data of Fig. 2.1

(mean = 106.1), getting s=95.33, and S.E. = 95.33/(101/ 2) = 30.14, and calculate 95% confidence limits of
+1.96 SE. | tend to use 2 rather than 1.96 for convenience, and alittle extramargin. Using 2 S.E. gives
approximate 95% limits of 46 to 166. Survival data generally follow a highly skewed distribution, and the
sample variance tends to vary appreciably. In this case, the limits are so wide that the data don't give us a
very good notion of average survival time.

Statistics books recommend transforming skewed data in order to approximate normality. One then
produces normal-theory confidence limits as above, and transforms back to the origina scale. It can,
however, be a considerable chore to find a normalizing transformation suitable for the data at hand. Further,
the small sample of Example 2.1 simply does not supply enough information to evaluate possible
transformations. It is thus reassuring that Efron and Tibishirani (1993: Chap. 13) indicate that the percentile
method automatically supplies limits that would be obtained under normal theory if we knew the proper
transformation to normalize the data.

200
180 1 1| -
160 1 |
140
120
100 1
80 - — L
60 -
40 -

20 1
! I

20 40 60 80 100 120 140 160 180 200 220 240

Fig. 2.2 Frequency plot of 2,000 bootstraps of the original data of Fig. 2.1, showing mean of the original
data (heavy centra vertical line), and 95% confidence limits (lighter lines to right and left) from the
bootstrap percentile method for calculating confidence limits. These limits are at about 55 and 164 for the
data shown

2.6 Regression models and parametric bootstrapping

Regression models provide extremely valuable tools in ecological studies. Many investigators use
regressions without giving much thought to the matter, and may thus report some erroneous results without
realizing that this is possible. Regression models are classified as linear and nonlinear. Linear models are
most commonly used, with the main example being y = a + 3x, where a denotes the "intercept” and B the
"dope". Ecologists also use multiple regression models with two or more x-values, eg., y = a + B1x1 +

Boxo, and may also use multiple regression models like y = a + B1x1 + [32x22. These are both linear
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models, being "linear in the coefficients’, but a version like y = a + B1x1 + BoxpY is nonlinear. A
frequently encountered nonlinear model isy =aeBX. This model can, however, be transformed into a linear
model by taking logarithms (usually to base €) giving logey = loga - Bx. Themodel y = a + B1x1 + BoxoY is
said to be intrinsically nonlinear, inasmuch as a simple transformation will not convert it to alinear version
(unless, of course, we know or assume we know Y). Dealing with intrinsically nonlinear models can be

difficult, and they are most often fitted with nonlinear |least-squares. Programs are available for fitting by
nonlinear |east-squares.

Regression models may be bootstrapped in exactly the same way as shown in Fig. 2.1, except that
now the original data will consist of x,y pairs, and the statistic computed from bootstrap replications
consists of paired estimates of o and 3, rather than the mean as used in the example of Fig. 2.1. How these
sets of paired estimates are treated depends on the purpose of the study. Often the main interest is in
estimates of 3, but we may also want to set confidence limits on an estimate of some value of x computed
from the estimates of a and 3. Texts on regression analysis are available; one of the more widely used is
that of Draper and Smith (1998), and most basic statistics texts give a good deal of attention to regression
models. To set confidence limits on some regression estimate by bootstrapping, one simply needs to follow
the procedure presented above, with the "statistic" being the estimate of interest in the study at hand.

The chief problem for ecologists in this approach is the usual one -- small sample sizes. With smallish
samples, bootstrapping pairs may give some strange and variable results. We will thus need to consider
parametric bootstrapping. The procedure again is simple. One fits a regression model to the origina data,
calculates residuals about the fitted line, and bootstraps the residuals. Consider the result of fitting a simple
linear regression to n original pairs of x,y observations. The outcome is afitted regression line, denoted as
3’/} = a +bx;, where a and b represent the estimates of a and 3, and there are n pairs of original data. The
residuals about regression are calculated as:

&=Yi-Yi (=123 ...n) 2.2)

where Qi is calculated from the fitted line, )I/\, = a +bxj. We now bootstrap the residuals, taking repeated

random samples with replacement of n observations from the residuals, add these residuals to the fitted
regression line to get a new set of n values of y;. Combined with the original set of x-values (unchanged

throughout) these new pairs constitute the bootstrap samples of Fig. 2.1. We then calculate the bootstrap
replication by fitting a new regression line to the bootstrap sample. Of course, if we are only interested in,
say, the slopes, b, then only that calculation needs to be carried out. The only tricky part isto remember that

the new values of y; are computed from the ith value of x;, so that the same residual (gj) may be associated
with several values of x;j, depending on the random selection. That is, the new set of y; values is computed

from:
yi=zat+tbxi+g (i=123,..,n) (2.3

with a and b coming from the regression line fitted to the original data and the values of g come from a

random sample with replacement of the n data points generated by eq.(2.2). Students should repeat the
calculations shown below to fix the scheme in mind.

Example 2.2 Parametric regression bootstrapping.

For simplicity, we will suppose that we want 95% confidence limits on the slope, B, of a
regression line. The slope estimate is calculated as:

[Ai _ Z(xj - X)(Yi - V)

— (=123, ...n) (2.4)
Xj - X

and the intercept estimateisa=4 =y - bx.



STEP 1 Compute a regression line from the original data:

_Z(Xi-X)(i-y) _325.181239

b=

3 (xj - X)?

- 6305

=0.5157

a=y - bx =16.725 - (0.5157)(20.5) = 6.1525

9 =6.1525 + 0.5157x  Regression line from original data
N

STEP 2 Cdlculate the deviations g =y j - Yj
Original data

OO ~NOOUThWDNPR

10

X

Yi
10
12
14
15
17
21
23
28
30
35

N

Yi
12.672
8.9391
13.934
16.377
13.252
19.121
17.821
18.879
21.047
25.213

N
G=Yi-Yi

11.31
12.3415
13.373
13.8888
14.9203
16.9833
18.0148
20.5936
21.6251
24.2038

1.362
-3.402
0.561
2.488
-1.668
2.137
-0.194
-1.715
-0.578
1.009

STEP 3 Draw random samples of 10 with replacement from the g;:
i Random sampl es with replacement from the g

[
1
2
3
4
5
6
7
8
9

10

€
1.362

-3.402
0.561
2.488

-1.668
2.137

-0.194

-1.715

-0.578
1.009

-0.1936
-0.5776
-1.7150
0.5607
1.3618
-1.6681
2.1373
-0.1936
-1.7150
1.3618

0.5607
2.4879
-1.7150
1.3618
-0.1936
-1.6681
-0.1936
1.0091
-0.5776
-1.6681

-1.6681
-0.1936
1.0091
2.4879
-1.7150
1.3618
0.5607
2.4879
1.3618
1.3618

-0.5776
-0.1936
-3.4024
-0.1936
-0.1936
-0.5776
-1.6681
-1.7150

1.3618

1.0091

-3.4024
1.3618
1.0091

-3.4024
1.0091
1.0091

-3.4024

-3.4024
2.4879

-1.7150

29

1.0091
-3.4024
0.5607
1.3618
2.1373
1.3618
-3.4024
-3.4024
0.5607
2.1373

STEP 4 Add the random samples of g to the predicted regression line to obtain new sets of y;:

OO ~NO O WDN PR

[iny
o

Xi
10
12
14
15
17
21
23
28
30
35

N N
Yi Yi *random sampleswith replacement fromthe g

11.31
12.342
13.373
13.889

14.92
16.983
18.015
20.594
21.625
24.204

11.1164
11.7640
11.6580
14.4495
16.2821
15.3152
20.1521
20.3999
19.9101
25.5656

11.8708
14.8294
11.6580
15.2506
14.7267
15.3152
17.8212
21.6027
21.0475
22.5357

9.6419
12.1479
14.3822
16.3766
13.2053
18.3451
18.5755
23.0814
22.9868
25.5656

10.7325
12.1479

9.9706
13.6952
14.7267
16.4057
16.3467
18.8786
22.9868
25.2130

7.9076
13.7033
14.3822
10.4864
15.9294
17.9924
14.6124
17.1911
24.1129
22.4888

STEP 5 Calculate regression slopes for each of these new sets of "data", using the same
set of x;. This gives the values, 0.542,0.443,0.608,0.582,0.513, and 0.520. In practice, of

12.3192

8.9391
13.9338
15.2506
17.0576
18.3451
14.6124
17.1911
22.1858
26.3411
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course, one would calculate a large set of such estimates, 1,000 or more. The frequency
distribution of these values then provides the basis for confidence limits, as calculated
previously for means.

A generalized summary of the steps in parametric bootstrapping is as follows:

1) Compute estimates of the parameters of the model from the original data. In this case, the regression
coefficients, aand b.

2) Calculate deviations, & = ; - yi, between the observed data (y;) and the fitted mode! (¥ ;).

3) Draw B (at least 1,000 for confidence limits) random samples of n with replacement from this set of
deviations.

4) Add these deviationsto the 9 i to create the bootstrap replications.

5) Compute parameter estimates from each of these B sets of data.

6) Arrange these B estimates in a frequency distribution and count in aB/2 observations from each end to
obtain (1-a)% confidence limits.

Calculations can be carried out in EXCEL by using the same arrangement as used in Sec. 2.5 to get
confidence limits on a mean. The data to be bootstrapped are now the deviations from regression, and the
bootstrap operation proceeds in exactly the same manner. However, another stage has to be incorporated in
which the bootstrapped deviations are added to the predicted regression. These new regression values are
then used to estimate the parameters of the regression equation. In the present example, only the slope is
calculated. This can be done by using the SLOPE function, which returns the slope of two arrays. The x-
values are the original values, while the y-values are those in the body of the table. The 1,000 slope values
were then ordered, and approximate 95% confidence limits obtained by counting up and down 25 entries.
The limits obtained from the EXCEL calculation (B = 1,000) were 0.375 and 0.648. A calculation using a
program written in BASIC were 0.377 to 0.652. A plot of the results of 2,000 bootstraps computed by the
BASIC program appearsin Fig.2.3.

Students should review normal theory regression calculations in Chap. 1.0 or in a statistics
textbook. The variance about regression is calculated as follows:

2(yi - yi)2
g="np =
—(a+ 2
Z(y —(a+ bx)) 25)
n-2
An estimate of the variance of the regression coefficient is given by:
S
2
= 2.6
S =% %) (2.6)

and this variance has the t-distribution with n-2 degrees of freedom under normal theory. For 95%
confidence limits in the present example, we look up the 0.025 (a/2) value of t with 8 degrees of freedom,
finding it to be 2.306, and calculate:

Upper 95% confidence limit = b + t(s,) = 0.516 + 2.306(3.952/630.5)1/2 =0.698,

and the analogous lower limit is 0.333. Note that these limits are somewhat wider than the 95% limits
obtained by bootstrapping. A small sample of quite variable data is involved. It is aways important to look
at aplot of the data.
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Fig. 2.3. Frequency plot of 2,000 bootstraps created by a BASIC program. The heavy central line shows the
position of the regression slope calculated from the origina data, while the lighter solid lines show the 95%
bootstrap confidence limits. Broken lines show normal 95% confidence limits calculated from the observed
data

30 A

y = 6.1528 + 0.51574x R*2 = 0.841

20

10

0 v T v T v T v 1
0 10 X 20 30 40

Fig. 2.4. Regression plot of the original data used in Example 2.2.

Most "canned" statistical programs also give the correlation coefficient, which is defined as:
2(Xi - X) (Vi - V)

506 - 0250y - )3 V2

r= 2.7)

In the present example, r = 0.917, and is reported by the graphics program that produced Fig. 2.3 as r2 =
0.841. A very serious problem for ecologists is that much of the data they encounter is not normally
distributed, and routine use of statistical packages without examining the assumptions or studying the data
can lead to important errors in interpreting the data. Bootstrapping provides a way to examine the data
without the normal theory assumptions, and thus helps to avoid blunders. The above set of regression data
does conform to the normal theory model, so it is worthwhile to look at another example from a different
source for contrast. The basis for claiming conformity to normal theory is that the data were constructed
using normally distributed errors.
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Example 2.3. A regression estimate of survival rate. As a further example, we consider a
common use of regression methods. Many investigators are interested in estimating
survival rates. Suppose we observe 100 marked animals over 10 years, and tally the
number of survivors at the end of each year. If the probability of survival holds constant
from year to year and animal to animal, then we can consider that the expected number

surviving x years is just E(n) = NpX, where N is the number originally marked and p is the
probability of surviving a year. We might then use a model, yj = NsX, where yj is the

number observed at the end of the xt year and s is the survival rate. Taking logarithms
gives:

logy; =log N +xlogs (2.8)

and an easy approach is just to fit a simple linear regression equation,

y = a + bx, where b = log s, and use eb to estimate s. An example of such a data set
follows:

Year Survivors Log survivors
1 89 4.48864
2 83 4.41884
3 74 4.30407
4 68 4.21951
5 65 4.17439
6 60 4.09435
7 55 4.00733
8 51 3.93183
9 48 3.87120

10 38 3.63759

Plotting log survivors against year gives the following graph:

4.6

y = 4.5838 - 8.5277e-2x R*2 = 0.975

b P
N IN
] ]

P
o
]

LOG SURVI VORS

w
[
]

3.6 T T T T T T T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10
YEAR

Fig. 2.5. Logarithms of the number of animals surviving at the end of each year regressed
against time in years.

Using normal linear regression theory as in the previous example gives a slope of
-0.08528 with 95% confidence limits of -0.0742 to -0.0963, and translating these back to a
survival rate and confidence limits gives
e0.08528 = 0,918 with approximate 95% confidence limits of 0.908 to 0.928. A run of
2,000 bootstraps gave the following frequency distribution, and 95% confidence limits of -
0.09381 and -0.07717, which translate to an annual survival range of 0.910 to 0.926. The



2.13

bootstrapping was done with a BASIC program, but could have been conducted in
EXCEL, just as in the previous example.

160

140 1 ]
120 1 1 H
100 1
80 1 B [
60 1
40 A
20 1

ol I_H_rl_[ ! ! 1=

. 905 .91 . 915 .92 . 925 . 93 . 935

Fig. 2.6. Results of 2,000 parametric regression bootstraps for survival data. Bold central
line shows the regression survival estimate (0.928) and solid lines the bootstrap 95%
confidence limits. Broken lines are the 95% confidence limits obtained from normal
regression theory.

The bootstrap limits appear to be a little "tighter" than the normal theory limits.
How can we determine which method is right? One approach is to use "Monte Carlo"
methods, which in this case amount to running many stochastic simulations of survival
data, and determing which of the two choices for calculating confidence limits gives the
best "coverage", i.e., do the calculated confidence limits include the true survival rate in
95% of simulated cases?

Example 2.4. The correlation coefficient. The correlation coefficient (r) calculated as in
eq.(2.7) is widely used, along with the assumption that a transformation to:
1+4r
z=05 Iogeﬂ (2.9

is normally distributed with expected value

+
p=0.5 Ioge%g2 and variancerTl3 .

Approximate 95% confidence limits are obtained from z + 2{% 12 Thus in Example

2.2, we had r = 0.917 which is transformed to:

z=05 Ioge{%} + 2[%]1/2 or z1 = 2.326 and z» = 0.814. These confidence limits for

the transformed variable are usually transformed back by iteritive solutions of eq. (2.9),
i.e., we find r{ and ro from:

1+r 1+r
2.326 = 0.5 loge T and 0.814 = 0.5 loge ER
which gives 95% confidence limits on r as 0.67 to 0.98. If we resort to bootstrapping, then
the 2000 bootstraps used to produce Fig. 2.3 (values of r were computed at the same
time that values of b were calculated) gave approximate 95% confidence limits of 0.86 to
0.98, essentially the same upper limit, but an appreciably higher lower limit. A graph of the
results follows:
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Fig. 2.7. Results of 2,000 bootstraps for the correlation coefficient of the regression data
of Example 2.2. Heavy line shows correlation coefficient calculated from the original data,
while lighter lines are approximate 95% confidence limits.

Clearly, the bootstrapped values of the correlation coefficient are quite skewed,
but this is the situation with respect to normal regression theory also; the correlation of
two jointly normal distributions has a skewed distribution (unless p = 0).

2.10 EXERCISES

Where bootstraps of 1,000 or more are involved, students should do the work in individual spreadsheets
unless their computer has a large memory. Otherwise you are likely to get an “out of memory” notice when
you try to copy from one workbook to another, etc. Make two worksheets for each such exercise, one
summarizing results and the second containing the calculations. The practical approach isto save only the
first 20 lines or so, when you have finished an exercise. Y ou then can likely consolidate all resultsin one
workbook to hand in. It isimportant to have your exercisesin aworkbook, as that makesit possibleto try to
find out where you went wrong if necessary. IF YOU WANT TO LEARN TO BOOTSTRAPIN
EXCEL, IT ISESSENTIAL TO DO THE EXERCISES! The exercises are more or lessinterlocking so
you will need to do most of them. If you do, you should have a pretty fair notion of how to bootstrap. The
bootstrapping technique will be used for examples and exercisesin the rest of the book, so you need to
know how to do it. If you know a programming language, you can certainly do the exercises that way, and
provide summary tables and graphsto turnin. If you have not used the “ graph wizard” function before, you
may have troubl e getting appropriate x-values on the graph. The trick isto first make an “xy (scatterplot)”
graph, finish it and then open the CHART menu and select the bar chart. This changes the xy plot to a bar
chart with the appropriate x-axis labels.

2.10.1 Set up an EXCEL worksheet to carry out bootstrap calculations on the data of Fig. 2.1, following the
approach outlined in Table 2.1. Use 200 bootstraps. Set up the worksheet to use manual calculation as
indicated in Example 2.1 and make 30 runs, recording the mean of the 200 bootstrap means in a separate
column (you need to either type in the observed values as you repeatedly run the bootstrapping or use the
“PASTE SPECIAL” command). Also calculate the variance of each group of 10 bootstrap samples, listing
it at the bottom of the set along with the sum and mean of each set of 10. Record your resultson a
spreadsheset and save it for the next exercise. Calculate s.e.(boot) of eg. (2.1).

The explanation of using HLOOKUP in EXCEL manuals may not be very helpful. The sample below might
help. Thisis part of aworksheet set up as indicated above and the HLOOKUP string displayed in the header



of the worksheet is as follows, referring to the bootstrap sample in the box in the body of the table. It
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commands EXCEL to lookup the random number in cell D3 (which is 3) in the table of the first two rows
(designated in the command as the array $D1:$M$2 and shown in boldface type below) and find the

corresponding item in the second row of the array table (which is 203).

=HLOOKUP(D3,$D$1:$M $2,2,FAL SE)

A B C D E
EXERCISE 1
2.10.1 ORIGINAL DATA 13
1 3
2 2
3 7
4 5
RANDOM NOS. 5 5
6 8
7 8
8 2
9 7
10 6
7
2 106
3 67
BOOTSTRAP 4 160
SAMPLES 5 160
6 61
7 61
8 106
9 67
10 8
BOOTSTRAP 1
SUM 999
MEA 99.9
N

m
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o

© 00U N WNOOADMOOODN

11
131
131

61
106
203
106
160

61

11

981
98.1

®

N
o
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61
160
13
203
203
11
61
13
301
106

1132
113

203
106

160
301
131

61
301
203
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1487
149
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11
301
160
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115
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13
61
203
131
11
301

13
160

909
90.9

10
301
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10

10

160
67

67
131

301
131
301
131
10
1305
131

The second item in the column of bootstrap samples (just below the item in a box) has the following

command:
=HLOOKUP(D4,$D$1:$M$2,2,FAL SE)

10 5
6 6

6 1
10 10
5 9

9 3

9 8

7 1

4 8

1 8
301 160
8 8

8 13
301 301
160 11
11 203
11 61
67 13
131 61
13 61
11 12
1011 892
101 89.2

which instructs EXCEL to find the random number in the position D4 (remember that the first row of the
table above, with letters A, B, C etc. isNOT part of aworksheet but merely gives locationsin that
worksheet). This random number is 2 and thus EXCEL picks out the second item in the array which is 106.
The third command is as follows, and EXCEL uses the random number in D5 to pick out the 7" item in the

array which is 67.
=HLOOKUP(D5,$D$1:$M $2,2,FAL SE)

Y ou may need to exert considerable patience and some trial and error efforts to get EXCEL to do thejob if

you have not worked much with it before, but once you have the hang of it, things should go along o.k.

2.10.2 Copy the original data and the run of 30 means obtained above to another spreadsheet, and compute
means and variances for the two sets of data (the original data, 10 observations and the 30 means) using the
built-in functions, i.e., AVERAGE() and VAR(). Make histograms of these means and variances from a
run of the spreadsheet made in Exercise 2.10.1 (that is, make histograms of the 200 bootstrap means and

W Ul W WU ok O u

160
11
13
61

160
61

203

203

160
61
13

1093

109
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variances listed at the bottom of that sheet). Show how sepggt Of €9.(2.1) compares with the variance of the
original 10 observations and the variance of the 30 means. |s there any advantage to using bootstrapping in
this example?

2.10.3 Repeat the die-tossing example of Section 2.3. Calculate the expected values. Explain the difference
between a p.d.f. and an empirical probability distribution. Which is which in this example? What is the
difference between a cumulative distribution function and a distribution function? State the distribution
function for this example (as an equation).

2.10.4 Carry out the parametric bootstrap calculations for Example 2.3 using an EXCEL spreadsheet (the
approach is given in Example 2.2). Use 2,000 bootstraps, and use VLOOKUP(). It iseasier to use for larger
numbers of bootstraps. Calculate confidence limits and prepare a graph of the frequency distribution to
compare with Fig. 2.7. Use HISTOGRAM to obtain the frequency distribution. Be sure to “freeze” the
appropriate cell references so that the x-values remain the same in calculating the bootstraps. Y ou can
obtain confidence limits simply by ordering the slopes using the SORT function.

2.10.5 Bootstrap the data of Example 2.2, using 1,000 bootstraps and computing the correlation
coefficients rather than the slopes. Y ou can start by copying the bootstrap calculation of Exercise 2.10.4 to
a new spreadsheet and inserting the x and y values in this sheet. One can often convert a bootstrap operation
to a new data set thisway, so it iswise to keep examples on hand. Make a frequency distribution of z
(eg.(2.9). Does thislook like anormal distribution as assumed in cal culating confidence limits under the
usual theory?

2.10.6 How would you obtain bootstrap confidence limits on a in Example 2.3? Cal cul ate the 95%
bootstrap confidence limits using 1000 bootstraps. Run the EXCEL regression on the data and compare the
confidence limits on a with those you obtained from bootstrapping.

2.10. 7 The regression bootstrap of Example 2.3 used parametric bootstrapping in which deviations from a
model fitted to the original data are bootstrapped. The first example of bootstrapping given (Example 2.1)
might thus be called "nonparametric” bootstrapping. Try this approach on the data of Example 2.3.
Remember that you need to bootstrap pairs of observations. This may require setting up the slope
calculations in blocks of 10, but careful use of the $function will facilitate copying down in blocks of 10
without too much trouble. Use B = 500, and make a frequency plot of the cal culated slopes and compare it
with the frequency diagram of Exercise 2.10.4. . This should illustrate why parametric bootstrapping is
preferred for small samplesin regression studies.

2.10.8 Referring to the data of Example 2.3, calculate bootstrap 95% confidence limits on the variance
about regression as shown in eq. (2.5). Compare your results with the value you get from aregression
calculation on the original data of Example 2.3. Report your results on aworksheet (along the lines of those
used thus far in the exercises above). Y ou can use the results of Exercise 2.10.6 as a starting point adding

on columns containing the sum-of-squares cal culation and adding these up to get a variance estimate.
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3.0 FURTHER TOPICS IN BOOTSTRAPPING
3.1 Introduction

There is much more to bootstrapping than can be covered here. The book by
Efron and Tibishirani (1993) provides a detailed reference. Some useful further features
are given here, and additional examples appear in subsequent chapters.

3.2 Estimates of bias

Bootstrapping provides a handy way to check for bias in an estimate. Suppose we
calculate some statistic, such as the variance, from a set of data. We would like that

statistic to provide an unbiased estimate of the true parameter, 2. If we represent the

statistic that we intend to calculate from the data as 6 = s(x), where x is the vector of
observed data, X1, X2, ..., Xn and s(x) is some function of that data, then we would like to

have the expected value of that function to be E(0) = E[s(x)] = 6 = c2. When the theoretical
distribution of the estimator is known or assumed to be known, then an unbiased
estimator can often by found by the methods of mathematical statistics, i.e., we can find
the expected value of a trial statistic directly. Thus we know that the sample variance:

S(xi- X)2
s2 = ();'_17() has expected value E(s2) = o2 for the normal distribution of eq. (1.3). In

this case, 0 = s(x) = s2 (the notation can be a little confusing, as we use the notation s(x) to
represent any statistic calculated from a data set, x, whereas s is also commonly used to
represent a specific quantity, the sample estimate of the standard deviation).

Very often we are not sure what theoretical distribution may be appropriate for
an observed sample, and it is frequently true that there may not be any such distribution.
Statisticians thus spend a lot of time trying to choose the "right" distribution or
manipulating (transforming) the data to approximate some known distribution.
Bootstrapping can avoid a lot of that trouble and uncertainty. In this section we consider
how bootstrapping can be used to check for bias in an estimator. We define bias as:

biasg = EF[s(X)] - t(F) (3.1)

where the subscript F serves as a reminder that the bias and expectation are taken with
respect to some probability distribution function F (quite likely an unknown distribution),
and 6 = t(F) denotes our statistic as calculated from the true probability distribution. The
bootstrap estimate of bias is calculated as:

biasg = 0 *(+) - t(F) (3.2)

where 6 *(-) is the mean of our estimator calculated from a large number of bootstrap
samples, and t(F ) is the same estimator calculated from the original data.
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Example 3.1. A numerical example from a normal distribution may help fix
ideas at this point. The following 10 "observations" are from a normal
distribution with mean zero:

1.6718,-3.061,0.9338,2.8766,-1.248,2.6206,0.3212,-1.121,0.0475,1.7129

Consider estimating the variance of these observations from:
2 (Xi _Y)2
2= Y WZX (33)
n

This is the equation for variance often used by engineers, and produced
by some of the earlier pocket calculators. If we apply the formula to

the 10 original observations it givestGi)=3JJ7.Now calculate the average

of 2,000 bootstraps using this estimator. This gives @*0)2 2.799, and we
get:

N
biasg =8 *(*) - t(F) =2.799 - 3.177 = -0.378,

a negative bias, suggesting that we have an underestimate. From theory,
we know that an unbiased estimator comes from

)2
X —X
s2 = Zu
n-1
which gives us s2 = 3.530 from the above data set. Our bias estimate is

negative, meaning that we underestimate the true quantity. We could thus
add this quantity, 0.378, to our underestimate from the original data,

t(F) = 3.177, getting an improved estimate (3.555). It is perhaps
better to define a bias-corrected estimator

9=0+[0-0%)=20-0*() =2(3.177) - 2.799 = 3.555 (3.4)
which gives the same result. This is close to the result (3.530) one
2 (Xi _Y)2
would get by using the proper equation s4 = 2:————1—- in the first
n_

place. The point here is that we often don't know what the proper
equation is, and the bootstrap provides a way to check for bias in
whatever equation we do have available to estimate some quantity. Eq.
(3.4) came very close to the correct answer in this example, but in
practice, if we have indications of an important bias, simply correcting
by eq.(3.4) may not necessarily improve the situation. The estimator may
be subject to a great deal of wvariability, so that the adjustment may
not help. The essential conclusion here, is that if the bootstrap
indicates small bias and small standard error, then we can be very
comfortable indeed with our estimator, even if we don't have a
theoretical model. Note that this result came out very close to the
expected answer just by chance; repeating it gives a smaller bias, as
will likely be evident in Exercise 3.11.1.

3.3 An improved bias estimate

Efron and Tibishirani (1993:Ch. 10) recommend an improved bias estimate that
converges on the asymptotic estimate with a smaller bootstrap sample, B. They define a
resampling vector for each bootstrap sample that contains the proportions of that
bootstrap sample calculated from the frequencies with which the individual entries are
observed. Thus in Fig. 2.1, the original data set was:
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1 2 3 4 5 6 7 8 9 10
13 106 203 131 160 8 67 61 11 301

and the resampling vector for the first bootstrap sample of Fig. 2.1 would be:
0 04 02 O 02 01 O 0 0 0.1

that is, 13 doesn't appear at all, but 106 appears 4 times, and so on. They then average
these B resampling vectors, obtaining a final vector with the proportions averaged over

all B vectors, denoted as P * and use this instead of t(F ) in eq.(3.2), obtaining,

biasg = 8()-T(P*) (35)
Example 3.2 We can illustrate the improved bias correction by using the
original data of Example 3.1, but using B = 500. The proportions of P*
will add to unity and T(P*)is then calculated as a weighted variance,

using the proportions of P*as weights(wj). The weighted mean is

, , 5 EWi(Xi- Xw)? _
X w = ZWjXj, and the variance is calculated as $“= —— . .A run with B =

n
500 gave hiasg = @*C)-T(P’ﬂ =2.910 - 3.223 =-0.313 and bias-corrected

estimate of s2 is then 3.536, which is very close to the result (3.530)
obtained by dividing by n-1, as should be done in practice. I would be
inclined to use this approach on complicated problems, where
bootstrapping uses a fair bit of computer time. Otherwise, one can
simply use a sizable number (say 2,000) of bootstraps as in Example 3.1,
inasmuch as it is likely that percentile confidence limits will be also
be calculated in a practical example--here we know the “right” answer
(i.e., divide by n-1) from theory.

3.4 Cross-validation

Models applied to ecological data may serve various purposes, but the more
important uses may be to see how well we understand the data, and to make predictions.
One of the earliest approaches to evaluating predictions from a model is very simple. One
develops and fits the model on half of the available data, and then tests its predictions on
the other half. Using all of the data for development and testing invariably results in
underestimating the prediction errors. With the increased computing power now
available, models can be fit to various subsets of the data and tested on the remainder.
The logical outcome appears to be fitting the model to all but one of the observations,
making a prediction for the remaining observation and repeating the process for all n
observations, getting n predictions and deviations from predicted value. The variance is
then calculated as:

CVE=1 (-9 )2 (36)
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where 9-i denotes a predicted value based on all of the observations except the ith value,

and the summation runs from 1 to n. One thus deletes one observation, fits the model, and
makes a prediction for the missing value, doing this n times to calculate the cross-
validation error, CVE.

Example 3.3 Cross-validation error. To demonstrate the cross-validation
idea, we use a larger set of regression data (n = 30). The data are as
follows:

No. X Yy No. X Yy
1 14.48 18.30 16 10.00 17.60
2 22.49 19.98 17 20.06 19.33
3 19.71 18.51 18 9.70 17.89
4 29.89 21.00 19 26.86 20.79
5 30.01 21.00 20 34.23 20.36
6 21.61 19.77 21 27.53 20.65
7 16.71 18.77 22 19.88 18.82
8 26.78 20.26 23 21.99 19.26
9 17.85 18.70 24 21.09 20.02
10 33.04 20.25 25 28.68 20.38
11 18.92 18.66 26 21.91 19.61
12 20.23 18.45 27 28.50 20.45
13 28.24 20.60 28 20.01 18.93
14 29.77 21.10 29 17.62 19.09
15 22.92 19.24 30 22.90 19.87

Applying cross-validation is simple in this case, with the only
difficulty being one of arranging to drop each observation in turn. We
then can compute CVE from eq.(3.6), which turns out to be 0.201. Note

that the wvalues of 9 . in eqg. (3.6) are computed from individual

regressions dropping the ith point, and y; 1is the y-value of the ith

observation. For comparison the wvalue of the wvariance about regression
(eq.(2.5)) 1is 0.182. This is somewhat smaller, as might be expected
because the deviations from regression are from a normal distribution in
this example, and thus the normal-theory model gives the best estimate.
Cross-validation would be wused only in the absence of suitable
theoretical estimators for the model parameters.

3.5. Bootstrapping for predictions. According to Efron and Tibishirani (1993:Chap. 17)
bootstrapping offers an alternative to cross-validation. They focus on estimating the
variance (in this example, variance about regression as given by eq. (2.5)). There are two
stages in the bootstrapping approach. The first is to obtain bootstrap samples from the
data set (given in Example 3.3), calculate regression lines for each bootstrap sample, and
calculate a variance about each such regression (eq.(2.5)) using the original data set as X,
and yj values. The second stage is to calculate the variance about regression for the

bootstrap sample now using only the bootstrap sample (the yj* and x;” values). Thus, two
variances about regression are calculated from the same regression equation, using the
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following variances (the regression coefficients are those calculated on the bootstrap data
in both cases):

_ )2 * * )2
52: Z(yl (a+ bxl)) and 52: z:(y| (a+bx|))
n-2 n-2

Often, the variance about regression obtained from the bootstrap sample will be
appreciably smaller than that obtained from the original data; and it is the mean
difference of these two variances that is sought here. A few values from bootstrapping
follow:

Bootstrap no.  Variance about Variance about  Difference

regression regression

using orig. using bootstrap

data for y values of y

and x and x
1 0.1786 0.1905 -0.0119
2 0.1804 0.1863 -0.0059
3 0.1820 0.1519 0.0301
4 0.1724 0.1514 0.0210
5 0.1814 0.1759 0.0055
6 0.1948 0.1301 0.0647
7 0.1863 0.1277 0.0586
8 0.2023 0.1449 0.0574
9 0.1731 0.1189 0.0542

The "inflation factor" (mean difference) is added to the variance of the original data set
to give an improved estimate. In the present example, the mean difference in the two
variances about regression is small (0.028) so adding it to the variance about regression
calculated from the original data (0.184) makes only a minor change. However, adding
the correction to 0.184 gives a value (0.212) closer to that obtained in example 3.3.
Nonetheless the best estimate is that of the original regression calculation because the
data of Example 3.3 were generated from a bivariate normal distribution. Note that the
bootstrap operation is a sampling procedure so that there will be small differences in the
mean differences in repeat runs. Two further runs with B=2000 gave mean differences of
0.027 and 0.029.

It turns out that the correction indicated above is really a correction for bias.
Inasmuch as the data we used in this example were normally distributed, the variance
estimate should be unbiased, and the bootstrap analysis consequently comes up with a
minor change, as would be expected with an unbiased estimator. The data used were
drawn from a bivariate normal distribution, which is the basis for the normal theory
confidence limits on a correlation coefficient, so it is worthwhile to compare (Fig. 3.2)
the confidence limits on r based on bootstrapping x,y pairs with the normal theory limits
in this example. The two different calculations of confidence limits are now appreciably
closer than they were in Example 2.4. However, regression data approximating the
bivariate normal distribution are not often encountered in practice, because one usually
somehow selects the x-values used, rather than obtaining them at random, as the bivariate
normal regression theory assumes.
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Fig. 3.1. Mean differences between variances about regression calculated from 2000
bootstraps. The differences are between variances about regression calculated from a
regression line based on an individual bootstrap sample, with the first variance calculated
using the original data, and the second calculated from the data of the particular bootstrap
sample.
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Fig. 3.2. Distribution of 2,000 bootstrap samples for correlation coefficient obtained from
the data of Example 3.3. Upper 95% confidence limits are essentially the same, while the
lower limit from normal theory is substantially lower than that from bootstrapping.

3.6 Improved confidence intervals

Efron and Tibishirani (1993:Chap. 14) recommend an improved bootstrap
confidence interval which they call the BCa method ("bias-corrected and accelerated").
These intervals require more calculations than the simple percentile bootstrap confidence

intervals. The data from Example 3.3 will be used to illustrate. Two proportions, a1 and
a2 are calculated, and the total number of bootstraps, B, multiplied by these values. One
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then orders the B bootstrap values and takes the o,,B and o.,B values as confidence limits.

Thus if B = 2,000 and a., turns out to be 0.0166 as in the example here, then we take the

bootstrap value 0.0166(2000) = 33 as the ordered value of the bootstrap replications that
gives the lower confidence limit.

Two initial values are calculated. The first is a bias-correction:

2o = o (R0 37)

here, ®=1( ) indicates the inverse of the cumulative normal distribution, which can be
looked up in tables and is available in various computer programs (in Microsoft Excel it
is "NORMSINV)". The quantity in parentheses has, as numerator, the number of
bootstrap samples that are less than the parameter estimate. In the example given below,
we consider the correlation coefficients of Section 3.5, for which the correlation
coefficient calculated from the original data was r = 0.9043, so we tally the number of
bootstrap results that were less than this value and divide by B = 2,000, and look up the
inverse cumulative normal value. In this case (Fig. 3.2) there were 942 values less than r
= 0.9043, so we look up 942/2000 = 0.471 in the inverse normal tables, getting —0.0728

N
for z,.

The second value is the "acceleration”, 4. This is calculated by jackknifing, (Section 3.7)
using much the same procedure as in the cross-validation example above. We delete each
observation in the original data set in turn, and calculate the correlation coefficient from
the remaining observations. From the 30 observations tabulated in Example 3.3, we thus

get 30 correlation coefficients, which are here designated as 'é(i) , Where the subscript (i)
indicates that the parameter estimate 0 (here, r) has been calculated from the original
data set with each observation deleted in turn, and 8.y is used to indicate the average of
these 30 values. The estimate of "acceleration™ is then calculated as:

20— 0m)?
6{Z(0(.) -00))*¥"

AN
a =

(3.8)

where the summations are from 1 to n = 30 in this example. These two parameters (z o, )
are then used to calculate a1 and a2, but require two more values for the calculation.
These are designated z(®) and z(1- @), and are the values that cut off a proportion, a, from
each tail of the unit normal distribution.. For 95% confidence limits, we look up z(®) as

0.975 in the inverse cumulative normal table, getting 1.95996, and use 0.025 for z(1- @),
giving -1.95996. The calculations then are:

A
Zo + (@)

N
=0l zgt——F" 7~ —
ar=[z, 1- A(20 + 2(@)

3.9)

and
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2‘0+ Z(l—a)

oap = CI)[Iz\o + 1_é‘.(zo+z(1*06) )]

where values of @( ) are to be looked up in tables of the cumulative normal distribution
(in Excel, these are available as NORMSDIST). As noted in the introduction to this
section, the lower limit is the 33d ordered value of the bootstrapped correlation
coefficients (0.825), and the upper limit is a1B = 0.964(2000) giving the 1927th ordered

value (0.957).

An example for the data of Example 3.3 is given below. The calculations are
time-consuming and are best done with a computer program (see Section 3.10).

The improvement in bootstrap confidence limits in this example is not large, but
suggests that the calculations do result in better bootstrap confidence limits. Data for
Example 3.3 came from a bivariate normal distribution in which p = 0.90. From normal
theory, 95% confidence limits were 0.803 to 0.954, while the percentile bootstrap limits
in one run with B = 2,000 were 0.830 to 0.959. The improved confidence limits were
0.825 to 0.957, giving a lower limit closer to the normal theory result. Percentile limits
vary a little in successive runs, giving 0.837-0.958 and 0.833-0.960 in two additional runs

with B = 2,000.

Correlations CUBE TERM SQ TERM
1 0.8978444 2.67703E-07 4.1537E-05
2 0.9075823 -3.57065E-08 1.08434E-05
3 0.9083542 -6.71633E-08 1.6523E-05
4 0.8996521 9.97194E-08 2.1504E-05
5 0.8993546 1.2017E-07 2.43518E-05
6 0.9066940 -1.39052E-08 5.78254E-06
7 0.9018049 1.53344E-08 6.17225E-06
8 0.9027515 3.63677E-09 2.36489E-06
9 0.9018945 1.37354E-08 5.73536E-06
10 0.9181345 -2.65399E-06 0.00019169
11 0.9038609 7.86151E-11 1.83515E-07
12 0.9118957 -4.40089E-07 5.78576E-05
13 0.9013883 2.4416E-08 8.41621E-06
14 0.9008332 4.12818E-08 1.19446E-05
15 0.9065879 -1.2145E-08 5.28363E-06
16 0.8874195 4.80101E-06 0.000284591
17 0.9044161 -2.03529E-12 1.60602E-08
18 0.8932690 1.3384E-06 0.000121448
19 0.9068001 -1.58286E-08 6.30419E-06
20 0.9205568 -4.30489E-06 0.000264632
21 0.9029564 2.36797E-09 1.77658E-06
22 0.9045651 -2.09626E-11 7.60263E-08
23 0.9048018 -1.34558E-10 2.62587E-07
24 0.9130072 -6.62566E-07 7.6001E-05
25 0.9019668 1.2528E-08 5.39412E-06
26 0.9047293 -8.51567E-11 1.93559E-07
27 0.9014553 2.27629E-08 8.03189E-06
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28 0.9040066 2.26062E-11 7.995E-08
29 0.9046723 -5.61539E-11  1.4664E-07
30 0.9054246 -1.46324E-09  1.28887E-06
AVERAGE 0.9042893 -1.44489E-06  0.00118043 SUMS
Z(0)-HAT -0.07276
ACCELERATION -0.0059377
Z(0)-HAT+Z-ALPHA 1.88716 1.95996
1-ACCEL(Z(0)-HAT+Z-ALPHA) 1.0112055
RATIO 1.8662478
ALPHA1 0.9635494 1927.0988
Z(0)-HAT+Z(1-ALPHA) -2.03276 -1.95996
1-ACCEL(Z(0)-HAT+Z(1-ALPHA) 0.987930
RATIO -2.057595
ALPHA2 0.016569 33.139

3.7 The jackknife

The jackknife technique, as noted in the introduction to Chapter 2, pre-dates
bootstrapping, and was originally derived (Quenouille(1956)) to evaluate biases in an
estimator. The technique is very simple and easy to apply. Given an original data set, one
simply leaves out each observation in turn and calculates the statistic of interest on the
remaining observations, as was done in the calculations for improved confidence limits

above, getting By = s(x)), where xg is the vector of observations with the ith observation
removed, and s() denotes some statistic calculated from these observations. The bias
estimate is calculated as:
bis jack = (N-1)(H(+) - ) (3.10)
where 8.y denotes the mean of the 6 and 6 is the statistic estimated from the original
data. The jackknife estimate of standard error is:
A oLy A B 2102
s€jack = [T & ( B¢y - 0(+) )T~ (3.11)
We can illustrate the calculations with the data of Example 2.1. The following
table shows the 10 original observations and the 10 jackknife samples created by
dropping each observation in turn. If we consider the mean as the statistic to be
jackknifed, then the bias estimate from eq.(3.10) turns out to be zero, inasmuch as the

mean of the original observations necessarily equals the grand mean of the jackknife
samples.
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Orig. Jackknife samples

data 1 2 3 4 5 6 7 8 9 10
13 13 13 13 13 13 13 13 13 13
106 106 106 106 106 106 106 106 106 106
203 203 203 203 203 203 203 203 203 203
131 131 131 131 131 131 131 131 131 131
160 160 160 160 160 160 160 160 160 160
8 8 8 8 8 8 8 8 8 8
67 67 67 67 67 67 67 67 67 67
61 61 61 61 61 61 61 61 61 61
11 11 11 11 11 11 11 11 11 11

301 301 301 301 301 301 301 301 301 301
Ave. 116.4 106.1 9533 103.3 100.1 117 1104 1111 116.7 84.44

Eq. (3.11) gives se jack = 30.15, while a bootstrap estimate of standard error [eq.(2.1)] is

28.70, and the standard error of the original data is also 30.15, as it should be in this case,
because the jackknife standard error formula gives the same result for the standard error
of a mean.

Example 3.4 Jackknifing a regression equation

Grizzly bears are very difficult to census. Also, they range very
widely, are difficult (and somewhat dangerous) to trap and are not
numerous. Adult females with cubs-of-the-year may tend to spend more
time in the open than other bears, and such family groups can be
approximately identified by group size, age of cubs, location, etc.
Consequently the only long-term index of abundance for bears in
Yellowstone has been an annual "count" of such family groups. The index
is quite variable, so it is essential to learn as much about the effect
of variability as possible, and to look for ways to improve the index.
For further study here, logarithms of the index count are used because a
linear relationship would likely result if the counts are directly
proportional to population abundance. A plot of the data (Fig. 3.3)
shows the substantial variability.

The jackknife, the bootstrap, and cross-validation can be used to
study the index. To use the jackknife approach, one proceeds as in the
example shown in Section 3.7. There are 19 annual values of the index,
so the original data are copied 19 times, and each of the paired items
(year and 1ln count) is removed in turn and placed at the top of the
table. The gaps in the main body of data are then closed. For each of
the paired columns of data, one then estimates a slope (using the SLOPE
function in EXCEL) and calculates the intercept from y and x means. This
thus gives the basis for a regression line at the bottom of each set of
data. This regression line is then used to compute an estimate for the
missing point (using the x-value at the top of the table) and that
prediction is placed below the value left out located at the top of the
table. The resulting 19 data pairs then provide data for calculation of
CVE by eq. (3.6). The first two columns of a calculation appear in a
table below.
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Fig. 3.3 Index of grizzly bear abundance in Yellowstone National
Park.

LN COUNT

y = -71.721 + 3.7518e-2x R"2=0.422

The slope estimates at the bottom of the table are used to
jackknife the data for calculating a standard error from eq. (3.11)
which turns out to be 0.0104. This is perhaps most useful if divided by
the jackknife mean, giving a coefficient of variation of 0.28,
indicating the considerable variability in the data. The data can also
be used to calculate the jackknife bias estimate of eq.(3.10), which
appears to be very small. The operation can be described in steps as
follows:

(1) Duplicate the two columns of data (x and y variables) n times,
where n is the number of observations available.

(2) Remove each value in turn and put it above the table of
values, leaving space for a predicted value.

(3) Move up the data to close the gaps.
(4) Calculate slopes and x and y means for each column.

(5) Use this regression data to calculate a predicted value for
the x-value of the item removed from that column and place the
predicted value below the removed value. The squared difference is
then summed and divided by n to calculate CVE.

(6) Use the calculated slope values to produce jackknife estimates
of standard error and bias.

All of the above provides some information on how an index
behaves. It is, however, more useful in the situation where we have
several possible candidates for an index, as the estimates of bias and
CVE (and possibly other statistics calculated for the data) can be used
to decide which of the candidates might give the best notion of trends
in the bear population, which is of major importance in managing an
important species. An improvement in the index is available by way
auxiliary variables that provide a correction for the variation in
visibility of bears, which presumably is at least partially responsible
for fluctuations in the number seen from year to year. This improved
index was described by Eberhardt et al. (1999).
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Table of first few columns of data from Jackknifing bear index.

LEDT OUT 2.8332 1 2.5649 2
PREDICT 2.3140 2.4304
DEV SQ 0.2696 0.0181
ORIGINAL DATA
LN COUNT
Y X Y X Y X
1976 17 2.8332 1 2.5649 2 2.8332 1
1977 13 2.5649 2 2.1972 3 2.1972 3
1978 9 2.1972 3 2.5649 4 2.5649 4
1979 13 2.5649 4 2.4849 5 2.4849 5
1980 12 2.4849 5 2.6391 6 2.6391 6
1981 14 2.6391 6 2.3979 7 2.3979 7
1982 11 2.3979 7 2.5649 8 2.5649 8
1983 13 2.5649 8 2.8332 9 2.8332 9
1984 17 2.8332 9 2.1972 10 2.1972 10
1985 9 2.1972 10 3.2189 11 3.2189 11
1986 25 3.2189 11 2.5649 12 2.5649 12
1987 13 2.5649 12 2.9444 13 2.9444 13
1988 19 2.9444 13 2.7726 14 2.7726 14
1989 16 2.7726 14 3.2189 15 3.2189 15
1990 25 3.2189 15 3.1781 16 3.1781 16
1991 24 3.1781 16 3.1355 17 3.1355 17
1992 23 3.1355 17 2.9957 18 2.9957 18
1993 20 2.9957 18 2.9957 19 2.9957 19
1994 20 2.9957 19
MEANS 2.75 10.0 2.75 10.5 2.76 10.4
SLOPES 0.0375 0.0457 0.0394
INTERCEPTS 2.3776 2.2683 2.3516
S.S. of SLOPES 0.0001 0.0000

3.8 The Monte Carlo method

In many situations, it is desirable to seek a way to check on the validity of
possible estimators. If the stochastic process leading to the data under study can be
modelled in a realistic manner, then it is usually possible to test estimation and analysis
methods by "Monte Carlo" simulations. Many detailed papers and a sizable number of
books deal with such approaches, and all that will be attempted here is to provide a
sketch of the method, and a simple example. Exercise 1.14.6 discusses simulation of a
continuous frequency distribution, the exponential distribution. The underlying model for
survival times is, in fact, the exponential, although survival may also need to be
described by more complex models. Given a way to generate a sample from a plausible
distribution, one can then use such data to test estimation or analysis schemes.

For a concrete example, we consider the percentile confidence limits discussed in
Chapter 2, and demonstrated in Fig. 2.2, and ask whether these limits are valid. This
question is usually discussed in terms of coverage. For convenience, consider 95%
confidence limits. These are described as limits that should include the true but unknown
mean in 95% of a very large series of repetitions of the same process from which a given
observed sample is generated. Note that nothing is said about a particular case -- it is only
the long-run average that we can depend on. If confidence limits are properly
constructed, then they should "cover" the (unknown) true mean 95% of the time. If we
assume that observed survival time data come from an exponential distribution, then we
can generate a very large number of samples of n = 20 "observations™, calculate bootstrap
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confidence limits from these samples, and see how well they "cover" the true mean. In
this case, we can know the true mean, inasmuch as it can be calculated for the

exponential distribution, E(x) = 1/B. Using p = 0.01 results in an expected ("true") mean of
1/p = 100.

A BASIC program was used to study the confidence limits. It turns out that 1,000
simulation runs with 1,000 bootstraps for each sample of n = 20 yields 906 cases where
the calculated percentile limits included the true mean of 100, whereas one would expect
950 cases inside the limits for a true 95% level of significance. Note that this result (906
of 1,000) is subject to sampling error; a binomial calculation gives v(p) = p(1-p)/1000
where p = 0.95, so that two standard errors on p will be about 0.013. Consequently, it
would appear that the bootstrap "coverage" is significantly short of the expected 95%.
Nonetheless a nominal 91% isn't too bad for confidence limits. Fig. 3.4 provides an
example of coverage from this study.

The exponential distribution is sharply skewed and the standard deviation equals
the mean so that the survival time thus generated is highly variable. For an alternative,
we can run the Monte Carlo study using normally distributed variables with the same
mean (100) and a smaller standard deviation (10). This can be done by using the Box-
Muller approximation (Bratley et al. 1983) to generate unit normal random variables,
replacing the exponential in a BASIC program. This generates two approximately normal
random variables with zero mean and variance of unity from two uniform random
variables, and these are then transformed to have standard deviation of 10 and mean of
100. Running 1,000 simulations each using 1,000 bootstraps on samples of n = 20 from
the normal distribution gives coverage of 931, appreciably closer to the expected 95%.
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Fig. 3.4. An example of "coverage" for the simulation to test bootstrap percentile limits
on simulated data from an exponential distribution. The figure shows confidence limits
for a sample of 20 observations out of the 1,000 simulations used to test confidence limits
calculations (with 1,000 bootstraps per sample of 20 observations). The true mean is at
100, while squares represent upper 95% confidence limits and circles the lower limits.
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Lines connect the limits for the three cases where the limits did not include the true
mean. In this small sample, coverage was 17/20 = 0.85.

Inasmuch as we are dealing with means, the usual approach to confidence limits
would be to calculate a variance from the original data, and obtain confidence limits with
a multiplier from the t-distribution. Such results can easily be simulated, using the same
methods for generating exponential and normal random variables. A BASIC program was
used to simulate samples and confidence limits from the normal distribution, and the
same program was used with the exponential generator. Results using sample sizes of n =
10, 20, and 30 appear in the following table. These results suggest that constructing
confidence limits in the usual manner from exponential data does a little better job than
bootstrapping, and for data from a normal distribution the limits are within sampling
error of the expected 95%, while bootstrapping falls a little short. One would not, of
course, use bootstrapping to obtain confidence limits on means. It is best reserved for
situations where there is no convenient theoretical approach.

Sample Exponential simulation Normal simulation

size Bootstrapping  Usual limits Bootstrapping  Usual limits
10 837 900 904 944
20 906 923 931 9241
30 927 921 933 953

3.9 The delta method

The delta method is a useful adjunct to bootstrapping. It has been used for many
years to approximate the variance of complex functions of random variables. It is
obtained from a Taylor expansion of the function in which the second degree terms are
retained, and rearranged to represent variances of the random variables. The expression is
as follows:

VIgO)]= 2o V() E +22 cov(xx ) (E) () 3.12

i<j

where V[g(x)] represents the variance of some function, g(x), where x is a vector of
random variables, X;,X,, ... ,Xn. V(Xj) denotes the variance of the variable Xj, which is
multiplied by the square of the partial derivative of g(xj). Covariance terms are calculated
for those cases where i<j. In many cases, it may be that the random variables are
independent, so that the covariance terms can be assumed to be zero, and the right-hand
portion of eq.(3.12) can then be dropped.

Bootstrapping can be used to calculate a variance for g(x) without any need to
calculate variances and covariance of the individual random variables or to obtain partial
derivatives. The delta method becomes a valuable adjunct, however, when it is possible
to design the study in order to minimize V[g(x)]. In practice, V[g(x)] may be appreciably
larger than is desirable, and we may wish to design a new study with larger samples (or
to supplement the existing samples). In this case, it is essential to be able to determine the
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effect of increasing the sample sizes for individual random variables. The delta method
provides a way to calculate the effects of changing sample sizes on the overall variance.

Example 3.5 Application of bootstrapping to a complex function.
Obtaining a variance for the Lotka-Leslie model provides a good example
of the utility of bootstrapping. The underlying equation for this model
is:

1= 227X Iy my (3.13)

Here, A represents the rate of change of an age-structured population
having age-specific survivorship rates lx and age-specific reproductive
rates mx- The general model for the Lotka-Leslie function does not have
a "closed-form" solution. That is, there is no way to write eq.(3.13) in
a linear form, that is to provide an expression stated asA=¢g(X). It is
thus necessary to solve eq.(3.13) for Aby an iteritive procedure, i.e.,
by varying values of Auntil one satisfies the equation. Because there is
no linear expression for a solution for A, developing an expression for
the variance becomes very difficult. Bootstrapping then provides a
convenient approach. One only needs to set up the data on 1y and my in
tables, sample these tables of data with replacement, and calculate

values of A from the samples. The percentile method then provides
convenient confidence limits.

In many instances, the samples available for calculations are too
small to make calculations from eq.(3.13) feasible. An alternative may
then be needed. A useful approximation (Eberhardt 1985) is:

] -a-l
1253 am1-6) " =0 (3.14)

Here, a is the age at which full reproductive rate is achieved, 1, is
survival from birth to age a, s is survival beyond that age, and w is an
age at which calculations are truncated in order to compensate for the
effects of senility. This equation again must be solved by iteration,
and can readily be bootstrapped. The delta method can be used to study
the components of variance and thus to determine the effect of
increasing sample sizes for the several components on the variance

estimate for A. In several examples, the delta method gives very much
the same variance estimate as bootstrapping. Another benefit of the
delta method calculations is that the partial derivatives serve to
indicate the relative importance of the several components, indicating,
for example, that small changes in adult survival have the maximum

effect on A. Because there is no linear solution for A, the delta method
has to be applied by using implicit differentiation. Solutions
appropriate for eq.(3.14) appear in the following references, which also
give details and result of the application of bootstrapping to this
complex function. Calculations for grizzly bears appear in Eberhardt et
al. (1994), for sea otters in Eberhardt (1995), for monk seals in
Gilmartin and Eberhardt (1995), and for manatees in Eberhardt and O'Shea
(1995). Selected examples appear in Chapter 1l1. A program (APPLMB)to
calculate confidence 1limits on data used in eq.(3.14)is available in
Appendix A.

3.10 Programs for data analysis

Some extensive calculations are involved in the preceding sections. Computations
for cross-validation and jackknifing are not too burdensome and can be done from the
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same setup as illustrated in Example 3.4. Programs that avoid most of the hand-
calculations are available in the Appendices. Appendix A does not require any
knowledge of computer programming, while Appendix B requires some effort to gain
minimal proficiency in the R-language. However, once one gains some experience with
it, results are easily and quickly obtained. The following notes give cross-checks on
several of the Sections of this Chapter.

Cross-validation

As remarked above, cross-validation is not too difficult to do directly on a
spreadsheet, and Example 3.3 was worked that way. If one loads the “boot” package in R
(Appendix B), and brings in vectors x and y with the data of Example 3.3, then the
following code produces data for the cross-validation error (CVE). Note that it may be
necessary to use statements, “x=as.matrix(x)” and “y=as.matrix(y)” to be sure that the x
and y data are not treated as “lists” (this can be checked by statements like “length (x)”,
which should give the number of items in the vector (30). If it comes up with the length
as “1”, then make the indicated change to matrix form).

{theta.fit=function(x,y){Isfit(x,y)}
theta.predict=function(fit,x){cbind(1,x)%*%fit$coef}
results=crossval(x,y,theta.fit,theta.predict)}

Typing “results” gives:

$ev fit

[1] 18.39368 19.52994 19.16999 20.58385 20.60205 19.40486 18.70319 20.16172
[9] 18.88301 21.19587 19.04597 19.24901 20.36361 20.55723 19.61994 17.76607
[17] 19.18723 17.64574 20.14681 21.40597 20.25370 19.18175 19.48001 19.31688
[25] 20.44596 19.45570 20.41327 19.19649 18.82414 19.59521

$ngroup

[1] 30

$leave.out

[1]1

$groups

NULL

$call

crossval(x = x, y =y, theta.fit = theta.fit, theta.predict = theta.predict)

The values under “$cv.fit” are the predicted values from regressions calculated with one
observation left out. Set z=$cv.fit and calculate CVE from “sum((y-z)"2)/30” which
gives 0.2009693, which is CVE, as obtained from the more tedious calculation with
EXCEL.

Bootstrapping for predictions

Section 3.5 points out that bootstrapping can provide an alternative to cross-
validation, and describes the methodology. One can get results for the data of Example
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3.3 from “BOOT2” in Appendix A. Load in the 30 x,y pairs and compute slope and
intercept below columns 4 and 5 (which contain the bootstrap samples) as well as below
the first 2 columns (which contain the original data). On the right side of the sheet (away
from the bootstrap calculations) set up two columns, one to calculate the regression sum
of squares (eq.(2.5)) from the original x,y data but using the parameters (slope and
intercept) from the bootstrap data and a second column to calculate regression sum of
squares from the bootstrap samples also using parameters from the bootstrap
“replication”. Sum these columns and divide by n-2 = 28 to get two estimates of
regression sum of squares. Load the difference (calculation from original data minus
calculation from bootstrap sample) into the “parameter input” box and run, say 2,000
bootstraps. The mean of these gives the “inflation factor” to add to the variance of the
original data set (about 0.028) to give the improved estimate of variance, as described in
Sec. 3.5. The R-language program(Appendix B) is:

{theta.fit=function(x,y){lIsfit(x,y)}
theta.predict=function(fit,x){cbind(1,x)%*%fit$coef}
sg.err=function(y,yhat){(y-yhat)"2}
results=bootpred(x,y,2000,theta.fit,theta.predict,err.meas=sq.err)}

It gives:

> results

$app.err

[1] 0.1702293

$optim

[1] 0.0283673

$err.632

[1] 0.1984177

$call

bootpred(x = x, y =y, nboot = 2000, theta.fit = theta.fit, theta.predict = theta.predict,
err.meas = sq.err)

Where “$optim” gives the result obtained above (0.028). Add this to “$app.err” to get
0.1985966 which compares to 0.2009693 obtained from cross-validation of the data in
the section above. We thus have two methods for improved estimates of variance about
regression. One should not, of course, report all of the values beyond the decimal point
given by this and similar programs!

Improved confidence limits

The BCa method of Section 3.6 is time-consuming to calculate directly. Two lines
in R give the results immediately (again using data of Example 3.3). One first combines
the x and y vectors as “xdata” with the statement “xdata=cbind(x,y)”, and then uses:

{theta=function(x,xdata){cor(xdata[x,1],xdata[x,2])}
results=bcanon(1:30,2000,theta,xdata) }

This gives:
> results
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$confpoints
alpha bca point
[1,] 0.025 0.8286273
[2,] 0.050 0.8384993
[3,] 0.100 0.8542274
[4,]1 0.160 0.8662237
[5,] 0.840 0.9275239
[6,] 0.900 0.9355572
[7,] 0.950 0.9448605
[8,] 0.975 0.9524536
$z0
[1]-0.1218725
$acc
[1] -0.005937748
$u
[1] 0.8978444 0.9075823 0.9083542 0.8996521 0.8993546 0.9066940 0.9018049
[8] 0.9027515 0.9018945 0.9181345 0.9038609 0.9118957 0.9013883 0.9008332
[15] 0.9065879 0.8874195 0.9044161 0.8932690 0.9068001 0.9205568 0.9029564
[22] 0.9045651 0.9048018 0.9130072 0.9019668 0.9047293 0.9014553 0.9040066
[29] 0.9046723 0.9054246
$call
bcanon(x = 1:30, nboot = 2000, theta = theta, xdata)

One can simply pick off the desired confidence limits (0.8286 to 0.9524 for 95%
confidence interval), but the program also provides the key items from the calculations of
Section 3.6, namely z0 and the *“acceleration”, along with the 30 values of the
correlations given in the first column of the table of Section 3.6. Equation (3.7) gives the
calculation of the bias correction:

N N
/Z\o:(D_l(# e*Bb = )

which involves counting the number of bootstrap values below the correlation from the
original data (r = 0.9043) and transforming by the inverse of the cumulative normal
distribution. This can be somewhat variable, so the value from the R-program is a little
larger than that calculated in Section 3.6 (another bootstrap run of 2,000 gave z, of -
0.127). Note that the “acceleration” agrees closely with that obtained in Section 3.6.

3.11 Exercises

3.11.1 Inasmuch as bootstrapping is a sampling procedure, additional runs of B
bootstraps will give slightly different results, even if B is large. Conduct a bootstrapping
check on the data of Example 3.1 to see how your bias adjustment compares with the
results given there. Use B=2000. Do 10 trials and record results on a summary sheet
(don’t forget to use PASTE SPECIAL and VALUES or you may get a statement like
“Circular References” or “Link to another spreadsheet”). This should show that the bias
is consistent, and that the corrected value is a much better estimate of the true value.
However, when there is an unbiased estimate based on theory (as in this case), one
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obviously should use that value. The bias estimate is important only when you don’t have
an estimate that is known to be unbiased (which is often the case with ecological data,
even though it might not be a widely recognized fact). Also number the observations
serially (1-10) and calculate the correlation coefficients.

3.11.2 Bias corrections.

Use the data of Example 2.3 (calculations in Exercise 2.10.4) to further explore bias
corrections. In that example we used regressions of the natural logarithm of number of
survivors (Fig. 2.5) on year to estimate a survival rate (slope of the regression line) and
then transformed it back to an annual rate by calculating y=exp(b). Bootstrap confidence
limits were obtained and also transformed back to annual rates. Use eq.(3.2) to examine
the bias in transforming back. When there is an evident bias, one should examine the
confidence interval on the estimate to see if the bias is large relative to the confidence
interval.

biasg = 0 *(-) - t(®) (3.2)

3.11.3 Make a frequency distribution of z (eq.(2.9)) using the correlation coefficients
computed in exercise 3.11.1. Does this look like a normal distribution as assumed in
calculating confidence limits under the usual theory? Compare your results with Exercise
2.10.5.

3.11.4 The regression bootstrap of Example 2.2 used bootstrapping rresiduals in which
deviations from a model fitted to the original data are bootstrapped. In exercise 2.10.7 we
tried bootstrapping the x,y pairs directly, and got some strange-looking results. However,
larger samples (more x and y values) appear to give comparable results with both
methods. Efron and Tibishirani warn that the approach using residuals is “model-
dependent”, i.e., if the model is wrong, the results may be doubtfully useful. Hence, its
worthwhile to repeat the exercise using the data of Example 3.3. Doing this directly is
cumbersome, so it is best to use the program furnished in Appendix A (BOOT2).
Compare your results with the slope and confidence intervals given by the regression
program in EXCEL. This exercise is worthwhile in that ecologists use regressions with
smallish samples and the independent variables are not always known with certainty.
There don’t seem to be any guidelines as to sample sizes in such cases, so its wise to use
both approaches and to check for bias (Eq. (3.2)) if you want to be comfortable with your
results. The frequency diagrams of Exercise 2.10.7 were distinctly bimodal, making it
clear that the nonparametric approach is not advisable with only 10 pairs of observations.

3.11.5 Example 3.4 gives the approach to jackknifing a regression line in which
logarithms of data on an index of bear abundance are fitted by linear regression (Fig. 3.3)
and the fit examined by cross-validation, with a check on bias from eq.3.10. Complete
the analysis just as in Example 3.4. Compute the cross-validation error (CVE), jackknife
standard error of the slopes, and Biasjack of the slopes. Compare the jackknife standard
error with that of the slope computed with the usual EXCEL regression analysis. Also
compare CVE with the residual mean square of the regression analysis.
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3.11. 6 Jackknifing was used in Example 3.4 because it is fairly easy to apply and we
could compute CVE of eg. (3.6) in the same operation. However, bootstrapping has some
advantages, and likely should be used to estimate bias and confidence limits whenever it
is feasible. Use the data of Example 3.4 to conduct bootstrapping of the deviations to
compute the bootstrap bias estimate of Eq. (3.2) and 95% confidence limits on the slope.
Use 1,000 bootstraps (for convenience in calculations using EXCEL — with 19
observations, | would be inclined to try both approaches). The regression bootstrap using
X,y pairs can readily and quickly be computed from the program in Appendix A
(BOOT?2).

3.11.7 The approach of Section 3.5 is most readily calculated by using a programming
language. However, it is feasible to do the calculations in EXCEL if one is willing to
devote enough time to the job. A program in Appendix A (BOOT2) will do the job in
short order and should be used to repeat the results of Section 3.5.
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4.0 SAMPLING METHODS
4.1 Introduction

One ofthe weaknesses inecology today isthat too many investigators
fail to realize the importance of sampling. A logical reason for this difficulty is
that studies are often centered onone or two study area, so that the
investigator tends toforget that he is infact studying asample from some
larger population. This may not beseen as ahandicap uatil it becomes
necessary tattempt to extendthe results ofthe study to thelarger area. The
perceptive observer mayhén suddenly realize that there really isn'tmuch
basis for such an extrapolation, unless he does infact have data from a
number of sibareas (i.e., a representative sample) on which tobase the
extrapolation and to provide a basis for assessing its validity.

The intent here is to provide a brief overview sdmpling methodology.
Most of the material follows the lines &furvey sampling methods, as given in
much more detail by Cochran (1977). Thompson (1992) includes methods of
particular interest in ecology. The very basic features are those of an
elementary statistics course.Most students will prefer to refer to farliar
textbooks for these aspects.The essential material has to do with some
elementary statistical conceptsand a few standard distributions, mainly the
binomial, hypergeometric, Poisson, andnormal. Stidents not familiar with
these distributions and the basicrules of probability should look them up in
one of the elementaryeferences. Abrief sketch ofthe statistical background
appears also in Chapter 1.

4.2 Simple random sampling

The main complication in defining simple random sampling isone of
defining the meaning of the word "random". Our approach is that of
probability theory, in which it is assumed tha&very sampling unit (some sort
of explicitly defined entity) has the same probabilifghance) of beingdrawn
into the sample. The mechanics ofdrawing arandom sample then depend on
giving each unitthe samechance of inclusion in a@ample while keeping the
choices independent ofone anotlker. The standard procedure is toassign a
number toeach wunit in the population, and to refer to #&able of random
numbers as a device for selecting the sample.

Once the sample has been drawn and measurementte mn thesample
units, various problems of analysis othe datamust be dealt with.However,
procedures for analysis ofthe dataneed to beconsidered wll in advance of
the sampling to be surethat the right kinds of data arecollected. That is, the
investigator must first prepare a samplimgan, which designates exdly how
the sample will be obtained. Secondly, there should be adefinite plan for the
analysis ofthe resulting data, specifying what statistical analyses will be
carried out, and what will be done if aparticular kind of result isobtained in
the analysis. Many ofthe problems in fieldresearch are caused by the lack of
such a study design. It ag be objectedthat one cannot producesuch a plan if
it is not known in advance howthe study will turn out. There are several
answers tothis objection. One isthat few studies areconducted in comletely
new situatons. Wually there are previous investigations that can beused in
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the design stages, and data thlatn be used to tedtoth the sampling plan and
the analytical procedures.

4.3 The finite population correction

The estimated variance of amean for sampling without replacement
from a finite population is:

2 - 2
ax) == (A=< gy (4.1)

and the finite population correction isjust the quantity in brackets, or one
minus the fraction of the population actually sampled (frequently designated
as f). Thus when nearly all of the population is @aken into the sample, the
variance of the estimated mean becomes very small, as it logically should.

When the fraction of the population sampled is smll, this equation
implies that size of the population has little effect on the standard error and
thus on confidence limits. This is aresult that comes as asurprise tomany
people, whointuitively suppose thatbigger samples are required for very
large populations. This is, however, simply not true. A large population may, of
course, offer more logisticoroblems in samplingand thus be more expensive
to sample.

As a general rule of thumb, when the sampling fraction isless than
about 5%, it is customary to neglect the finite population correction factor, and
treat the sample as though it had been obtained by sampling with
replacement. Sanlipg with replacement refers to circumstances where
objects can be @wn from the population one at a time andreplaced before
the next object is drawn. With such @rocess, probabilities remain unchanged
as the drawing proceeds, making calculations much simpler than if
replacement does not occur, when removal of oméividual changes the odds
on selecting others in the next draw.

Students whose statistical training has come from courses inwhich
hypothesis testing was mainly emphasized maynot have encountered the
notion of a finite population corregon. This is because most tests of
hypotheses are formulated onthe basis ofsampling from an infinitely large
population, or on the basis of sampling with replacement.

4.4 Confidence intervals

Ideally, one wouldlike to be able toknow how far "off* a particular
estimate is from the true paameter value. Statistical methods offer nsuch
utopian result, and the best that we can do is to makeobability statements
that apply to thelong-run of future trials, or tosome hyothetical population
just like the onecurrently under study. These take thdorm of confidence
limits, which are a statement of the following kind:

MR <p<Xyl=1-a (4.2)

where X denotes the lower confidence linit, Xy the upper, and the
probability that the true, but unknown, value () of the random variable of
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interest will fall between these limits is 1 «. The properinterpretation of this
statement isthat avery large number of repetitions othe "experiment" at
hand would yield confidence limits that include the true, but unknown, pin a

fraction 1 - a of the trials. It must beemphasizedthat the statement cannot be
interpreted agertaining to asingle set of sampling results that are in hand.

Such astatement would beidiculous becausethe confidence interval then
either includes the true value or it @es not,and no probability isinvolved--

it's just that we have noway of knowing where the true valuelies. Hence we

have to adopt some sort of long-run view of the "odds on being right."

One of the most common mistakes in reporting tesults of astatistical
analysis isto assert that "the probability is | -a that the hypothesis is fade".
Just as wth the confidence limits statement above, atestable hypothesis is
either true or false,but there is noneed for statistical analysis ifone knows
the answer. If the answer is not known, then ttatistical approach attempts
to supply some quantitative assessment ofthe "odds" for and against the
hypothesis. The problem that many people have withthis is that they have
been adronished from childhood to "make up your mind". Suchdecisions
should bestated as delief based on theevidence, but announced separately
from the probability statements used to assess the evidence.

Most investigators tend to use confidence limits that are symmatric
about the estimate. Nodoubt this is aconsequence ofhe @mmon use of the
symmetric normal distribution, which leadsne to tend tocut df about a/2 of
the probability distribution oneach side ofthe mean, and thus get symmetric
limits. In point of fact there is nothing in theory or practice that says that the
limits should besymmetric--all that is required isthat there be 1 -a of the
distribution within the limits. Aso, setting limits for a distribution like the
Poisson is likely to result ilmsymmetric limits. Onereason isthe difficulty of
cutting off an exact fraction (a) of the distribution when one must set the
limits in terms of integer values. This difficulty can quickly lappreciated by
trying some examples with tables of the Poisson distribution.

For ease in understanding and rememberingthe procedure for
obtaining confidence limits, we will use the standardized or unit norpwatve,
and reverse the usual proces$ going from some other normal distribution to
the standardized--that is wewow look up avalue (z) in tables of the unit
normal that cuts off the desired proportion, of the distribution. Ifais to be
0.05, then we find z = 1.96, and

X.—H _
S =+1.96 (4.3)

N

S

where X represents upper or lower confidence Ilimit respectively
corresponding with the plus and mmus signs onthe right hand side of the

equation. Thus we have X =p + 1.96 o/\/ﬁ and the probability statement
previously given is satisfied by the corresponding choices @®fwhich are X

and Xy). In practice, it is necessary to substitute for p.
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The above results assume that one knows, which is almost always not
the case. |If thesample size isabout 30 or more, iteally doesn't matter much,

in that s¥n  then provides an adequate estimate of the standard error

(o/\/ﬁ). If sample size is small, then it is preferable touse tables of the "t"
distribution (instead ofthe unit normal distribution), which make allowance
for uncertainty about thevariance. Values of the t-distribution are available
in EXCEL.

One also needs to bear in mind that the estimates @fsually denoted by
s) that is appropriate depends on whaglantity oneis setting limits on. For a
mean, we proceed aabove, but iflimits on a single observation are to be

secured, then we naturally use the standard deviation, s, in place\/;f s/
Example 4.1 Calculating confidence limts

For "95 percent confidence limts" (a= 0.05), nmany people round
1.96 to 2.0 so that the limts can be calculated fromxg =X iZs/\/F.

Suppose s = 9, n = 16 and X =10. Then we have x¢ = 10 + 2(9)/4, which
can be expressed as 5.5 < pu < 14.5.

4.5 Determining sample size

Determining the sample size required toprovide confidence limits of
preassigned width on a mean &gain a matter of usinghe z values.From the
results above we have:

_+\7—E:xc-p and we let D = |1 - X¢ |
n

where the vertical lines denote"absolute valueof...", sothat Damounts to the
half-width of the desired (symmetric) interval. Hence:

n = (zs/D¥ (4.4)

Another way to approach sample size estimation is toexpress [Drelative to the
mean:

-D ZS

Vn x
n = [z(c.v.)/D(%)P (4.5)

where c.v.= $ix is the coefficient of variation, and D(%) = D/gxpresses D as a
proportion (note that D(%) is used as @roportion, NOT asa percentage). The
utility of this approach isthat we often have anidea of the coefficient of
variation, but may notknow what the mean is likely to be, so it is possible to
set proportionate limits this way. The advance specification can ten be, for
example, that "I want 95% confidence limits no widdran + 20 percent of the
mean".

so that
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When sampling without replacement is important (i.e., when #@mple
is likely to be asignificant proportion ofthe population,say, 5% or are) the
above relationships serve toget an approximate value of the sample size
needed, which can belabelled rp. The final estimate of n ishen obtained

from:

e (4.6)

No
1+ N
This estimate resultsfrom using avariance estimatethat includes the finite
population coefficient as previously described (Equation 4.l).

Exampl e 4.2 Determ ning sanpl e size

Suppose we want snaller (narrower) confidence limts, say 8 < u <
12, in Exanple 4.1. Using Eq.(4.4) D=2, and n = [2(9)/2]2 =81. If an
appreci able fraction of the population is to be sanpled, then the above
result needs to be corrected by using Eq. (4.6). Assunme N = 100, then
we have n = = 81/(1 + 81/100) = 44.8, which may be rounded to n = 45.
Suppose it is required that (% = 0.1 for an approxi mate 95% confi dence

interval of + 20% Then D(% =0. 1:2(9)/10‘\/F ,and n= 324, which exceeds
t he supposed popul ati on size of N=100. But Eqg.(4.6) gives n=76.

4.6 Stratified random sampling

Almost invariably, ecoloists have some advance information about
populations that they wish to sample. This prior knowledge may well be one of
the reasons for rejecting random sampling and substituting some sort of
purposive selection, wherein one chooses sampling units that "look" tobe
representative or typical. There arbpwever, methods thattake into account
advance knowledgeand at the same timerovide the protection against bias
that isgiven by random selection. One such method is to classifyall of the
population units into one ofseveral strata (groups), and to hen take random
and independent samples in each such stratum.

The name, stratified sampling, comes from theclose analogy to the
layering effect seen invarious circumstances, since wenormally attempt to
have the strata represent gradations in value of the random variable of
interest. If one can do firly good job ofsegregating units by magnitude of
the random variable under consideration, hen it is aparent that the
variability to be encountered insampling _within aparticular stratum may be
substantially reduced over that without stratification. Hence greater overall
precision results for a particular total sample size.

Stratified sampling will require somewhat more advance effort than
simple random sampling, but the usual resultthait it turns outto be less extra
effort than one might suppose. The method provides some side benefits in
terms of better understanding of thmaterial being studied, and of thenature
of the problem dealt with. In somecircumstances it may béhat aportion of
the sampling units inthe population are very difficult to reach, orotherwise
expensive tosample. In this case, stratification can specifically take
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differences incost into account, and provide alternative sampling schemes
aimed at getting the most information for the effort expended.

The material here is devoted to axposition ofthe basictechnology in
stratified sampling. Many additional featuresillwbe found in texts like that of
Cochran (1977) and Thompson (1992). Here we will dealwith such things as
how to go about stratifying apopulation, the estimation procedures, various
equations for obtaining variance estimates, and determining sample size.

4.7 Mechanics of stratification

Undoubtedly the most ommon ecological appication of stratified
sampling has to do with locating sampling plots or other measurement
schemes on a map ofragion of interest. The process ofstratification is then
intuitively obvious--one finds away to break the map upinto strata, each of
which is composed of some large number iaflividual sampling units, usually
plots of square orrectangular shape. It might benoted that theunits in one
particular stratum donot have to becontiguous--this is infact one of the
primary advantages of stratification. However, it is advantageous to keep units
in a stratum more or less contiguous ifthe survey is designedfor analytical
purposes (e.g., to make comparisons between strata).

The basic process isjust to assign units to strataaccording to the
available prior information, seeking toget the units in any onestratum as
much alike aspossible in terms ofthe random variable or variables being
studied. The next step isto assign serial numbers toevery unit in each
stratum. This doesnot, of course, require that someone write down all the
numbers--all that is required is a trustworthy scheme for assigning and
finding again any particular number. @ten it will turn out to be simplest to
delineate stratumboundaries with colored pencil and to note thestarting and
ending point of each row of units in a given section of ateatum bywriting
the corresponding numbers onthe map. Sometimes Ilarge blocks can be
counted asthe equivalent number of sampling units, that issampling units
might be mil-acre (or meter-square) plots but the strata may be ade up of
larger units. A little practice soon settles the details for anyparticular set of
conditions.

We use the followingnotation, which follows that of Cochran (1977) for
convenience inreferring tothe much more complete description available
there.

Nh (h=1, 2,..., L) The number of units in the stratum. There are L strata
inal, and N=N + No+ ... + N_

Nh The number of units in thel stratum that are
selected for enumeration (a random sample
of y units from the kh stratum). In most
circumstances W should be at least 4.
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vhi i=1, 2, ..., B) The observed value of the random variable (Y) on the
ith unit of the RN stratum. There arepnsuch
observations taken from théh stratum.

Wh = N The proportion of the total units present in tH8 h
stratum (N units in population; N+ N2 + ... + NL = N).
_yh =2 Yhil ny Average of the sample units from thérstratum.
n
fh :ﬁ The sampling fraction in thet® stratum (i.e., the

fraction of the units in thetA stratum that are actually
examined.

4.8 Estimates from a stratified sample

Since the W, represent the proportion of the total population in theéhn

stratum, they are logical wighting factors for estimating the overall
population mean. The equation is:

TN T WY 1 Wo¥ ot W Y (4.7)

where “yst refers to the mean of a stratified sample.

By the rule for variance ofa linear combination ofindependent random
variables (independent because of the random sampling in separate strata), we
have the variance of the estimate as:

Vlys) = W12V (y 1) + W2V (y 2) + ... + W 2V(y L) (4.8)

This result assumesthat the sampling fraction (f) in each stratum issmall
enough to neglect the finitgpopulation correton. If the fpc isincluded, the
equation for variance in the th stratum is:

)=o) Sy (49)

where @ is obtained from:

Sh=Y (0 =9V /N, -1 (4.10
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These two equations can be combined to get the desired result:
L L
V(¥q) = Z (WS /) - ZV\LSf/ N (4.11)
=1 =1

However, $12 is not a quantity that can be determined from

sampling, being the variance ofthe entire population inthe hth stratum. A
logical procedure is to estimate it from:

57 =3 O -5/, -1 (4.1

which is the usual variance estimate for a simple random sample. |adtegerm

in the equation for V_()ét) is the finite populationcorrection so ifall of the f,
are small (say, less than 5%) this term can be dropped

4.9 Confidence Ilimits

When sample sizes in the several strata are all substantial, the
confidence interval takes on the sameform as we have previously
encountered it for simple random sampling, and can be written as:

stﬁzs(yst)
where 2z isthe value from the unitnormal curve corresponding to the

confidence level wanted, for example z = 1.96 for 0.05. Wenow use 3(3/ st)

or, in this caseits square root, to denote that this is arestimate ofthe true
variance given by Equation (4.11).

When sample sizes for individual stratge small, as is nouncommonly
the case, there is a difficulty brought in by the fact that use of z corresponds to
virtually knowing the true variance. As was notearlier, samples of 30 or so
give close enoughestimates that one doesot need betoo concerned about an
effect on theconfidence limits. With only afew observations inone or more

strata, however, the estimates of stratum variancen2() snay not be smrecise,

and this situation would usually be handled by substituting a "t" value for the z
value, that is, by making use of the t-distribution, which allows for
uncertainty about thevariance estimate. The trouble here isthat we need to

combine the several straturmariances to ®timate V(yst), but it is not proper

to average the various "t" values corresponding tostratum sample sizes (we
would ordinarily look up at-value wth np -1 degrees of freedomfor each
stratum). Cochran (1977:96) and Thompson (1992:106) give a ratherplkoated
expression for calculating an "effective" number of degrees of freedom for use
in this case.



4.9

Exanmpl e 4.3 A caribou census

An exanpl e that incorporates nearly all of the basic elenments in
stratified random sanpling is furnished by an aerial census of Al askan
caribou. Details will be found in a paper by Siniff and Skoog (1964).
We here extract that part which is appropriate for illustration. Six
strata were selected on the basis of prelimnary observations of
rel ative cari bou abundance, and delineated on detailed naps. Sanpling
units were four-square-mle bl ocks, and each such unit wthin each
stratum was assigned a nunber. There were no advance esti mates of
wi t hi n-stratum vari ances avail able, so the stratum standard devi ati ons
(Sh) were assumed proportional to the prelimnary rough estinmates of

popul ation levels in the stratum This provided the follow ng data for
al I ocation according to Equation (4.14):

W hsh |
Stratum N W, SWrsn m(opt.) m (actual)
A 400 572 3000 428 96 98
B 30 .043 2000 .022 5 10
C 61 .087 9000 .195 44 37
D 18 .026 2000 .013 3 6
E 70 100 12000 .299 67 39
F 120 A72 1000 .043 10 21
699 1.000 29000 1.000 225 211

The "optinunt' allocation was based on the total nunber of sanple units
(225) that the investigators believed could be surveyed in the time
avai l abl e. The actual allocation amunted to "hedgi ng" agai nst
uncertainty about the likely values of S, Thus there were several

strata (B, D and F) where the supposed optinum all ocation called for
rather small sanples, so these were increased at the expense of strata
(C and E) where the optimum plan called for censusing a substanti al
fraction of the units in the stratum Survey results were as foll ows
(Nn, W, were as used above, and np as given in the |ast columm above):

Stratum W h@ W‘—S“ W]sh2 YhWh
nh

A 24.1 5,575 18.613 3,189 13.79
B 25.6 4,064 .751 175 1.10
C 267.6 347,556 71.098 30,237 23.28
D 179.0 22,798 2.569 593 4.65
E 293.7 123,578 31.687 12,358 29.37
F 33.2 9,795 13.800 1,685 571

- - 138.518 48,237 77.90

From Equation (4.7), V¥V st is the sumof the |last colum above, or 77.9
cari bou per four-square-mle unit. This is readily converted to a tota
for the area surveyed by nmultiplying by the total nunber of units,

giving (77.9)(699) = 54,450 caribou. The variance estimte (Equation
(4.11) is:
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L L
V(ygp = 2 WhZSh2)/nh - 2 WhShZIN = 138.518 - (48,237/699) = 69.51
h=1 h=1

Confidence limts on the nean may be obtained by assuming z to be equa
to 2 (or 1.96 to be exact, for a= 0.05), since rather substanti al
sanpl es are involved here, in nost strata, giving:

Y ot =+ 2(69.51)1/2 or 77.9 + 16.7 caribou per four-square-nile unit.
For total caribou on the study area, we estimte the variance as:

V(ytot) = N2 v(y g) = (699)2(69.51) = 33,962, 655
and limts are:
54,540 + 2(33, 962, 655)1/2 or 42,885 < Xxtot < 66,195

2

Notice that sp“ increases with increasing yn in the table above.

The investigators plotted 10910 (sh2 ) against 10910 & ph (Siniff and

Skoog, 1964:398) and obtained a regression rel ationship:
y = 1.63 +1.42 x

where y = 10910 (sh2 ) and x = log10 y h- This is equivalent to the
rel ati onshi p:

sp2 = 42.66(y ) 1 42

which mght be used to estimate variances in planning sinilar surveys.
However, it is inportant to renenber that size of the sanpling unit (4
sq. m. in this case) will affect such a rel ationship

Example 4.4 A mortality survey

A M chi gan study of over-winter |osses of whitetailed deer
(Whitl ock and Eberhardt, 1956) provides an exanple where the finite
popul ation correction is negligible. In this case, nearly 19,000 square
mles (all of the northern | ower peninsula of Mchigan) were classified
into five strata on the basis of estimates made by field biologists.
The primary units were half-sections (one-half square mle), but these
were subsanpled in the actual search by using a strip 88 yards wide laid
out as a rectangular course 1/2 mle long and 1/4 nmle wide. Wdth of
the strip was based on use of four-nan teans, with each individua
responsi bl e for searching a 22 yard wide interval. Various
conplications were involved in the design inasnmuch as it was necessary
to consider prospects for mssing dead deer on the strip, the nunber of
men available in various locations (and transportation), the necessity
for one man to act as conpass-nman, need for a biologist in each crew,
and so on.

Advance data from a previous survey of an area of high nortality

suggested that the coefficient of variation (s/x ) mght be about 1.30,
so estimates of Shp were obtained by multiplying 1.3 tinmes an estimated
nunber of deer to be found on each plot (these guesses were nade in the
process of setting up strata).
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It was decided that about 110 plots could be surveyed with available
manpower so the allocation was devised as follows:

Stratum Expected Expected losses Square p VWistimate Preliminary
losses per expressed as miles in nof S allocation
sq. mile___dead deer/plot stratum

I 20+ 3.75 408 .0220 4.88 23

I 10-20 1.88 1,048 .0566 2.44 29

" 5-10 .94 2,293.5 1240 1.22 32

v 1-5 31 5,567.5 .3010 40 25

\Y 0-1 .01 9,181.5 4964 .01 1
18,498.5 1.0000 110

The al l ocation again followed Equation (4.14) but four plots were
added to stratumV, giving 114 in all, of which 113 were actually
searched (one plot was conpletely flooded at the tineof the survey).
Survey results were:

. 5, -
Stratum R Sh Yn Contribution to  Coefficient of Sh“/ Y p
to Wy __variation
| 23 2.146 1.826 .000097 1.18 2.52
Il 29 1.082 621 .000129 1.74 1.88
1 31 724 484 .000260 1.50 1.08
v 25 541 .280 .001062 1.93 1.04
V 5 -- 0.00 .00 -- --
113 .001548

In this instance, only very small fractions of each stratumwere
searched so Equation (4.11) reduces (by dropping the right-hand term
to:

5

V(yst) =2 (Wn?2 Sh2)/my
h=1

and the individual terns are listed under the heading "Contribution to

v(g/ st)" so that one can see in which stratumnmost of the variability

turns up. Conparing the expected | osses and the y h 1t becones

apparent that the over-estimates were largely in strata | and Il, which
was not especially surprising since the winter turned out to be m | der
than antici pated when the survey was planned, and starvation | osses were
correspondingly | ower (nmmjor starvation areas nearly all were in strata
I and I1).

The coefficients of variation in the above table show t he advance

estimate to be somewhat | ow The | ast colum of the table gives sh2/ Y h
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which is the "index of dispersion" and is unity (within sanpling or
"chance" errors) for a Poisson distribution. This suggests that such a
distribution (i.e., wholly random di spersal of dead deer) may apply to
strata Il and 1V, in which case the S, for allocation m ght sinply have
been taken as equal to the square roots of the expected nunbers of deer
per plot.

4.10 Allocating the sample to strata

We have thusfar gotten the cart before the horse, having considered
how to analyze sample resultwithout considering howthe total sample ought
to be distributed over the strata. Two kinds of allocation are in @mmon use.
The first is perhaps Wat one wuld expect to dowithout any advance
information about the variability in various strata, that is, distribute the
sample in proportion to thesize of the strata ("proportional allocation"). This
is also known as aself-weighting sample, sincefractions going into each
stratum will be equal to W, sothat a simple mean addll of the sampleresults
will be equal to the weighted mean previously given. In this case wehave
Nnh/Nhp = f = n/N so that the sampling fraction is the same in sathta.This éads

to a simpler expression for the variance:
L

- 1-f
Vi =—— 2 WpSh2 (4.13)
h=1
and we again have to substitute sample estimates ﬁ@r-s

Proportional allocation is easy taccomplish andto analyze, but often is
not a very efficient way to use samplinggsources. Inmost ecological work it
turns out that the variance and mean tend toincrease together, sthat the
strata likely will have rather different variances,and propeotional allocation
will then undersample some strata and oversample dters. An allocation
which allows for the effect of differences instratum variances isthe scheme

called "optimal allocation”. This method can be shown to minimize Yiyfor a
fixed n. Optimum allocation is given by the following relationship:

L
h B NWhSH/ 2 WhSh (4.14)
h=1
Of course use of the formula demands atleast a guess at the hS In many
studies, there will be some preliminary information about the magnitude of
variances tobe encountered, quite often in the form ofcoefficients of
variation, which may be applied tothe expected stratum neans toget an

estimate of stratum standard deviations. Hlso turns out that this kind of
allocation isnot too sensitive to errors imdvance estimates of f so one can

usually expect to doa better job with this method so long as the stratum
variances ddiffer appreciably and the guessed values ofpSare in theright

"ballpark".In  many natural populationghe stratum wth the lowestmean can
be expected to haveroughly aPoisson distribution of individuals (assuming
the purpose ofthe survey is to stimate total individuals) sothe investigator
can set that variance equal to the expected mean density, and go ontlirene
on the basis of anyinformation about how variability increases with the
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means of the remaining strata.

One further feature of allocation worth considering here is the
circumstance where sampling s differ among strata.Perhaps the sinplest
assumption is that total cost of thesampling can be written as:

L
cost=¢ + 2 Chhh (4.15)
h=1
where ¢ represents the cost of measuring each sample unistiatum h, the
ch are not all equal, andgcis a fixed or"overhead" cost. In this case,Cochran
(1977:97) shows that the allocation should be:

L
nWhpS
h nvh_ﬂ/z WhShAlch (4.16)
ch
h=1

sothat the number ofsamples in astratum depends onthe stratum size, its
variability, and cost of sampling. One takes more samples in large and
variable strata, but also increases sample size if sampling ischeap in the
stratum.This kind of allocation can berather useful in dealing with sampling
problems where eitheraccess ormeasurement may bquite dfficult for part
of the population. It is worthnoting that other kinds of cost functions might
be obtained from knowledge ofthe sampling problem, andspecial albcations
then devised. Cochran (1977) discusses "cost functions" for various
circumstances.

Example 4.5 A deer popul ation estinmate

Counts of "pellet-groups" have been wused to estimate deer
popul ations for many years. Daily defecation rates are renarkably
constant (about 13 groups per day) and over-wi nter accunulations of
pellets can be identified by the underlying mat of |eaves dropped the
previous fall. There is thus a straightforward conversion from nunbers
of pellet-groups to "deer-days" which in turn can be converted to
average popul ation levels for the over-wi nter season. Stratified random
sanmpl ing has been used to conduct such surveys in northern M chigan for
nore than 25 years. About 35,000 square miles are surveyed, requiring
on the order of 500 nan-days of effort. Sone nine separate areas (Gane
Management Districts) are surveyed independently. An example for one
such are (District 7 in 1962; Ryel 1971:131) appears in the follow ng
t abl e:

. : W h2sp?

Stratum Area gg.mi.) ProgdWh) n Yh T -
| 190 .0541 9 65.22 1.7568
Il 425 1211 12 29.25 1.2649
11 1544 4399 34 15.35 1.7803
v 1144 .3259 10 10.70 1.7748
V 207 .0590 1 0.0 --

3510 1.0000 66 - 6.5768.

The overall weighted mean number of groups per sampling unit was
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i’ st = 17.31 with two standard errors being 29.6 percent of that

estimate. Wth the very large areas involved, an appreciable amunt of
time is expended in traveling to the sanpling units. Si nce experience
shows that the individual plots should not be very large (to avoid
m ssing groups in the counts), a cluster sanple is used at each site,
conpri sed of eight individual plots arranged along a half-mle line. For
conveni ence, square niles (sections) serve as the primary sanpling unit,
with a random starting place and distance from the boundary used to
| ocate each systematically arranged cluster of plots.

To reduce the effort required to plan and execute these |arge-
scal e surveys (150 to 200 people nay be involved annually), the sane
pl ots have been used for a nunmber of years in succession. This makes it
possible for the field nen to plan their work efficiently, since they
know the plot location well in advance and can anticipate just when the
plots will be accessible (and free of snow). Ryel (1971:222) calcul ated
the optimum allocation for a nunber of years. Results for the District
used as an illustration above are:

Calculated optimum allocation

Stratum Actual
allocation 1959 1960 1961 1962 1963 1964

I 9 18 14 6 13 4 6
I 12 11 14 21 13 19 18
" 34 27 29 21 26 32 32
v 10 9 9 18 14 11 10

It can thus be seen that the original allocation was, on the average,
quite satisfactory. Two kinds of factors nmay affect these results. One
is that the distribution of deer may change sonewhat from year to year,
in consequence of wi nter weather conditions. Another is that variances
for each stratum are estimates, and thus wll vary sonmewhat due to
chance al one.

4.11 Further remarks on stratified sampling

Cochran (1977), Thompson 1992), and other texts on survey sampling
supply agood deal ofauxiliary information on methods and techniques for
various special cases. A fewpoints that are examined inmore detail inthose
references are summarized here:

(1) Gains in stratified sampling for thestimation of aproportion are usually
not sizable unless the proportion (P) varies sharply from stratum tostratum,
and in most cases, proportional allocation is preferable.

(2) Many surveys are designed tomeasure more than one randomvariable,
whereupon the question of allocation gatemplicated. An initial approach is
to calculate allocation for the variables of main interest separately and
determine whether the several allocationsdiffer appreciably. Ifso, hen it
may be possible todevise some sortof cost function to help in a decision. If
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there are twovariables ofmain interest, hen there are somehandy schemes
for handling the two in a single allocation.

(3) We have not considered how tetermine either the number ofstrata nor

stratum boundaries. Most studies of natural populations will involve the
location of strata onmaps, and thequantity of advance information on the
population will usually be such that theumber ofstrata probably will not be
less than three nor morehan six. A few trial efforts atlaying out strata will
usually resolve most questions of boundaries. Probably the major difficulty
comes up if large areas are to be covered, so thate are anumber ofpeople
involved, each having rather good local knowledge. Then the principal job
turns out to be in getting individuals toagree on Wwat constitute definite
strata, and how they should matt at the junction of two districts where
different people are locally"expert® onthe subject matter. Some onperson
usually has toumpire the decisions, and this can perhaps bedone after
individuals have made up maps reflecting their knowledge.

(4) Sometimes it is possible to make usesofatification after a simplerandom
sample has been taken. Itmust be emphasized that stratification cannot
legitimately be undertaken on thbasis of examiningthe sampleresults, but it

may turn out that it is not possible to assignindividual units to strata until

after they have beensurveyed, that is, the total number of units in each
stratum may be known in advancehut the stratum to which aparticular
sample unit belongs cannot be determined until the measurement is made.

(5) Most experience with naturgpopulations shows thatvariability increases
with the mean. This is fairly sound gounds for recommending that
"optimum" allocation always be cazfully considered before selecting one of
the other possibilities.

4.12 Ratio Estimation

The main results for ratio estimation require that thepulation total of
an auxiliary variate (X) be known, and the correlation between Xand the
variable ofmain interest (Y) is usedalong with the known total to obtain an
estimate of either the mean of Y or its total with greater precision than may be
obtained from simple random sampling of alone. So far, ratio andegression
methods havebeen little used in ecology andresource management surveys,
partially perhaps because of alack of suitable correlated variables with
known totals, but also because manyinvestigators are not familiar with these
methods.

In the usual notation, X is used tepresent the known population total.
Since we have been using X to representamdom variable, Xwill denote the
population total here. The ratio estimate is:
AP | BV
4 =3IXi XT= = XT
X
as an estimator of the population total for Y. Thean value of Y isstimated
by replacing the population total §4 by the mean above.
The population ratio is estimated by:
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A2y
RZXi
If interest isprincipally in the population ratio, then it isnot necessary to
know XT.

An important application ofratio methods is worth mntioning here in
order to provide an illustration of the nature ofthe aboverelationships. This
is the wuse of "strip transects" (discussed in more detail in Chap.5) on
irregularly-shaped abs. A strip transect isjust a bng, narrow plot
extending completely across a studyarea. For present purposes, weassume
that all of the objects ofinterest are counted on each of aumber ofstrips.
Each such transect then constitutes a sample plot. Ifrédggon under study is
rectangular inshape, then each samplglot will have the sme area, and no
adjustment isfor transect length isneeded. However, inmost practical
situations, study areas will be irregular in shape. Stripgnsects across such a
site will thus have different individual areas, presenting aproblem in the
analysis of the data, since plot size is now also a random variable.

It is true that a simple random sample sfrips will provide anunbiased
estimate of the total number of objects onthe study area.The appropriate
random variable is the total number on each strip, and the calculations
proceed aspreviously described for simple random sampling of afinite
population (the total number of possible samplestrips). However, such a
theoretically correct result is of almost no practical interestin dealing with
natural populations, just because suchpopulations exhibit high variability
even with efficient methods ofsampling. We thus cannotafford to bring in
any further variability. Ratio methods can conveniently be used to resolve the
problem simply byregarding the area of eachsample strip as Xsothat Xris
the total area of the study region, amhefting Yj represent the total number of

N

objects on each sampl@lot. We hen have that R estimates the awrage
N

density (number per unit area) observed in the sample, andr isYan estimate
of the total number of objects on the entire study area.

The ratio estmate is biased, but the bias isconsidered unimportant for
large samples. In this case, arule of thumb is n of atleast 30, and the
coefficients of variation of themeans of Xand Y should both Hess han 0.10
(Cochran, 1977:153). Stratificatiorand ratio estimation mayserve roughly the
same purposes, and it is likelthat an effectivestratification could beobtained
through the use of the auxiliaryariable X. Thus in the example given above,
one could stratify the study area into blocks such that thength of potential
sample transect strips is about constant ineach straim. However, the ratio
method provides a"natural" approach in this instance, and is thus the
appropriate choice.

The ratio estimateeffectively assumesthe relationship between Yand X
to be Y = RX + e, where erepresents an"error® component and R is an
unknown constant. In some instances it magt be reasonable tassumethat
the relationship goes through the aigin, so that a regression estimate is
appropriate. This method isalso biased, so thatlarge samplesare generally
recommended. Details are available in Cochran(1977) ,Thompson (1992), and
many other texts on sampling. Before undertaking touse the ratio or
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regression techniques, an investigatorshould have some preliminary
observations (or good general knowledge) that indicate a relationbleipveen
the variable of primaryinterest (y) and anauxiliary variable (x). Afirst step
it plot the data andto note whether the regression lineclearly doesnot go
through the aigin. If this is the case, hen it is advisable tolook into
regression estimation, rather tan using ratio methods. Occasionallythere
may be more han one usefulauxiliary variable andit is then possible to use
multiple regression.

4.13 Variance of ratio estimates

An estimate of the variance of a ratio is given by:
N

VR =T (3 (vi- RXi)2/(N-1)] 4.17)
nx2

i=1
Here f again represents the finite population corredon, and may be
neglected ifn/N isless han about 5 to 10percent. N isthe total number of

units in the population, n,the number inthe sample,and X the population
mean of theauxiliary variate. Note that the summation runsover the entire
population, sothat this is anapproximation tothe "true" variance, and it will
in turn have to be estimated by @quantity that can becalculated from a
sample; that is, weeplace the quantity in the right-hand backets by sample
data, getting:

n
%ﬁ)iléf[2<w-ﬁmewn] (4.18)
nXx
i=1

When interest is in the mean or total of Y, the estimates are as given before:
and variances can be calculated from Equation (4.17) by recalling the thdd

V(aR) :a?V(R), where the constant a is now either- Xor NX , since both of
these quantities are assumedknown, and thus play the part of catants.
Calculation of an estimate of V(Y) is easier in the following equivalent form:

2¢ v R) = n_((ﬁ% [2yi2 + R3xj2 -2 RZy|x|] (4.19)

Note that this is the variance for estimating a total.

Since it isadvisable to checkthat the coefficients of variation of the
means of Y and X are less than 0.10, another form dalculation ofvariability
is:
2(YR) 1f
= [ny + Cxx 2ny] (420)

(Y R)2 ==
YR

where &x, cyy, and gy are the coefficients of variation of y, xand the
analogously defined cross-product term:
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Zxx - MX
yxXe=

(n-1)y

Readers whorefer to Cochran (1977) should note that heused the coefficient
of variation of the mean, e.g.,yg/n.

The squared coefficient of variation of R is often termed the relative

variance, and can beased tocalculate variances ofany of the three estimates
of interest (the coefficient of variation, being a relative quantity, has the

N

N N
same value for R, R, or RT).
Confidence limits can be obtained as before:

N

N A A
Y+zs(YT) or R+ zs(R)

Exanple 4.6 Ratio corrections for variable plot size

A numerical exanple of corrections for different lengths of a
strip-transect is given by Norton-Giffiths (1975). The data are those
froman aerial survey for several species of African "gane". Only
wi | debeest are considered here. The data are as foll ows:

i X iy

Transect Area (%}n No.counted

1 8.2 58

2 13.7 44

3 25.8 175

4 25.2 141

5 21.9 151

6 20.9 144

7 23.0 131

8 19.2 135

9 21.4 104

10 17.5 111

11 19.2 130

12 20.8 136

Totals 236.8 1460

The total area of the study region was 2829 kn?, so the popul ati on
estimate is:

Ny o D _1460 . _
YR= TXj XT ~236.8 2,829 = 17,440 | debeest .

There were 126 possible strips in the area, so that N = 126, n = 12, and
calculations fromEq (4.19) are:

n . N(N-n A n
2(YR) =n4(ﬁ% [5yi2 + R2xi? -2 R2yixi]
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= [126(114)/12(11)][193,262 +(6.18)4,935 - 2(6.16)30,561]
= 436,580.

The standard error is (436,580)1/2 = 661/, which is quite small conpared
to the estinate.

It may be noted that the sanple size (12) is a good deal |ess than
the 30 recomended as a rule of thunb for using ratio estimation.
However, this very likely is an instance where the ratio estimte is
nearly optimal, i.e., the relationship goes through the origin, and the
variance of the counts likely increases with the area of the transects.
Hence, it seens quite reasonable to neglect the n = 30 rule. Density
per unit area is estimated by:

N

R = 1460/236.8 = 6.16 wil debeest per kn?.

4.14 Double sampling

The major problem with ratio estimation in ecological studiesust that
there are various situations wherthe method ispotentially useful, but atotal
for the auxiliary variable isnot known exactly. Many of thesesituations do
not seem to fitneatly into the present methodologyof survey sampling, but it
does seem that doublesampling comes closeenough to provide a useful
framework for examiningthe problems and auseful starting place for much-
needed research. The basic idisajust thatof the ratio estimation sheme. We
have arandom variable ofprimary interest (Y) and an auxiliary variable (X)
known to be well-correlated with Y. The missing item iskreown total for this
auxiliary variable ().

In the instances of interest here, nmeasurements ofthe auxiliary
variable (X) are either ary inexpensiveto obtain, or are readily available for
a large sample taken over the studggion. A convenientexample is thatused
to describe ratio estimation; the use of strip transects. We now suppose that the
total area of the region under study is niatown. If the area ismapped, then
it is obviously an inexpensive process to make a large number of
measurements of the lengths of potential transect lines from the map. One can
thus come very close toestimating the total area (X) by working with the
map. If we denote this estimated total asg,Xhen double sampling proceeds in
just the same manner as ratio estimation, i.e.,
n 2Yi o,
T IX| XT
but it is now necessary to make someowlance invariance estimation for the
fact that the total(X'T) of the auxiliary variable is not known exactly.

Eberhardt and Simmong1987) conducted some monte carlo studies tsuggest
when double sampling might still be useful under this limitation.

If the study region ismapped, there are usually better ways tomeasure
the total area (e.g., by planimetry). Howevermrious nontrivial examples can
be considered. The survey may beconcerned only with a particular cover
type, which is notmapped. Ifthe work onthe actual sample transect is quite
time-consuming, then it ay be well worthwhile tomeasure only the width of
the cower-type on adrge number of"auxiliary" transects. These widths then
provide an estimate of K
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Another situation where double-sampling may beuseful is where
detailed neasurements need to be made onndividual plots by some time-
consuming process. One example is inestimating total oven-dry biomass of,
say, nonwoody vegetation. The time required for clipping, drying, and
weighing vegetation severelylimits the number ofplots that can be saealt
with. Double-sampling might weil be utilized by wing stem counts as an
auxiliary variable, since thiscan be done on sather krge sample oplots at
low cost. Asimilar prospect exists when chemical analysesare to be done on
vegetation, but in this case it may be desirable to use weights on a dangpgle
of plots as the auxiliary variable.

An essential feature of these examples is thaturate masurements of
the auxiliary variable can be made ineach instance. This appears to be the
basis for the p¥sent theory ofdouble sampling asgiven, for example, by
Cochran (1977. Ch.12). Unfortunately, there are agreat many very useful
potential applications inecological studies that domot seemto quite "fit" the
existing theory. These are situations where the auxiliary variable is an
estimate of some kind, and isubject toeither sampling error, bias, or both.
The biomass ofvegetation example provides a&onvenient case. Rather than
stem counts, the investigator maychoose touse anocular estimate of mimass
on a large sample of plots as an auxiliary variable. With s@xperience (best
gained by guessing weights on asample of plots and hen clipping and
weighing), he my become veryproficient atvisual estimation. The problem
now is that the auxiliary variable issubject both to the "chance" errors
inherent in visual estimation and to any persistent tendency toonsistently
overestimate or underestimate.

Another illustration may be aken from aerial censusing of animals.
Practically all of the available experience shows thataerial obserers tend to
miss a substantiaffraction of the animals on asample unit (very often astrip
transect). Nonetheless, since aerial surveys can be relatively inexpensive,
efforts may be made to "calibrate" th&urveys by usingsome accurate method
to enumerate the number of animals actually ona subsample ofthe plots
surveyed from the air. If it can beupposed that these "gund-truth" counts
are truly without error, then it can be argued that the requirementslioafble-
sampling are met. The aerial survey now providesthe auxiliary variable (X),
while the ground count provides the accurate census (Y) that is wanted.
However, the auxiliary variable aérial count) isclearly going to be subject to
sampling errors, due to alarge variety of causes. Hence we ntonger have
guite the samesituation as whenthe auxiliary variable can be measured
without error. It may be feasible to completely survey the study area from the
air. However, this is still not a known tdal, as arepeat surveyflown under
identical conditions will without much question yield a different total count.

Many readers will have recognizednother problem that was passed by
above. This is that the "accurate" measurement (Y) is seldom achievable in
census wek. Usually the best that can benanaged is an estimatdhat is
believed to be unbiased, but is clearly subject to sampling error. We hlause
both Y and X subject to sampling errors. This circumstance fmdgg in some
major problems in statistical analysis. These problems are particularly
difficult in regression analysis, and remain unresolved for a number of
circumstances ofimportance to ecologists and biolaists. Ricker (1973)
reviewed the situation for problems in fisheries research and management.
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There is thus a need texercise some caution in applying double
sampling in situations where the auxiliary variable issubject tosampling
errors, particularly when regression equations are used. Inmany practical
applications in ecology it seems that the ratioapproach may be quite
satisfactory so we will usually rely on it here.

If it is clear that the relationship des not passthrough the origin and
if the variance appears relatively constant aroundregression line, then it is
likely that the regression method should lesed. However, inthe many cases
where it is necessary toassume sampling errors inthe auxiliary variable, the
usual elementary textbook test for significance ofthe intercept cannot be
trusted. Hence it may be best depend onjudgements as téhe nature of the
relationship and the pattern ofvariability in choosing betweenratio and
regression methods.

4.15 Cluster sampling and subsampling

Cluster samples are likely to be useful in field studies wheneveritben
of interest is pimarily associated with some natwal sampling unit. An
example might be somepecies of insect found only on particular species of
plant. Any interest in enumerating the insects, or instudying some other
measurement, such as the percent odhsects parasitized, requires attention to
the fact thatthey comein clusters. Inpoint of fact, this distinction is often
ignored in practice, and it can be safely said that measures ofvariability
obtained without considering the clustering effect will usually be very
seriously underestimated. Gfourse, inthe example hex describedone might
reasonably use aratio estimate, counting the number ofplants and sampling
some part of them for insect abundance.

In some cases it is possible deal with clustersthat are all comprised of
the same number of individual sampling units. This is a natural way to
approach large-scale area samples, where the "primary sampling unit" may
taken to be a squaremile (section). One may vant to use much smaller plots
(square-meter 0r0.01 ha, perhaps) for the actual measurements, but to
enumerate the variable of intereston several such plots in each square mile
in the sample. One approach isHhen todraw arandom sample of nsquare
miles from the overall area, and to locate m plots(the subsample) ineach of
the selectedprimary units. This is usually termed two-stagesampling. An
important consideration in such schemes is determining how many
subsamples (m) and the totmlumber (n) of primary units totake tominimize
the overall variance (or maximize precision) for a fixed over-all cost.

We will not attempt to detail the procedures for optimum use of
subsampling methods, but it is worth nentioning one scheme for calculating
the overall variance of arestimate, and thusonfidence limits. This is just to
use the subsample results for each primary sampling unit to estimate aotal
for that unit. That is, if there are m plots ineach unit, onejust obtains the
total for those mplots and mitiplies it by the reciprocal ofthe sampling
fraction toget an etimate for the primary unit. The primary unit totals can
then be used directly as random variables tocompute avariance for the
survey total. Thisvariance will reflect both conponents of variability --that
for subsampling (within primary units) and that for differences among
primary sampling units. Wat one loses, otourse, is anyinformation on the

be
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optimum subsampling rate. The samescheme can be usedwhen the clusters
(primary units) are of different sizes (i.e., contain different numbers of
sampling units, as, for example trees inwoodlots). The shortcoming here is
that if the clusters vary considerably insize, that difference will contribute
greatly to the overall variance. This point is most important if there is
additional information on the cluster sizes in the population, but as was
mentioned above, one might then be able to use ratio methods.

Subsampling schemes are often conveniently used to combine
systematic and random sampling. Inthe example above ofrandomly selected
sections (square miles) which are then subsampled, it ioften possible to
reduce the labor involved if the primary units (sections) are selected at
random (usually in astratified sampling plan) and aseries of plots located
systematically along a transect within each section as subsamples. highsly
desirable that the transect starting points berandomly selected toavoid any
bias due to edge effects or such things as old fencelines in the sections.

Subsampling schemes can involve several stages, and various
complexities of estimation. One might for example, use astratified random
sample of square nles, locate subsampling plots in each randomly drawn
section, and hen elect toexamine only arandom sample ofindividual plants
on each plot for the variable of interest, which mht in turn involve
measurements subject terror. Obviously, the statistical analysis obuch data
can be quite complicated. One way to simplify matters a greatdeal is toresort
to jackknifing or bootstrapping.

Sampling in two (or rore) stages ismlso worth considering when there
is uncertainty about theaccuracy ofthe method for making measurements, as
is so often the case inestimating the abundance ofanimal populations. It is
usually the casethat population density will vary considerably over large
areas, and the investigator may havereasonably good notion of how density
varies wth habitat and so on (or this may be major item ofinterest). It is
then logical touse astratified random sampling scheme tolocate primary
sampling units on which the actual measurements of density willattempted.
This doesnot, of course, reduceany uncertainty inthe actual measurement
method, but it does keep the area differences from compounding matters.

Example 4.7 A cluster sanpling exanple

One sinmple exanple of cluster sanpling was nentioned in Exanple
4.5 (stratified sanpling). The "primary sanpling units" (square mles)
were sel ected at random and then subsanpled with a cluster of eight
snmall plots. Al that is needed for analysis of the resulting data is
just to multiply the total for the eight subsanples by a "raising
factor" or "blowup factor", which is sinply the reciprocal of the
sampling rate. In the exanple used, the individual plots were each 1/50
of an acre, hence the necessary adjustnent factor is: 640/(8/50) =
4000. Once this is done, the remaining anal ysis proceeds as though no
subsanpl i ng had taken place. Skeptics may need to do a little al gebraic
mani pul ation at this point. Wen subsanpling rates are not constant,
t hi ngs becone sonmewhat nore conplicated, and a sanple survey text should
be consulted for details. However, if the subsanpling rate does not vary
greatly, the sane procedures can be used wi thout elaboration. Al that
happens is that one overestimtes the variance, in nost situations. But
if the subsanpling rate varies considerably and/or is related to size of
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the primary sanpling unit, then by all nmeans consult a textbook on
sanpling or a statistician.

Supposi ng constant size of the primary sanpling unit, and a
constant subsanpling unit (the case nost likely in ordinary
applications) the main question to be settled is "Wiat is the best
subsanpling rate?". As usual, answers depend on relative costs. That
is, a particular effort (hence cost) is required to survey an individua
sampling unit (i.e., one plot in the exanple), while a separate cost is
engendered by the tine and travel going fromone primary sanpling unit
to the next. For a given total expenditure for the entire survey, the
opti mum subsanpling rate is that which mnimzes the overall variance
gi ven the above two costs

Si nce natural popul ations exhibit a sonewhat frustrating tendency
for variances to change nonlinearly with size of the sanpling unit (plot
size), a sinple equation for subsanpling rate is not available. Wat's
really needed is a "variance law', i.e., a relationship between pl ot
size and variance. To obtain such a relationship, one has to run a
speci al study using several plot sizes. Then it becones possible to
i ncorporate costs and get on with the business at hand by consulting
Cochran (1977, Ch. 9). As we noted earlier, the kind of neasurenent
(wei ghts, counts, etc.) and the organi smunder study influence the
"variance | aw' substantially. Hence there are two choices open at this
point. Oneis torun a fairly expensive prelimnary field study, and
thus to manufacture your own "variance law'. The second choice is to
resort to the literature in the appropriate field, seeking papers in
whi ch several different plot sizes have been used. A number of
ref erences along these |ines appear in Eberhardt (1978a). However, it
is clear that this is an area needing rather nore research attention in
ecol ogy.

Exanpl e 4.8 Custer sanpling involving proportions

One of the commonest errors in the ecological literature is an
uncritical acceptance of the binom al distribution as an appropriate
nodel for analysis of proportions in data collected in clusters. It is
the appropriate nodel if, and only if, a sinple random sanpl e of
i ndi vidual s can be obtained. |In practical problens one al nost al ways
col l ects observations as clusters. Wen this is the case, the
clustering effect must be taken into account in order to obtain a
meani ngf ul variance. Very rarely do we encounter a popul ation so well
m xed that clusters are indeed equivalent to sinple random sanples, so
that such an exanple is likelyto be nore of a curiosity than anything
el se.

The sinplest way to deal with cluster sanpling for proportions is

to treat the individual observations as randomvariables. 1In this
i nstance, the appropriate formof the ratio estinmator is:
n
.1 Yi
L X
i=1

where yj denotes the number of individuals in the ith cluster
possessing the attribute of interest, and xj is the total nunber of

individuals in the ith cluster, while n is the nunber of clusters.
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The appropriate variance estimate here is (Cochran 1977:65):

_2(pi-P)?
V(p= n(n-1)
where pij = vyj/Xj, i.e., the observed proportion in the ith ¢cluster

(We here neglect the finite population correction which can be inserted
as a multiplier (1-f) if needed).

An interesting set of data to illustrate behavi or of proportions
in clusters cones froma paper by Johnson and Chapman (1968). This was
a study to estimate the nunber of fur seal pups on a "rookery" on the
Pribilof Islands, off Al aska. A large sanple (4,965) of pups were marked
(in groups) and then clusters of 100 were exam ned (for the proportion
mar ked) at randomy selected sanpling stations. The estinmate of the
total nunmber of pups on the rookery was obtai ned from

N
M
N=""
(P

where N is the population estimate, Mis the nunber marked (4,965) and p
is the nean proportion narked, calculated as in the above exanpl e.

Two ways of estimating the variance were used. One is based on
the "delta nethod", and is:

N hﬂzvgg)
V(h) =
p4
where v(p ) is obtained as in the above exanple. The second nethod

is that of "interpenetrating" sanpling, in which the sanple is
subdi vided randomy into a nunber of subsanples. A separate estinate of

t he popul ati on size N i is made from each subsanpl e and these are then
averaged for the final estimte, i.e.
r
N l AN
== Z:Ni
r
i=1
and:
N 2
A (Ni - N)
Vb =2 ey

It should be noted that the two estimates of the total population wll
not necessarily be identical, nor will the variance estimtes be the
sane for the two nethods.
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The observed nunbers of marked pups in clusters of 100 (recorded
on two sanpling dates) were:

August 26, 1961 2,0,1, 6, 4, 33, 62, 49, 55, 38, 52, 77,
(25 samples) 85, 54, 27,17, 3, 3,3,2,2,1,0,0, 4.
August 28, 1961 0,0,0,4,0,0,0, 12, 4, 8, 60, 48, 72, 72, 76, 80, 56, 44,
(58 samples) 50, 56, 56, 28, 60, 36,44, 44, 28, 52, 72, 28, 72, 60, 60, 84,
76, 52, 84, 48, 52, 60, 40, 12, 8, 12, 4, 8, 44, 16, 0, 8, 0, O,
4,12,8,0,0,0.

The interpenetrating or replicated sanples were defined as
fol |l ows:

Subsanmples 1, 2, 3: Every third observation of August 26,
begi nning with observations 1, 2, 3, respectively.

Subsanpl es 4-10: Every seventh observation beginning with
observations 1, 2, 3, 4, 5, 6, 7, respectively.

Since there were 25 observations on 26 August, this procedure yields
subsanpl es of size 9, 8, and 8, respectively, while the 58 observations
on 28 August yield two sets of size 9 and 5 of size 8. These data |ead
to the following estimates for the interpenetrating sanpling:

Subsample N

20,497
24,219
20,060
17,455
16,674
17,732
14,391
12,490
13,066
0 14,821

POO~NOUTA,WNPE

Total 171,405

AN AN AN
Averaging gives N2 = 17,140 wth v(N 2) = 1,353,000, while N1 =
N
16,550 with v(N 1) = 2,950, 000.

4.16. Some additional sampling techniques

There are a number of additional techniques students should know
about. Multistage sampling was used in Examples 4.4 and 4.5 where subsamples
of the primary sampling units were actually enumerated. As pointed out there,
it isn’'t necessary to consider the subsampling in obtaining a variance
estimate. All that is needed is to use the subsample data to make estimates for
the primary sampling units and treat those values exactly as one would if the
entire unit had been tallied. However, it may be desirable to consider the
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“within sampling unit” variability in order to do a more efficient job of
designing the survey. This requires more complex equations which are given
in many books on sampling [e.g., Cochran (1977), Thompson (1992)].

Another useful techniqgue uses unequal probabilities in selecting
samples. This approach is exemplified by the line intercept technique
described in Chapter 5, and may be useful in any circumstance where the
probability of selection may vary from unit to unit, either naturally or for
convenience or improved efficiency. Texts or references to sampling
technigues may refer to the Hansen-Hurwitz estimator. This is a method for
using unequal sampling probabilities (see any of the sampling texts for
details).

A relatively recent development is known as adaptive sampling. This
may be a very useful approach when items of interest tend to be clustered, but
in such a manner that there is no readily defined unit that contains all of the
elements of a cluster. The technique provides a means for expanding the
sampled area around primary units where a concentration of the items of
interest is encountered, without biasing the results (which occurs with
certainty if one simply expands the area to include more individuals). Details
appear in Part IV of Thompson (1992) and a more extensive (and more
theoretical) treatment appears in Thompson and Seber (1996).

Another potentially valuable approach is generally known as “kriging”
after the South African mining engineer, Krige, who developed the initial
approach in searching for profitable sites for mining for gold or other
minerals. The approach is now used in petroleum exploration. In both of these
examples drilling exploratory holes can be very expensive and time-
consuming. The methodology thus utilizes spatial correlations among the
available samples to estimate abundance or density on an area. A natural
descriptive phrase thus is “spatial sampling”, and there are many instances
where this may be useful in ecology. Thompson (1992:Part V) gives a useful
summary and references to the extensive literature.

4.17 Exercises
4.17.1 Using a table of random numbers

Drawing a sample with the aid of a table @ndom numbers isnot very
complicated, but the student should try drawing asample of 10individuals
from apopulation o0f20, and another sample of 10 from gopulation 0of1000
(the "populations" can be just theumbers 1-20, and 1-1000). Two approaches
to starting points in the table may beconsidered. One is tosomehow make a
"random" stat, (e.g., by closing one's eyes andtouching apoint on a page to
select random coordinates in the table for a starting point) the other i aok
off sets of digits asthey are used, going on through the table asdifferent
occasions for its use come up. Theatter course ispreferable for repeated
surveys ofthe same areas.Note that samples of 1®ut of asmall population
(like 20) may vyield one or morerepetitions ofrandom numbers. Notice, too,
that one has taise a two digitcolumn of numbers, and many must berejected
with a population of20. This seems to beeven more of aproblem with the
population of 1000, since one should use 4 digits in ordepetonit the number
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1000 to have a chance to lrkawn. However, itis simple toarbitrarily assign
the number 1000 to the 3 digit sequence 000 and thus use tlmeenns (001 to
999, plus 000 for 1000). When working with EXCEL it is convenient touse the
RANDBETWEEN() function, asthat avoids the need tose atable of random
numbers.

4.17.2 Determining sample size

Suppose that we wan®5% confidence limits of about _+15% for the data in
Example 4.1. Whatsample size isrequired if N=1000? Calculate samplesize for
+10% for N = 1000.

4.17.3 An exercise in allocation

As an exercise inallocation, use the values of §2 actually obtained in

the caribou survey in Example 4.5 twalculate anew allocation and compare it
with that actually used.

Another way to guessat the S to use for allocation is toassume the

coefficient of variation (s-/x) is constant. Calculate the c.v.'s for eaztratum,
and try a"typical® values for allocations. Are there substantial differences
between the various schemes? Comment on the results.

4.17.4 Computations for mortality survey

Compute _yst and thetotal mortality estimate for Example 4.4 along with

95% confidence limits. It is often convenient touse 2[V(§/ s»[)]1/2/31 st as

"percentage limits"on survey results.Compute thatvalue andcompare itwith
the same result for example 4.3.

4.17.5 Stratified sampling in a vegetation study

A survey designed tostimate biomass ofnon-woody vegetation in a
sagebrush stand (Eberhardt andRickard 1963) provides an example of a
different approach to stratification and illustrates some of the potential
flexibility of sampling methods. Inthis example, proportional allocation was
used in order to avoicadvance preparations other than marking out the area
well enough toavoid recounting individual plants. Two investigators worked
together, one classifying and tallying each sagebrush plantinto one offive
strata, while the other checked offeach plant ongraph paper on which
certain squares had previously been randomly selected asrepresenting a
plant to be sampled (iwwas thought that about 1/30 of thebushes should be
sampled, so three numbers from 1-90 were desighatetheaming”sample” and
a table ofrandom numbers was used tgproduce the sampling chart). When a
"winner" turned up, the bush was subdivided into from two to five parts, and
one of the parts was randomly selected. If that partwas too large for
weighing, it was subdivided and arandom selection agaimade. Theselected
portion was than clipped, oven-dried and weighed.
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Data from thesurvey are tabulated below. The "subsampling fractions"
show approximately how much of anindividual plant was actually removed.
In the first record in the table, about 1/4was removed, while inthe second
case there were two sub-divisions, and roughly 1/1Q(1/5) times (1/2)] was
actually removed. Thus to stimate total weight for a given plant one would
multiply by 4 or 10. Stratum IV contained the largest plants and tihe plants
actually sampled were sampled at rates /b6 and 1/28,respectively. Of
course the divisions were not exact but any errors in subdividing will enter
into overall variance ofthe survey estimates. There was actually a fifth
stratum, but only one plant was samled, soit has been left out of the
tabulation.

As an exercise, the student should work out an estimate of meanoven-
dry material and itsvariance for the entire sagebrush stand using thedata in
Table 3.I. Calculate anoptimum allocation for a sample of thesize usedhere
(25), and compare withthe proportional allocation (neglect the fpc). Calculate
coefficients of variation. Comment on the results.

Results of stratified sampling of a sagebrush stand.

Stratum Number of bushes Subsampling Oven-dry
in stratum fractions for weight of
sampled bushes sample (9)
I 169 1/4 0.60
1/5,1/2 1.90
1/2,1/2 2.05
1/2,1/2 1.05
1/2 1.20
Il 309 1/4,1/2 1.60
1/5,1/4 3.20
1/5,1/5 1.45
1/3,1/3 4.05
1/3 2.05
1/3,1/2 1.45
1/4,1/4 2.40
1/3,1/2 1.65
1/3,1/4 0.60
i 301 1/5,1/4 1.85
1/5,1/2 2.85
1/5,1/4 7.15
1/5,1/3 2.15
1/3,1/4 4.10
1/4,1/5 3.50
1/4,1/3 5.25
1/5,1/3 5.60
1/3,1/3 1.55
v 57 1/8,1/7 6.05

1/7,1/4 3.60
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4.17.6 Try jackknifing to calculate a standard error for Example 4.6. Compare
your result with that given in the Example (661). Also, calculate bias estimates

for R using jackknifing and bootstrapping. Use 200 bootstraps. There is only
one jackknife estimate of bias available, but you can run the bootstrap
repeatedly and see how the bias changes. Comment on your results. Don't
forget to consider the magnitude of the bias relative to the estimate.

4.17.7 Bootstrap the data for August 26 (n=25) from Example 4.8 and compare
your results with the ratio estimators N-hat(2) and V(N-hat(2)) given in the
example, and with the binomial variance estimate given below. Do 200
bootstraps and calculate Bias(boot) from eq.(3.2). Run repeatedly and see how
Bias(boot) varies. Is there an indication of appreciable bias? Recall that when
simple random sampling of individuals is assumed:

v(p) = pa/(n-1)

where n here is 2500. The difference in the two estimates reveals why the
binomial formula should never be used with cluster samples.

4.17.8 Try jackknifing the “interpenetrating sampling” results of Example 4.8,
and compare the variance you get with that given in the example. Explain the
results.
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5.0 TRANSECT METHODS
5.1 Introduction

One of themain handicaps faced by thepracticing population ecologist
is that there really is nowholly reliable census method for most wild animal
populations. In spite of the intensive theoretical work done on capture-
recapture methods, there yet remain various unresolved issues. Hence, as
frequently remarked here, it is essential tase more han one method,and to
do as much cross-checking and testing of assumptions agossible. Itis, of
course, easy torecommend such a course,but very difficult to follow it. For
census methodsthe only suretest of the underlying assumptions may ifact
be to secure an absote population count. Even hen we are left with the
guestion ofsampling errors--an observed discrepancy maysimply be due to
chance alone.

Since the capture-recapture methods require at least one outright
capture of asample ofanimals, followed by one or morerepeat observations
(which may be visual only), they areecessarily expensive touse in practice.
Catch- effort and change-in-ratio methods can only beused effectively on a
harvested population. These limitations lead to aneed for amethod based
solely on visual observatiosince it is often relatively inexpensive andrarely
poses any threat to thpopulation. For these reasons, and no doubtbecause of
wider recognition ofthe difficulties with other methods,there has recently
been a considerable interest in transect methods.

One of thebrighter pospects forthe future of transect methods isthat
it may be possible toavoid the ifall posed by the "equal probability of
selection” assumption required toapply elementary probability models.
Unfortunately, some of the early work on transect methods included an
equally untenable assumption, that individual animals are randomly and
independently distributed over the study area. prefer toadopt the working
axiom that this is never the case, even when tests for departure fremisaon
distribution are "not significant." | will cheerfully abadon that viewpoint
whenever the power of a test of randomness can be shown tsuibably large.
Presently, arandom distribution of individuals may have to be assumed for
various features of secondaryimportance, such asobtaining anapproximate
notion (really alower Ilimit) of a variance for an estimate. However,
bootstrapping offers promise for better variance estimates, with less
difficulty.

Avoiding the assumption ofa random sptial pattern ofindividuals
requires that we substitute random bkation of transect lies. Systematically
spaced lines arenuch easier taise andhave other practical advantages. Not
the least ofthese is thefact that randomly located lines ray fall very close
together sothat running one such line caninfluence animals on anearby
line. Some waysto avoid this problem are discussedbelow. Although we will
not try to govery deeply into the issuehere, itshould beremarked that the
choice between random and systematic sampling for transect methodst &s
simple a matter as for, say, plesampling. For plot sampling, two features are
of paramount importance. One is to avoid a systematic pattern that is
correlated \ith a similar pattern inthe material being sapled. The other is
that variances obtained fronsystematic samples usuallpverestimate the true
variance.
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Some of the transect estimators depend on a probability model htbéds
strictly true if and only if thetransect lines are indeedrandomly located. This
may place a considerable premium @dhering torandom sampling. Possibly
the effect of departing from that model may eventually turn out to beniafor
importance. Until more work has been done of the "robustness"” of the
estimators, wewill adhere tothe requirement ofrandom sampling, when this
is at all feasible. If very large areasare to be covered, it maynot be
practicable touse anything but a systematic amngement oftransect lines.
However, the most apprent problems \ith systematic samples apply to
situations of a much smaller scale, not when lines are very widely spaced.

5.2 A classification of transect methods

Terminology for transect methods isnot well-established. Wewill
adhere to ausage thatincludes three main classes. The strip-transect is
essentially a long narrowplot, on which it is basically assumed thatall of the
individuals present can be seen andallied. As such,there is noimportant
difference from plot sampling. Some modificationstend to make it more
interesting and worth special attention. These include censusing mrine
mammals atsea, when individuals may submerge for varying periods of time,
and thus escapeenumeration. Inmany transect applicationsthe mobility of
individual animals is neglected. This is not feasible for those species that are
observed when inmotion, such assmall birds. Thus another kind of
modification needs to be considered.

In most census methodsindividual objects are regarded aspoints
scattered around the map. Sometimes talsstraction either isnot practicable
or is inefficient. The investigator may bedirectly concerned with such
guantities as the canopy coverage of shrubs or the voluméogd left lying in
a cutover area. There is then an advantage in measuringsitieeof the object
intercepted by the line; hence the descriptive term of line-intercept method.

The third class is perhaps bestknown, and includesthe methods in
which decreasing visibility of objects wth distance away from the transect
line has to be aken into account. We includeall such methodsunder the
general heading of line-transects. Some writerse the samderm to apply to
both strip- transects and line-intercepts. The terminology adopted here has
the advantage of being reasonably explicit in descriptive terms.

Where mobile animals are concerned, onemportant distinction lies in
whether or not the animalesponds conspicuouslyo the observer's approach.
One can hen measurethe flushing- distance, i.e., the straigh-line distance
between observer and animal the time theanimal "jumps" or "flushes," i.e.,
leaves cover. This is alsdesignated inthe literature asthe radial distance or
as the sighting distance. It isessential, however, toalso measure the angle or
the right-angle distance (i.e., the distance between the track line and the
animal.

When detectiondepends mainly on the observer locating the animal or
other object without the help of a flushing-response, there is reasohetoeve
(cf. Robinette et al., 1974) that thBushing-distance models may not hold, and
may leadto biased estimates. Aslternate approach imuch cases is based on
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use of right-angle distances. It is tha useful to consider adichotomous
approach (Fig. 5.1) tothe several classes ofmethods. It should helpreaders
keep the various circumstances and conditideading to theseveral classes of
methods in mind. Aecent development inwhich the observer remains at a
point and estimates distances tsurrounding objectshas been known as the
variable circular plot, and islargely treated by methodsused for right-angle
transects.

Large .
— — Line intercept
individuals
methods
Mobility
[ not
Numerous important
_ rquﬂy Individuals
Visible idealized to
individuals _a it Strip transect
P methods
Mobility
_important
Searching B
[ by observer Mo.d|f|ed
strip transect
Visible methods
Individuals intermittently
on Always visible Right angle
“at short range line transects

Flushing probability
[ depends on distance frm

observer
Conspicuous -
| response by Elushmg distance
animal line transects
(flushing)

Fixed flushing
" radius

Fig. 5.1. A classification of transect methods.
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5.3 The line-intercept method

The line-intercept technique has been used by plant ecolpists for
many years as a means of estimating "canopy-coverage." |Initlsdance, the
basis issimple and direct. All that isnecessary igo measure the fraction of
the total length of a given transect line that actually intercepts shrub
canopies. The armangement can be depicted as ifig 5.2, which represents a
rectangular study areéhaving dimensions Wand L, with asingle transect (of
length, L) intercepting two shrubsfor one ofwhich the appropriate canopy-
coverage measurement () is indicated. The technique can also be used for

tree canopies by sighting upwards to find the margins of the canopy.

J
L T
|
s
Transect
line
v
< W >

FIG. 5.2 Dimensions used in the line-intercept method. The shaded areas
represent shrub canopies.

An unbiased estimate of canopyoverage is justthe sum of the jl
observed onall of the transect lines divided by the total length of transects
used. Unless there issome sort ofregular pattern inthe armangement of the
shrubs, very likely a systematic spacing oflines should not causetrouble in
this situation. Werepeat, however, that the basis of theesults given in this
chapter lies in randomized location of transect lines.
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Two minor points may cause some trouble in actpaactice. One isthat
the boundaries ofthe study area mayintersect some shrubs. Auseful rule,
that should be decided on before the area is laid out, ind¢tude such plants if
they occur on, say,the northern andeastern boundary and exclug@ them on
the other twoboundaries. The second comon problem isthat many useful
natural study areas (e.g., habitat types) are very irregular in shape. Aneasy
way to deal ith this kind of situation is to proceed as ifrig. 5.3. All that is
needed is daseline Wthat runs the fulllength of the area, and tatilize
transects of variable length (L with this length measuredonly within the

study area. The calculations are illustrated in Example 5.1.

Fig. 5.3. Line-intercepts on an irregularly shaped area.

Estimates of the numbers or density (number per unit area) of
individual plants have usually not been nade by the plant ecolégfs in their
use of the method. However, there is asimple way to obtain an unbiased
estimate of density,although it "costs" an additional measurement. /Aiased
estimate can be obtainewithout an extra measurement, and will be described
first. Mclntyre (1953) investigated the useof the measurement jlfor density
estimation, and proposed severalpossible procedures. In usingthe length of
the transect interception (J), he considered that the shrubs could be
represented by population ofcircles of varying diameter. Given random
interceptions, it islen easy toderive atheoretical expession for length of
intercepts which leads to the equation for density:

dzﬁf% (5.1)

in which n stands for the number of transectsof length Land m for the
number of shrubs actuallyintercepted (foreach ofwhich Ij is measured). As
already noted, thetransects dmot have to be of the saméength. The only
change is to replace nL b¥ Ljin the denominator above.
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Same trials with an artificial population led Mcintyre (1953) tosuggest
that his method might @l be useful for objects other than circles. Very
likely the best results will beobtained for objecs with smooth boundaries and
few indentations or "scalloped" edges. This is because Eq. (5.1) ressEprocals
of the | so that a few very short easurements will have adisproportionately
large effect onthe estimate. Toavoid this problem, Mcintyre recommended
using the longest chord parallel tothe transect line (and another equation).
However, some better procedures are given below. Eq.(5.1) should mainly be
used for anapproximate notion of density whencanopy coverage isthe main
purpose of the survey and an extra measurement is not justified.

An interesting alternative toMclintyre's approach can be described as
"needle sampling” (DeVries 1974). It was originally developed for
inventorying logs lying onthe ground in cut-over aas. Instead of acircle,
the object now is defined as a "needle" (which canirscribed in avariety of
only roughly elongate objects) and the famous results of "Buffon's nedle
problem” wused toobtain a density estimate.The chief drawback isthat the
needles need to beoriented randomly, an assumption that may well be
guestioned in practice. More details appear in Example 5.2.

Exampl e 5.1 Censusing prairie-dog dens

Line-intercepts were used to estimate the nunber of dens in a
prairie- dog (Cynonys |udovicianus) colony by Eberhardt (1978b). The
colony was elliptical in shape, with a | ong di nension of about 700 m and
a maxi mum wi dth of about 500 m A systematic sanple was used, with 9
transects spaced 66 m apart, and running across the narrower dinmension
of the area. The earth nmounds at each den served in the same manner as
shrub canopies in the usual application of the line-intercept nethod.

For each nound intercepted by the transect |ine, neasurenents of the
length of the interception (Ij) and the mound width (w), as shown in
Figure 5.2. It should be noted that wf is taken so as to neasure the
probability of interception for the nound, i.e., it is the distance

bet ween transects that just touch the right- and left-hand extrenities
of the nound.

The individual observations appear in Table 5.1, which also
i ncludes the distance between nound centers, or, at the ends of
transects, the distance to the edge of the area grazed by the prairie
dogs. This was regarded as the boundary of the study area.
Calculations of density are thus for the grazed area immediately
surroundi ng the mounds. Cal cul ations on the basic data are summuarized
in Table 5.2. Proportion of the area covered by nounds is easily
estimated, being just the total length of intercepts divided by the
total length of transect lines. Thus for the first transect, it is:

ip= 6.12/228.69= 0.027.

For the entire area, the proportion covered is just the sum of all
i ntercepts divided by the sumof transect |engths:

A ZTj

F':Z_Li = 115.36/3578.9= 0.0322.

This is a ratio estimate, for which a variance estinmate is given in
Chapter 4. Here Tj represents the total length of intercepts on the ith

transect, i.e., T1 = 6.12 m The numerator could just as well be
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witten ZjZ |jj, where j denotes observations on a transect and i

denotes the transect, but using the transect totals nmakes it easy to see
that this expression has the same form as the ratio estimators of
Chapter 4.

The finite population correction is neglected here since a small
fraction of the popul ati on of nounds was actually tallied. Letting y =
total interceptions (Tj) and x = transect length (Lj), the calcul ations

are:

A 1 1
[CV(P)]2 == [oyy + Oxx - 20yx] = g [ 0.1426 + 0.1507 -2(0.1176)] = 0.00644

N

The estimated standard error for p is then just (0.00644) 1/2 (0.0322)
= 0.0032. The coefficients of variation are appreciably larger than
recommended (in Chapter 4) for use of the ratio nethod. W thus propose
that a sinple approach night be used here, i.e., conpute a variance
directly fromthe proportions covered of the individual transects. This
gives p = 0.0329 (averaging the transect values), with a standard error
of 0.0028, so there is little difference fromthe ratio estimate.

Since widths (wj) of the nounds were tallied, MlIntyre's nethod

for estimating density, Eq. (5.1), should not be used here. Apart from
the factor of 2/min the equation, calculations would proceed in exactly
the sane way as those utilizing widths, given next.

Al though | recommend random sanpling because nobst of the
estimation procedures in transect work are based on random transect
| ocations, the present exanple is one in which a systematic sanple was
t aken. This was done minly to study the pattern of spatial
di stribution of dens. Wth a systematic |ayout and distances between
dens (Table 5.1), one can study the spatial arrangenent of the dens.
This is much harder to do with random transect |ocations, since random
sanmpl es, especially relatively small ones, frequently |eave sizeable
gaps in spatial coverage.

In the present exanple, we can proceed in essentially the sane
manner for either random or systematic transect |ocations. The
rationale differs sonewhat, and needs to be nentioned for each case. It
may be noted, too, that neither Eq. (5.2) or (5.3) is usable here since
the transect lines are of variable length and the total area is not
known. Wen the transects are randomy |ocated, each individual
transect yields an independent estimate of density, which can be
calculated fromEq. (5.2), with n = 1. Using data from transect No. 1
(Table 5.1), we get (calculations in neters):

1 1 1 1
2287[381 3.12 10.86 10.81 112

] = 0.0169 dens/rh

The sane procedure can be used for each of the other transects,
and the remaining question is one of how to conbine 9 independent
estimates (assuming, for illustration, that the transects had been
randomy located along a baseline, as in Fig. 5.3). Aver agi ng, and
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conputing a variance from the individual transect values, is both
straightforward and | egitinmate.

The above procedure is often not very efficient, since it does not
take into account the variation in transect lengths. A logical way to
do this is just to weight the individual density estimtes by the
transect lengths, i.e., to calcul ate:

n
N N n
Bverall= LiDi /% Lj
i=1 i=1
which is a ratio estimate just as in Chapter 4.
For a systematic sanple, a somewhat different rationale mght be

used. This is because the wuniform spacing of the transects pernts
viewing the area as being broken down into a nunber of strips of equal

wi dt h. We then calculate an estimate of the number of dens in each
strip, sum these, and divide by the total area (obtained by sunm ng up
the area of the individual strips). The procedure turns out to give

exactly the same result as above, since a constant strip width is
i ntroduced in both nunerator and denom nator, and thus cancels out.

Using the data of Table 5.2 gives the follow ng density estinate.

" dVerall = 70.013/3578.9= 0.0196

The coefficient of variation is again estimated as in Chapter 4, wthout
the finite popul ation correction (for the reasons discussed above):

[CV( p)12 :nl [oyy + oxx - 20yx] = 1/9[0.1698+0.1507-2(-.042)]=0.0042

The standard error of the estimate is (0.0449) 1/2 (0.0196) =
0.0042. These results are very simlar to those for intercept |ength.
The above exanpl e might be converted into a prairie-dog census nmethod if
the nunber of prairie-dogs inhabiting a representative sanple of dens
could be estimated.

Table 5.1. Spacing (dj), intercept lengths (lIj) and nmound widths (w)
for 9 line-intercepts in a prairie-dog "town". Transect no. 1 was the
west ernmost transect. Spacing (dj) in neters, other neasurenents in cm
The first di is distance to first mound from nargin of the area and the
last di is distance from last nmound to the other nmargin of the study
ar ea.

#1 #2 #3

di Wi li di wi i di Wi li
2.84 381 127 16.06 130 74 138.0 124 107
46.3 312 114 6.62 290 236 39.69 117 104
39.69 86 152 27.4 132 96 67.1 218 124
5.67 81 84 6.62 109 74 9.45 168 58
20.79 112 135 35.91 401 224 1.89 160 74
113.4 612 124.74 282 160 34.02 368 157
228.69 41.58 274 213 27.4 198 38
28.35 1077 9.45 662

287.28 326.97



#4
di Wi
189.00 112
4.72 274
66.15 89
29.30 256
22.68 79
10.40 376
15.12 406
9.45 340
34.02 249
69.93 96
8.50 389
25.52 46
5.67 89
75.60
566.06
#7
di Wi
12.28 292
10.40 132
7.56 117
49.14 142
33.08 239
37.80 91
6.62 127
32.13 91
51.98 221
17.96 196
29.30 117
108.68 292
274.00 287
14.18 140
18.90
704.01

74.
170.
66.
185.
41.
208.
109.
203.
310.
81.
338.
46.

00
00
00
00
00
00
00
00
00
00
00
00

81.
1912.0

00

158

79
41

135
198

91

183

46

142
140

66

163
274
104
1820

di

68.
24.

#5

98
57

37.8

34.
23.
17.
.67
31.
20.
.56
20.
12.
72.
15.

02
62
01

18
79

79
28
76
12

22.

414.

di

28.
83.
77.
10.
11.
89.
43.

7.

2.
11.

68
83

#8

35
16
49
40
34
78
47
56
84
34

9.45

375.

18

Wi

76
350
127
196
140

61
117

86
175
229
163
274
201
198

Wi
109
163

84
142
330
249
325
198

74
147

58
244
74
76
107
58
112
89
168
203
163
193
160
109
1814

99
163
51
99
91
135
183
122
79
132
1154

#6
di wi
5.67 94
11.34 175
2.84 71
27.40 102
65.20 183
60.48 158
20.79 74
12.28 117
17.96 91
26.46 216
9.45 175
10.40 114
128.52 163
3.78 56
20.79
423.36
#9
di wi
19.84 183
26.46 102
7.56 84
15.12 300
5.67 277
46.3 112
39.69 56
40.64 66
11.34 86
1.89 244
37.8
252.31

59

81
170
84
79
74
132
48
112
48
119
122
81
53
112
1315

137
104
137
114
127
84
51
84
147
185
1170
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Table 5.2. Sumary of line intercept data for a prairie-dog "town"

Transect Length of Proportion of Number of Sum of Density
number of transect area covered mods intercepts estimates
Li by mounds irgrcepted Ti Di
1 228.7 0.027 5 6.12 0.0169
2 287.3 0.037 7 10.77 0.0131
3 327.0 0.020 7 6.62 0.0126
4 566.1 0.034 13 19.12 0.0174
5 414.8 0.044 14 18.14 0.0247
6 423.4 0.031 14 13.15 0.0303
7 704.1 0.026 14 18.20 0.0132
8 375.2 0.031 10 11.54 0.0186
9 252.3 0.046 10 11.70 0.0364
3578.9 94 115.36

Exampl e 5.2 "Needl e" sanpling

As with nost similar sanpling problens, this one is nost readily
conceptual i zed in reverse of what happens in practice. That is, we |ay
out the sanpling schenme and then introduce, at random the objects to be
sanpled. Here we suppose a systematic sanpling pattern of parallel
transect is laid out, and long, narrow objects of length |Ij ("needles")
are randomy distributed over the area. Let the spacing between the
objects be W and assune for sinplicity, that |j <W i.e., that none of
the "needles" is longer than the interval between transects. The
rel evant measurenments appear in the figure below. A "needle" of length
i is thrown randomy onto a field of parallel transect. The probability
that it intercepts a transect depends on w, which in turn depends on

the angle (6) that the needl e happens to assune.

V \TRANSECTS
i / ] w /

Di nensi ons used in "needl e" sanpling.

W can wite the probability of interception for a needle of given
length (Ij) as:

| _ wij lj cos®
P = Pr{interception} W W
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Since the angle (6) is assumed to be randomy determined, it has a

uni form di stribution between 0 and 900, or between 0 and 12 in radians.
Hence the frequency distribution of 0 is:

2
ej(= 9 (03]
The expected value of p is then:
2l nfz q _2Ii
E(P)—T[W Ocose e_n\N

If n needles are observed to intercept the transects, a sinple estinate
of the total nunber (N) of needles in the sanmpled population is:

nmw 11

2 'Z [
i=1

and the estinated density of needles is:
n

o= M <1

L&

The main problemwith the nethod is that it is seldomsafe to assune
that the needles are randomy distributed. W thus reconmend measuri ng
wj directly, and utilizing the equations given in the text for density
estimation based on wj. Students who want a denonstration of the nethod
can readily construct one with a handful of kitchen matches scattered on
a hardwood or tiled floor.

N
N= nfp =

5.4 Length-biased sampling

The main issue in estimating shrub density from canopy measurement
is one that is ommon to avery much wider class ofsampling problems. Cox
(1962, 1969)has used thehighly descriptive érm "length-biased sampling" to
characterize procedures inwhich the probability of sampling aparticular
element inthe population isproportional tosome dimension ofthat element.
Such a sample idy no means representative othe population, being very
much biased towards individuals having the great&ngths." Inthe present
case, it is readily evident (Fig. 5.2) that thprobability that agiven shrub will
be included in a sample taken by thetercept method depends on hoWwide"
it is with respect tothe baseline (W) ofthe study area. The relevant
measurement orthe shrub is thus w(Fig. 5.2). It should be noted that wi is

the distance between tangent lingsawn parallelto the transect atthe right-
and left-hand extremities of the canopy.

The probability that agiven shrub will be intercepted bythe transect
line is just w/W, on either Fig. 5.2 or 5.3. By measuring &ccurately, one can
thus determine the exact probability that agiven shrub intercepted by the
transect wuld be observed, beforethe transect line was selected. Given the
probability of interception for each element observed inthe sample, a
straightforward argument can be constructed toderive a density estimate
(Eberhardt 1978b). The principal equation is:

1 &1
1=1 "7
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As in Eqg. 5.1, m isthe number of objects interceptedand measured) on
n transect lines randomly placed in a rectangular area of dimensions W and L.

When the study area is not rectangular, a baseline W camoletructed
as indicated in connection with Fig. 5.3, and density estimated from:

g-Wel

5.3
nA =1 \NI ( )

where A represents the area of the study plot expressed in the same units
(e.g., square meters) as the linear measurementsarfd W). A useful

approach when the area is not known is given in Example 5.1, which also
illustrates variance calculations. Estimates of N, the total population are, of
course, readily obtained from Egs. 5.1 to 5.3 by multiplying by the area.

Lucas and Seber (1977) have derived equations comparable tothose
above, butuse adifferent transectlayout. They require that the transects be
of short length, and both randomly located and randomly oriented with
respect tothe baseline. They obtain theoretical variance formulasfor some
circumstances. However, in the present state of theoretical and practical
knowledge, itseems advisable touse variances estimated from replicated or
interpenetrating sampling, as in &ction 5.12 (below), or bythe ratio method
of Example 5.1.

The above method can be extended to deal with objetker than shrub
canopies, and toaggregations ofanimals or patchesof vegetation, sodong as
the identity and boundaries of each such "object® can be uniquely defined. It is
also possible tosubstantially elarge the area forinterception of agiven
object. A method for doing this iswell-known to foresters asBitterlich's
method. An"angle-gauge" isused todetermine whether omot the apparent
diameter of a treeis greater han afixed angle, and thus whether ornot the
tree should be included in a sample. Readers fantiliar with the method can
simulate the field operation by extending an arnwith the thumb in an
upright position. If portions of anobject (tree, rock, sign,etc.) protrude on
both sides of one'shumb, then that object is"in" the sample. If theobserver
now moves away fromthe object until itsmargins just barely protrude beyond
the sides of the "gauge" (thumb), then that position delineatesbthendary of
the interception area (Fig. 4. Circular objects like treeswill have acircular
boundary, but irregular objects will have an asymmetric boundary.
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ANGLE GAUGE

Fig. 5.4. Use of an"angle-gauge". Objects are "in" the sample when, as in(a),
the sidesprotrude beyond the gauge. Whenthe gauge blocksthe object from
view, as in (b), then it is not included in the sample.

Although Bitterlich's method isnormally used only at fixed sampling
points, it can be utilized as a transect method, as was proposed by %ira&8).
However, this will usually only be practicabléor relatively rare objects, since
"intersection” has to bedetermined byuse of anangle- gauge aseach object
comes into a right-anglegposition onthe transect line. The method might thus
be most useful for something like a survey of den-trees in wildlife
management.

Density may not be the main objective in some studies. When the
volume, weight, orsome other measurement is to bestimated, a simpleratio
method can be used, and illustrated in Example 5.3.
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Exanpl e 5.3 Auxiliary neasurenents

Oten the primary objective of a study will be to estinate sone
attribute other than density, or in addition to density. Thus foresters
are usually also concerned with basal area and volume of tinber, while
ecol ogists often want to estinmate the biomass (total Weight) of

veget ation. Met hods for securing such estimates by ratio estinmation
were given in Chapter 4. A related nethod based on line-intercepts can
readily be derived. Let Xj be the "auxiliary" neasurenment, such as

wei ght or volunme of the ith obj ect intercepted. A well-known way to
estimate the average value of a sanple of such objects is sinply to
"wei ght" each object inversely as the probability that it is included in
the sanple. Since this probability is proportional to w, we get the

_ 10
mlzlvvi
sinple result:

If the above estinmate is regarded as the estinmated average on the

jth transect, then variable transect | engths can be adjusted for just as
was done in Exanple 5.1, i.e.,:

and the sane approach can be taken to obtaining a variance estimate
(ratio nethod).

5.5 Flushing-distance line transects

In the line-transect method, the objects being censusedare considered
to be dimensionless points, and the probability of detection isassumed to be
measured by use of distances between observer and object. t8ogponometry
is involved, based on the distances and angle illustratedrign 5.5. Just which
measurements are taken will depend considerably onthe particular field
situation. The essential reasurements for most puposes are r, the sighting-
distance (also called radial distance or flushinglistance), and x, the right-
angle distance. From simple trigonometry, any pair of the possible
measurements can be used ¢alculate the ohers. However,precautions need
to be taken to avoid measurement errors. | strongdgommend against visual
estimation of either distances or the included ang. (
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Fig. 5.5. Relevant measurements for the line-transect method. The vertical
arrow shows the observer's path along a transect line.

In the flushing-distance model, the distance (r) between observer and
animal atthe time theanimal flushes isthe essential measurement. Since a
test of the vality of the model is based om/r (which isthe sine of@), these
distances need to be measured as accurately as possible. When theangfte
distance method (described below) is used, only the distance x isutilized. A
model for evaluatingrelative errors in raasurements islescribed inExample
5.4.

Two basic flushing-distance line transect models have been proposed
(Eberhardt 1968b). In one model it imssumed thatthe flushing-distance is
fixed, i.e., that the individual animal flushes asoon as theobserver crosses
the boundary of a circlewith radius equal to thisfixed distance. This model is
due to Hayne (1949), who noted that the fixed distance doesnot need to be
assumed to be germanent characteristic ofthe individual anmal. The
necessary assymiion is that each animal on acensus area has a fixed
flushing- distance during the ntie when agiven randomly located transect is
run. In many circumstances iseems quitelikely that the flushing-distance
will depend very much omharacteristics othe particular location inwhich
an animal is resting.

The fixed-distance model permits a simple and direct analysis,
proceeding inthe samemanner asfor the line intercept method. The shrub
canopy is now replaced by circle of radius r,and it is assumed that the
flushing distance (r) is measured accurately foreach animal seen. It isalso
assumed thatanimals flush mdependently, i.e., that statling one animal does
not change the behavior of thethers. Analysisof the fixed flushing-distance
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model ten requires only noting that wj =2rj that is, wj is the diameter of a
circle of radius f In analogy with Eq. (5.2), we now have:

_ 121

=_— 5.4
2nL &, (5-4)

with n the number of transects and m the number of observations as before.
Irregular-shaped census areas can also be dealt with in the same manner as
with line intercepts.

In some casesgroups of animals may flushtogether, aswith broods of
grouse, orflocks of small birds. If it can beshown, from field data, that
flushing radius and goup size are independent, it may beossible touse Egq.
(5.4) to estimate the density of groups and multiply that estimate by aerage
group size. |If goup size and flushing radius are correlated, one can still
estimate the number of goups, but the average ofgroup sizes is abiased
estimator of the population mean.

As Hayne (1949) indicated, the expected flushing angle is 32.2. A
variety of field studieshave yielded averageangles tlat are close tothis value
for animals that "flush." Robinette etal. (1974), working mostly with animals
that do not flsh and inanimate objects, obtained wider mean angles. The
underlying theory (cf. Eberhardt 1978b) shows that the frequency
distribution of the ratio (x/r) of right-angle distances (x) toflushing-
distances (r) should be that of theuniform distribution. Hence a simplechi-
square test (Example 5.5) can be usedcheck onthe valdity of the model. |If
the test shows significant deviations from the hypothesis of auniform
distribution of x/r, then the best advice presently available is toutilize right-
angle distances, as described below.

In the second model it isassumed thatthe instantaneous probability of
flushing is a function of the current distance betweebserver and anmal. It
seems quitereasonable tassume flushing probability toincrease steadily as
the observer approaches, being nearly zero at a long distance and
approaching unity inthe immediate neighborhood ofthe animal. One might
expect that ananimal registers avariety of auditory and visual cues from an
observer's approach, and that tlke&mulative effectof those cuesresults in an
increased probability of flushing. Such a model isconveniently labelled the
variable- distance model.

It does not sem likely that the two models can beistinguished on the
basis of field observations. Either will lead to a frequency distribution of
flushing distances, beingbased on gopulation distribution of flushing radii
in the fixed-distance model, and on realizations of ®bability model in the
variable-distance case. Details of the theory appear inEberhardt (1978a), and
lead to the conclusion that Eq. (5.4) should be used dioimals that flush. The
theory also shows thatlushing-distance (r) and flushing-angle @) should be
independently distribetd. Hence a usefufurther check ofconformity to the
flushing-distance model is to plot r ande to see if there isany suggestion of
association. Spearman'srank correlation coefficient might beused to test for
correlation between r and (see, for example, Snedecor and Cochran 1967).
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The fixed-distance model can heed to showthat there appears to be a
loss of efficiency (i.e., alarger variance results) if right-angle distances are
used when the flushing-distance model holds. Itshould be noted that the
current authoritative referencen “distance sampling” (Buckland etal. 1993)
has dropped the idea of using sighting distances. Thmawarked that “Hayne’s
(1949) method is poor ifd is not approximately 32°7and maynot perform well

even if O falls close to thisvalue, i.e., isnot arobust method.” Consequently
they use only right-angle distances.

Exanple 5.4 Errors of measurement in |line transects

VWherever possible, the relevant neasurenent for |line transect
estimation should be neasured directly and as accurately as possible.
However, it nmay at tines be necessary to calculate the appropriate

neasurenent by trigononetry on the pairs of the neasurenents of Fig.
5.5.  Anyone doing this should be aware that the effect of increnental
errors may vary considerably, depending on the particular pairs used.
Suppose 6 and x (Fig. 5.5) are nmeasured and r is calculated as r = x sin
6. Then we note that dr = x cos 6 dB, so that an increnental error (d6)
in measuring 6 results in a corresponding increnental error (dr) in the
estimate of r. The absolute relative error inr is:

dr _cos6
_rH sin 9 o
Cc0s6 Cc0s6
— 0 = " = =

when 8 5,Slne 11.43while for 8 = 450Slne 1,and for 6 =600,
c0s 6 .
sin 6 = 0.58.Consequently, errors at small angles can have rather serious
ef fects.

The above approach can be used to eval uate other arrangenents, and
a logical extension would be to explore the effects of errors on the
final estimate by incorporating the theoretical frequency distribution.

Doing so in detail calls for a know edge of likely increnmental errors
(dB) at various angles, but this has not been investigated yet, to ny
know edge. However, since the theoretical frequency distribution of
angles is proportional to cos 6 (Eberhardt 1978b), it is obvious that

errors at small angles ought to be avoi ded.

Too often, field data show evidence of gross errors. These appear
in histogram plots of angles and distances as a tendency for
measurenents to pile up at angle like 00, 300, 459 and 90° and for
di stances to be sinmlarly grouped. "Trial runs" or pilot surveys are
useful devices for catching such tendencies and training observers.

5.6 Right-angle distance line transects

When detection depends onthe observer, it is unlikely that the
flushing-distance (now sighting-distance) models can be expected to hold. The
major summary of field experience isthat of Robinette etal. (1974) and
suggests that thesemodels do not hold foranimals that do not flsh and for
some inanimate objects. One prospect that needs study is that themanner in
which dbservers scan ahead as theymove along the transect may well
influence the data. For theresent, the safestcourse incircumstances where
detection depends othe observer is toresort touse ofright-angle distances,
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and, as notedabove, only theuse ofright-angle distances isrecommended in
the recent literature (Buckland etal. 1993). This may wall require larger
samples because of aadded component of variability in usingright-angle
distances. Hence the need for research todetermine whether sighting-
distance models might be used, suitable precautionsare taken (in particular,
advance surveys should show that the mean sighting angle is very clo82.70
degrees). As noted above, only the use of right-angle distances is
recommended in the recent literature (Buckland et al. 1993).

Supposing that the conservative course is chosen,i.e., that the right-
angle distancesare to be usedthere then isthe question of how toestimate
density from such data.

A convenient frame of reference is that of Eberhardt (1968b). ayain
suppose thatthe study area igectangular inshape as inFig. 5.6 with a
baseline of length W. It imssumed thatvirtually all of the observations made
from a given transect line (represented by the solid line in Fig. 5.6) vathin
a distance Z on either side of theansect line, and thusvithin the shaded area
of Fig. 5.6. Hence if Zis smallrelative to W wecan neglect most boundary
problems. As suggestedbefore, one can adopt the convention that
observations mde outside the studwrea on twoboundaries will be included,
and those outside of the other twmoundaries will be neglected. Sdong as Zis
guite small relative to Wthis approach should serve todeal wth irregular
shaped areas. To simplify the presentation, we now "fold" lgfe-hand side of
the shaded area over onto theight-hand side and depict the actual
observations ofpositions of observedindividuals as inFig. 5.7. If we then
project these positions down onto abaseline, as shown blines in Fig 5.7, we
can analyze the data in terms of right-angle distances alone. The
mathematical results thenused (Eberhardt 1968b) arthose of Parzen (1972).
However, instead of arintensity function,” weuse a"visibility curve,” g(x),
as in Fig. 5.8. Theessential featuresare that theprobability of sighting an
animal directly onthe transect line shall beunity (g(o) =1.0), and that the
curve decrease smoothlyaway from the transect line. Further theoretical
details appear inBurnham and Anderson (1976) ,Eberhardt (1968, 1978b) and
in Buckland et al. (1993).
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Fig. 5.6. Restricted area (shaded) used in many right-angle line transect
methods.
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Fig. 5.7. Projection of observed positions on to a baseline.
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Fig. 5.8. A"visibility curve", g(x), showing truncation imposed byneglecting
observations beyond z.

The visibility curve of Fig. 5.8 is hen the underlying model that
generates the actual right-angle distances associated with a particular
transect, represented by projecting to the baseline of Fig. 5.7. The position of Z
in Figures 5.6 to 5.8 isarbitrary. Itneeds to be such thamnost, but not all, of
the actual observationdall to the left of Z,when the entire set of datafrom a
given study are considered. The actual selection of Z will be discussed below.

The visibility curve isnot itself afrequency distribution, but it can be
converted tosuch adistribution if it is divided by a constant that is the
integral of g(x), asshown by Burnham ad Anderson (1976) and Eberhardt
(1978b). Thus we have:

f(x) Q}ﬁﬁ (< x w) (5.5)

o)
where §= J g(x) dx

x=0

A simple example of aisibility curve isthe negative exponential as

used by Gates et al(1968) and Gates 1969). They found that it fitted data on
flushing of ruffed grouse (Bonasa umbellus) quite satisfactorily, and gave
estimating equations for both flushing-distance anight-angle distance data.
An objection tothis curve, however, isthat it drops off at aconstant rate. As
suggested byEberhardt (1968b), a more dgical curve would be onethat is
nearly flat near the transect line, dropping off sharply some distance from
the line, and hen "tailing off* more gradually. Such acurve accommodates
both the realistic assumtion that anarrow strip censusis feasible (i.e., that
nearly all animals will be seen on anarrow strip centered onthe transect
line) and the observational fact that afew animals are seen at some
considerable distances from the transect line. One curve fitting this
requirement isthe "reversed logstic" proposed by Eberhardt (1968) and
described in more detail by Eberhardt (1978b).
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The negative exponential curve has one pameter while the reversed
logistic has two. If one parameter of tHatter curve is very sdll, it becomes
virtually indistinguishable from the negative exponential. This property was
used by Eberhardt (1978b) toexplore the effect of small deviation from the
negative exponential onthe resulting density estimates. The simulations
conducted byEberhardt (1978b) vyielded biaseqoverestimates) of 1percent
and 50 percent if the true model were one of the tewersed logistics but the
negative exponential were assumed to be the appropmatdel. Consequently
we do not recommend assumption of the negative exponential model.

A variety of other models have been proposed ithe literature. The
half-normal (Henngway 1971) is aone-parameter model having the shape
suggested above asappropriate. Anderson etal. (1978) have proposed #&og-
linear model, while Pollack (1978) presents an exponential power seniedel.
Both of these "families” of models include the negative exponential and half-
normal and provide considerable flexibility. The immediate problem is éack
of published experiencecovering avariety of field data. We will thus not try
to make any specific recommendations about the use of particular frequency
distributions.

One of the several recent developments in frequency dstribution
models is the"Fourier Series" estimator o€rain etal. (1978). It provides a
highly flexible model tlat may beexpected togive very good fits to field data.
Both theoretical and simulatiostudies wereemployed byCrain etal. (1978) to
show that the method harelatively small bas andhigh efficiency. That work
has been followed upin detail, with several new models, and theresults
published in “Distance Sampling” by S. T.Buckland, D. R.Anderson, K. P.
Burnham, and J. L. Laake (1993).Computations are available inthe program
DISTANCE which is available on the worldwide web along with a
comprehensive manual and the full text of the book by Buckland et al.

Exanmpl e 5.5 Testing flushing-angles

A sinple test is available to check whether observed angles are in

conformity with the underlying theory. The test is actually based on
the distribution of sinB, and holds for either the fixed or variable
flushing- distance nodel (Eberhardt 1978b). It is, however, nost
readily derived for the fixed flushing distance nodel. From Fig. 5.5,
sin 8 = x/r. Consider a fixed flushing radius of r. G ven that the

animal is flushed (i.e., that the transect passes through a circle of
radius r about the animal), and that transects are randomy located, it
is evident that x will take on any distance between o and r with equal
probability. Hence the distribution of x/r is uniformover the interval
O0tol. A sinple test is then a chi-square test. Divide the interval
fromO to 1 into equal sub-intervals, with the nunber selected so that
the small est expected nunber is about 5, and tally the observations of
x/r by intervals. An exanple (from Eberhardt 1978b), appears in Table
5.3.

There are 84 observations, and 10 subintervals were used, so that
the expected nunber in each interval is 8.4. The chi-square test is
t hen:
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10 _ )
Chi - souare =y [ observed n:r:ber 8.4
1=1 .

It is worthwhile to tabul ate individual deviations and chi-square
calculations (as in Table 5.3), so that any aberrant observations can be
identified if the test shows statistical significance. |In the present
exanpl e, the chi-square value (10.73) is well below the 95 percent
significance |level (18.31) for 10 degrees of freedom Students shoul d
note that 10 degrees of freedom are used here, because the expected

val ue i s obtained i ndependently fromthe data.

Table 5.3 Chi-square test for uniformty of sin 6 data for a census of
t he side-blotched lizard.

Interval Nunber of Deviations from Chi-square
(simd@ = x/r) observations expected numbervalue

0.00-0.10 10 +1.6 0.30
0.10-0.20 7 -1.4 0.23
0.20-0.30 8 -0.4 0.02
0.30-0.40 15 +6.6 5.18
0.40-0.50 10 +1.6 0.30
0.50-0.60 10 +1.6 0.30
0.60-0.70 6 -2.4 0.68
0.70-0.80 4 -4.4 2.30
0.80-0.90 9 +0.6 0.04
0.90-1.00 5 -3.4 1.38
84 0.0 10.73

5.7 Density Estimation

The generally accepted estimator for right-angle line transect models is
(Seber 1982), Buckland et al. (1993):

A 1
B 6 (5.6)

where m isthe number of objectsobserved, and L ighe (total) length of
transect on whichthe m objects areobserved. The estimate othe reciprocal
of u is calculated from the observed distances.This is done by noting that, in
Eqg. (6.5), f (0) =1t . Thus the main objective ofthe various methods is to
obtain an esthnate ofthe frequency ofobservations "on" the transect line, or
f(0). Consequently, an equivalent form of Eqg. (5.6) is just:

g1 f0) (5.7)

Looking back to Eg. (5.4), it may bebserved the Hayne's (1949) estimator is of
this form, except that f(0) or theeciprocal ofuis estimated fromthe awrage
reciprocal of flushing distances, i.e.:
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2nL m 7 I 2nL Z
and that n transects, each of fixed length L, were used.

Since, as we have already remarked, the "state of the art" andhtéery
of line transect are now described indetail by Buckland etal. (1993), we will
not attempt to review all of the currently used methods. Saxamples appear
in Example 5.6 and |Irecommend consultingthe current literature for recent
improvements. Isuggest use of the "distribution-free” methods ofthe next
section as a check on any other method used.

Example 5.6 Density estimation for |line transects

Cal cul ations for two of the nethods will be illustrated on the set
of data in Table 5.4. These data cone from actual observations nmade in
a line transect study (Eberhardt 1978b) of the side-blotched lizard (Uta
stansburiana). An artificial grouping of the data into 8 transects has

been used here as a device to illustrate variance cal cul ati ons. Si nce
these data appear to conformto the theoretical nodel for aninmals that
flush, it may be possible to use Hayne's method, Eq. (5.4). It may be

remarked here that the "flush" exhibited by these aninmals is a dart for
cover, and that nearly all sightings result from this cue, as basking
animal s are not readily seen before they nove.

Using Eq. (5.4) gives the results of the summary table (Table

5.5). The equation is used with n =1 for individual transects, i.e.,:
1 1
—_m=
D2L| i=1fi

The individual transect results can be conbined with the ratio estimte
of Exanple 5.1:

n
N N n
Bverall= LiDj / z Li
i=1 i=

Vari ance cal cul ati ons proceed in the sane nanner as for line intercepts
(Example 5.1
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Table 5.4. Line transect data from a lizard study. Flushing (r) and
ri ght-angl e distances (x) for individual transects.
#1 #2 #3 #4 #5 #6
r X r X r X r X r X r X
46 46 91 51 137 29 60 43 51 23 91 16
82 26 42 25 21 17 67 34 42 14 74 58
59 10 36 32 84 25 51 18 109 57 57 10
42 36 126 88 62 25 68 37 120 43 101 40
40 35 43 15 79 37 55 13 60 32 74 72
100 96 80 0 55 3B 39 32 46 13
70 0 168 90 81 32 46 15
95 35 90 73 67 18 99 37
95 32 78 25 55 0 87 0
61 41 165 75 58 11
58 42 269 33
24 13 269 25
85 35
168 98
50 0
83 4
42 27
75 10
104 O
#7 #8
r X r X
153 48 85 79
112 45 112 55
126 34 94 0
61 45 78 15
53 43 158 68
78 0 153 72
53 17 153 74
59 49 42 27
78 64 42 27
150 146
128 34
114 38
90 54
93 24
To illustrate the use of right-angle distances, we use the half-
normal distribution. This requires the assunption that right-angle
di stances fromthe transect |ine have the relative frequency given by:
2 -x2
f(X) ‘\/Z‘[ exp\ZGZ )
This is just the famliar normal distribution, but with p = 0, i.e.,
centered on the transect line. Also, the distribution is nultiplied by
a factor of 2 in order to permt "folding-over" half of the

and thus considering observed distances ashough they all
[ine. Recalling that the general form

di stribution,
fell on one side of the transect
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of the density estinmator for line transects calls for an estinate of
f(0), we get:
2

U Ve o

The paranmeter (o) is estimated just as it is for the normnal
distribution, i.e.,:

2
m
0/ _(Z Xj )1/2
= S
= M
Wth the exception that the divisor is m rather than m1, since in this
case the nean is known (i.e., is zero). |Inserting the above expression
for f(0) in Eg. (5.7) gives:
/\. m

i B
LNZn i
The individual transect estinmates appear in Table 5.4, and are conbi ned
just as with Hayne's net hod above:

n
A A 0 0.822
Dverall = Z LiDj / Z Li =Tgg = 0-0016.
i=1 i=1
Table 5.5. Summary of |ine transect data for a lizard study.
N N
Transect Length Nunber of LiD j LiD j
number Lj observationgHayne) (half-normal)
1 30 5 0.050 0.061
2 50 6 0.052 0.040
3 60 12 0.109 0.169
4 80 9 0.066 0.076
5 100 19 0.129 0.197
6 80 10 0.074 0.113
7 60 14 0.083 0.100
8 40 9 0.056 0.066
500 84 0.619 0.822
Density estimates 0.00124 0.00165

5.8 A "distribution-free" method

The terms, "parametric models" and "non-parametric models" haeen
used in the literature to classify line transect methods. pMefer toavoid that
classification because the procedures thus far used mostly do nvolve
parameter estimation. Hence wpeefer tolabel the method preseted here as
"distribution-free," since it des notrequire the specification of aparticular
frequency distribution or "visibility curve.!” Burnham and Anderson (1976)
suggest some other approaches that do not depend on a specificfrequency
distribution.

The method presented here is owoeiginally devised byCox (1962, 1969)
and adopted forright-angle line transects by Eberhardt(1978b, 1979). A
physical analogy, "length-biased sampling” was described in Section 5.4, in
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reference toline-intercept methods. In that situation the physical size
(length) of an object determines the probability that it will be intercepted by a
randomly located transect line. However, a much larger class of situations
may be included if one considers wat Patil and Rao (1978) have described as
"weighted distributions.” They derive an quation ofthe form of Eq.(5.5) by
supposing that the true frequency distribution cannot be observeddirectly,
and that theobserved frequency distribution issomehow "weighted" in the
observation process.

In line transect wrk, the weighting function is what we havecalled a
visibility curve above (cf. Fig. 5.8). Given random locatn of transect lines,
the probability that an objectwill actually exist at aright-angle distance, x,
from the transect lines is given by a uniform distribution. That is,
theoretically, any distance isequally likely. However, the distances we
actually observe depend on the visibilityurve. Hence objectsdirectly on the
transect line are seen with certainty (g(0) 1=0), while those at aonsiderable
distances are seenvery infrequently. Hence, formally, Eq. (5.5) should be

written as:
) :% (5.8)

so that dx represents the uniform probability that an objectexists at any
distance x from the transect line, and g(x) is the "weighting function.”

The main value ofall of this is theoretical, inthat it lets usextend the
rather concretenotion of a line intercepting anobject to the moreabstract
notion of a visibility curve. Frher details andapplications toa wide range of
problems can be foundin Patil and Rao (1978) and in thereferences cited in
that paper.

Cox's method depends ontallying observed distances within fixed
intervals away from thetransect line. Thus all of the observations within a
distancep, on either side of the line are addeg and used to estimate theue
proportion of all observations, denotep(0,A), that fall in that interval. Hence
if there are Kk observations within the distanca, we estimate p(@) =ki1/m

Similar estimates are constructed for p(A,bA), the next pair ofparallel belts
(Fig. 5.9) and p(ln,da). Cox'soriginal method used only two intervals, but an
extension to three omore intervals isreadily obtained (Eberhardt1979).
However, it appears that the variance of the resulting density estimate
increags as the number of intervals idncreased (Ebdvardt 1979), so wewill
limit the present discussion to two intervals.

An estimator for two intervals is (Eberhardt 1979):
N

1, (b2 - 1)p0,4) - pAkA)
w( = b(b-1)n

(5.9)

where A is the width of the inner interval andAbis the width of the inner two

N N
intervals (Fig. 5.9). The quantities g0,A) and pA,bA) are estimated as
described above, i.e.,

n k1 A ko2
(P.0) “m and (A,bA) =m (5.10)
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where there are kobjects observed within the belts of the widthA on either
side of the transect line,2kare seen within the two intervals (right- and left-

hand sides of thetransect line, Fig. 5.9) demarcated byA and I, and m is the
total number of objects observed regardless of distance from the transect line.

1
| |
'\
da ba A 0 A ba da
k
2

Fig. 5.9. Intervals or "belts" used in Cox method.

Having estimatedthe reciprocal ofy, all one needs to do isnsert that
estimate in Eq. (5.6) to estimate density per unit area, where the unitshaee
in which right-angle distances (¥ and length of transect (L) are recorded.

Cox (1969) used b = 2, so th#te inner and outer intervals are equal (e., they
are both of widthA). Since mappears inthe numerator (Eq. 5.6) and in the
denominators of p(0,A) and p@,bpd), it effectively cancels out in the
calculations. Hence, if one combines Eqgs. (5.6), (5.9) and (5.10), the result is:

~n _(b+1)kg - ko
= 2Lba

(5.11)

where wehave used theresult that (b2 -1) =(b +1)(b -1). Oneapparent
consequence of this simplification is that m (the total number of objects) is not
required for density estimation. However, that quantity is essential in
studying variability of the estimates, and thus should berecorded, except in
special circumstances. One such situation may be in cases where
identification of objects beyond a distance oA bis uncertain. Calculations are
discussed in Example 5.7.

An interesting variant ofCox's method isthe case where only one
interval, of width A (on each side of the transect line), is used. This reduces Eq.
(5.11) to:

n k1
_Dﬂ (5.12)
We then have simply a striptransect, or"Kelker's method,” in which it is
assumed that all of the objectwe observed withina strip of width 2 . It may



5.28

be noted that if the number of objects observed in the belts is equal,i.e., if
k1 = ko = k, then Eq. (5.11) becomes:

A (b+Dk -k _ Kk
2Lba  _ 2LA

=4

so that we again have a strip transect.

Another variant, of interest tornithologists, is Emlen's(1971) method.
It turns out (Eberlardt 1978b:15) that Emlen's methodessentially reduces to
use of Kelker's method, or a strip transect. Details appear in ExampleSimn8e
the assumption that all animals (or objects) are seen in theinner strip is an
important and uncertain item, we recommend that two intervals beused in
practice.

Variance estimationfor the Cox method is a subjectthat needs more
research, particularly research supported byfield data. The weak point in
present theoretical approaches ishat they assume that thenumber of
individuals observed (m) isPoisson-distributed, which essentially amounts to
assuming random distribution ofindividuals. Since this is notlikely to occur
in practice, the pesent variance estimates are likely to be too low, i.e.,
underestimates. For the Cox method with two intervals, a convenient
expression of the variance is obtained as (Eberhardt 1979):

(b+1)2k1+k2
[(b+1)k1-k2]2

[CV.(D)2 = (5.13)

where b, Kk, and k are as defined above, and C.C/.QDstands forthe coefficient

N
of variation of the density estimate. For practical purposes, ifC.V.(D) equals,
say 0.25, one can propose approximate confidencelimits on an estimate as
being the estimate _+ 50 prcent (i.e., we pund the usual 95 percentnormal
curve "Z-value" of 1.96 to 2.0).

An alternative procedure for variance estimation is toemploy the
"replicate sampling” idea, i.e., to break the total sample down into random
subsets, calculate a density stimate from each such subsetand obtain the
variance estimate from the resulting set of independent density estimates.

For planning purposes, a rough approximation (Eberhardt 1978b) is:
CV.(D) = (%) 1/2 (5.14)

Two examples on actual data Eberhardt 1979) suggest this equation
underestimates the results of EQq.5.13) by roughly 10 percent. Seber (1973)

and Eberhardt (1978b), using different approaches, suggest acomparable
result for flushing-distances (sighting-distances, radial distances) to be:

CV.(D) = (%) 1/2 (5.15)
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We thus have an indaion that the variance usingright-angle distances and
the Cox method may be much as twice that obtained for flushing distances.

Exanmpl e 5.7 The "Cox" nethod

The right-angle distances of Table 5.4 can be used to illustrate
the Cox nethod, as given by Eq. (5.11). The main problem lies in
selection of the two intervals A, and bA. My reconmendation (cf.

Eberhardt 1979) is to include about 80 to 90 percent of the observations
i nsi de bA. If we let b =2 and A= 35, then bA= 70. Although density
can be calculated directly from Eq. (5.11), in this case it would be
desirable to make the intermedi ate cal cul ation represented by Eq. (5.9),
for use in conparison with the results of Exanple 5.6 above. This is
because the transect | engths used in the exanple are artificial, so the
best conparison is to estimate (1/n) or f(0). Hence the entries under
suns of LiDj from Table 5.5, are best conpared with the estimte

obtained fromthe Cox nethod. Note, however, that these quantities need
to be doubled for conparison. Calculations with the Cox nethod can be
carried out transect by transect, and it is probably worth doing so on
Table 5.4 just to see how the estimates behave. Wth small sanples,
however, it is preferable to make a single estimate for the entire area
(i.e., combine all of the observations in Table 5.4).

Exanpl e 5.8 Enlen's nethod

A method due to Emen (1971) becane quite popular wth
ornithologists. It depends on a "coefficient of detectability" which is
determ ned by an intensive study on one area, and then used to adjust
counts in other areas. The basic approach is to use the observed data to
determ ne where visibility drops off. If we let this point be A, the
assunption is that all birds are seen between the transect line and A.
Suppose k1 birds are counted in this strip, and that we want to estinate

the nunber of birds expected to be found between the transect |ine and
sone outer boundary, R  The logical estimate is just (ki1/A)R Em en

di vides the total nunber of birds (k) seen between the transect |ine and
R by this projected nunmber and calls this the "coefficient of
detectability":

C.D. _Ka_

This clearly anpbunts to an estimate of the proportion seen of the birds
present between R and the transect line. Enlen then proceeded to divide
t he nunber seen (k*) on a new area by the coefficient of detectability,
and regarded this as a population estinmate for the new area:

A k*k 1R

kA
Actually Ris selected so that a fixed transect length (1 mle) gives N
AN

as the nunmber of birds per 100 acres. Hence N is really a density, and
we note that if units of feet are used 2RL = 100(43,560) = C, so we can

N
wite R= C2L and express N as:

A k* kl
i~ brg)
Since the quantity in brackets is just Kelker's estimate [Eq. (5.12)],
Em en's procedure turns out to have the follow ng steps:
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(1) Estimate density on one area by Kelker's nethod, while
counting all of the birds visible on 100 acres (k).

(2) Count all of the birds visible on 100 acres (k*) on a new
ar ea.

(3) Use the ratio k*/k to project the Kel ker estimate of the first
area to the second area.

Several limtations of the method seem apparent. One is that the
visibility curve is assunmed to have a particular form i.e., all birds
are seen out to sone particular distance. A second limtation is that
it is assumed that we can l|ocated that distance from observed data. A
third, and major problem is that it is assumed that the visibility
curve remains constant fromarea to area, and time to tinmne.

These several linmtations can be avoided sinmply by taking one
precaution. That is to record separately all birds seen between the
transect line and the distance A on the second area. One then can use
Eg. (5.11) with b = R A and get a direct estimte of density
i ndependently on the two areas.

5.9 Assumptions underlying line transect methods

A dedsion to use aparticular line transect method needs tdake into
account the underlying assmptions. The list given here isbased onseven
assumptions given by Gates et al. (1968) and Seber (1973,1982), but is
rearranged toshow just which assumptions are required for a given line
transect method. We assume thatandomly located transect lines are utilized,
and thus drop one restrictive assumption, that of random location of the
objects being censused, which isot required for randomly located transect
lines (Eberhardt 1978b).

The first three assumptions are basic andwhether ornot they are met
will depend onbehavior ofthe observer and of the animal being censused.
They are:

(1) No animal (or object) is counted more than once on a given transect line.
(2) When flushed, each animal isseen at the exacposition it occupied when
startled by the observer's approach. Obviously this des not apply toanimals
or objects that are fixed in place during the census.

(3) The responsebehavior ofthe population on acensus plot does notchange
during the course of running a given transect.

Definitions of the response behavior serve todistinguish the various
methods. One of these is achieved by defining a visibility curve as follows: The
probability that an amnhal, or object, being seen, given that it is at aright-
angle distancex from the transect line is a simple function, g(x), such that
g(0) = 1 (i.e., animals, or objects directly on the transect line abeerved with
certainty). These assumptions hen suffice for right-angle line transects.
Assumption (3) nowmeans that the visibility curve doesnot change during
the course of running a given transect line.
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A fourth assumption serves todefine conditions for the fixed flushing-
distance line transect. This assumption defines the response behavior of the
animals:

(4) Individual animals have fixed flushing radii, during the course of running
a given transect, and flush if, and only if, an observer comes within this
characteristic distance (r). It is of course, also necessary toassume that r is
accurately observed and recorded.

An alternative assumption, plus some dters, leads to the variable-
distance line transect:

(4a) The animals are homogenous with regard to their inhBrent response
behavior.

(5) The sighting of one animal is independent of the sighting of another.

(6) The instantaneous probability of flushing is aunction, f(r), of the radial
distance, r, between animal and observer.

These several assumptions lead to the theory of the variable distance
model (Eberhardt 1978b). It may beemarked that one could assume a
particular mathematical model for f(r) and proceed to derive efficient
estimates for density estimation under such amodel. This has been done in
some of the literature (e.g. Gates etal. (1968) ad Gates (1969)). We have
previously mentionedtwo tests that should be applied tobserved data before
the flushing-distance method and Eq. (5.4) isused (cf. Example 5.5). We will
return to discussionof some aspects ofthe above assumptions in @ubsequent
section on sampling design.

5.10 Strip transects

The simplest case of atrip transect occurs when the objects being
censused are readily visible and sufficiently abundant topermit using a
restriction on width of the strip covered. The method then amounts simply to a
sample survey using long, narrow plots. The methods of Chapter 4 hem be
applied. A basic assumption is that all of the objects on the plot are tallied.

When there is aeason to believethat not all of the objects on theplot
are seen, hen it may benecessary to introduce asibility-curve. Wehave
preferred totreat such situations under the heding of right-angle line
transects (as irFig. 5.1). However, this is mostly amatter ofpreference, and
one could chssify such situations as'strip transects using visibility- curves."”
This may be amore natwal-seeming descriptbn in circumstances where a
finite boundary exists on strip width. An example is the studyAwofderson and
Pospahala (1970), who counted duck nests on dikdte width ofthe dike then
provided a natural boundary on strip width. However, the methods of
estimation will remain essentially those treated here asright-angle line
transect, except that the total number of objects tallied (m) will be thasked
within the strip, and the visibility-curve, g(x), is truncated (cut-off) at the
strip boundary.
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An important issue in such situations isthat a vsibility-curve has to
enter the calculations ofdensity in some manner. Several publications have
used a procedure to correct foeduced visibility away from thetransect line.
This consists ofsumming the total observations from the entire survey for
various intervals out fromthe transect line. Wh the symbols used above, one
would thus have Kk observations inthe interval (oA), k2 in (A,bA) and so on.

It is then assumedthat all of the animals are seen in theinnermost interval,
and the fraction seen in theother intervals iscalculated from the observed
data, i.e., k/k1, k3/k1, etc. These rates are then used to adjust daily (or weekly,

etc.) observations inthe outer intervals, supposedly correcting them for the
fraction missed. However, this procedure simply resultsadjusting all of the
intervals to equal thecentral one(to ki observations), smne may as well use

only that interval and not bother wth the rest. The samekind of procedure
has also been used toadjust for numbers seen by time ofday when certain
observation periods give the highest counts.

While the Cox method (Sec. 5.8) does not require postulation sypecific
visibility-curve, it does take the existence ofsuch acurve into account in the
estimation procedure. All of the other methods actually used thus far do
specify a particular curve or "family" of curves.

Strip transects have been widely used in aerial surveys, largely of
terrestrial animals. It is nowwell-established that not all of the animals on
the strip are seen by theaerial observers. Caughley (1974) hassummarized
evidence on this point. Caughley et al. (1976) have conducted some
experiments designed to explorethe effects of strip width, altitude and speed
on the numbers of animals counted. They go further, and use multiple
regression equations toattempt tocorrect for these variables. However, | do
not recommend the use ofsuch equations, because a veryuncertain sort of
extrapolation is utilized--going from the observed data to zerostrip width,
speed, and altitude.

Two alternatives seem worth consideration. One is to utilize such
experiments to arrive at standard set of observation parameters, and to then
regard the observed data as anindex. When accurate counts by another
method are feasible, one can hen attempt to gofurther by "groundtruth”
correction. A variety of special precautions need to be taken in asrialveys,
and are described in a publication by Norton-Griffiths (1975).

As mentioned in Sec. 5.8,the Cox method might be applied taerial
surveys in the form of Eg. (5.11), ushg two strips. This approach is
particularly attractive inthat it will not ordinarily be possible to attempt to
record right-angle distances. About all thist likely to be feasible is torecord
observations inwo intervals, demarcated bymarkers onwindows and struts.
Since most such surveys are conducted by observers who look outwsitdgows
of small aircraft, a particular drawback to this amgement needs to benoted.
This is that the \vsibility-curve is not likely to be that of Fig. 5.8, with
certainty of observation ofanimals directly onthe transect line. This is
because the transect line is directly under thiecraft, and notreadily viewed
by the observer.

Unless aspecially fitted-out aircraft is available, with provision for a
"bow" observer tolook directly forward and down,the only alternative seems
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to be to attempt tolocate, by exprience, the right-angle distance that can be
viewed effectively and comfortably by observers. The obserers should then
concentrate on"'guarding” (covering) afairly narrow strip starting atthat
point. This strip then becomes thaterval (0A) and frequent glances up and
out areused totally animals inthe outer strip (A,bA ). The critical point is to
concentrate enough effort on one line which is considered to be 'th&hsect
line (normally there will be one such line oneither side ofthe aircraft). In
larger aircraft, it may bdeasible to assign two @lervers to aside. One does
nothing but scan the"track line," while the secondobserves the outer strip
(A,bA).

5.11 Modified strip transects

Three modifications of striptransects have beenmentioned above. One
includes corrections for decreasing visibility with distance from the transect
line, and we have elected tocover this situation under right-angle Iline
transects. Asecond is thecase where animals, largely marine mammals, are
visible only intermittently. The third has to do withnimals thatare in fairly
constant motion, as with some small birds.

One basis for dealing wth animals that submerge, andthus are not
always visible on a transect, assumes a consthwing time (u) and a costant
period on thesurface (s) between dives. This is notparticularly satisfactory,
since both quantities may vary, and needs modification. In shipboard counts of
ringed seals (Phoca hispida), McLaren (1961) assumed thatall surfaced seals
could be seen out to a fixed distance (r) from the vessel. This, too, is netrwa
reasonable assumption, as quite certainly therd be a decrease invisibility
with distance. It might, however, be acceptable this distance (r) is kept

reasonably short. If the average probability () that aseal within a strip of
width 2r will be counted can be estimatedheh the observed count (m) within
the strip can be translated to an estimate of density as:
N
—p—— (5.16)

2rL(p)

i.e., the number present is estimated as ndpd this is divided by the area of a
strip of length L.

McLaren (1961) gave the probability (Pp) of seeing anindividual seal,

given that it is in the strip, as:

t S

%—_'__u +m (5.17)
where tdenotes the duration of the period when a surfacedseal would be
visible to an observer. Thiyvaries according tothe right-angle distance from
the vessel,since theradius ofvisibility (r), shown in Fig. 5.10limits the time
an animal can be seen at a giveght-angle distance. Ifv denotes veloity of
the vessel, then (see Fig. 5.10):

ty___rsine

\" Vv



5.34

TRANSECT
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O

Fig. 5.10. Dimensions used in shipboard surveys of marine mammals.aThew
denotes the ship's course along transect line, while the obserers scan the
semi-circular area of radius r.

McLaren assumedthat no point could be keptunder observation for as
long as u nnutes, that is, t <u. Given this restriction, Egq.(5.17) can be
obtained byconsidering the two successiveintervals representing aive (u)
and the succeeding ine on the surface (cf. Exercise 5.13.1). If we make the
usual assumption of random transect locations (and thugnidform probability
of a
seal being present at given right-angle distance), thenEquation 5.17 can be
"averaged" to obtain:

T T S

- :péfv(s+u) Ts+u (5.18)

This differs from MclLaren's (1961) result (see Eberhardt 1978b).

A similar approach has been employed forcensusing whales visually,
except that anarrower width of field forward of the vessel isscanned. Also,
much longer detection distances are postulatdde to the greater visibility of
"spouting” or "blowing" by the whales. Doi (1974eveloped an egxession for
the probability of detection. Healso assumed &aonstant diving time, sothat
the samequestion ofthe effect of avariable diving time arises inconnection
with his results. Animportant difference inthe two approaches isthat
McLaren assumes t <uj.e., that submerged seals may goundetected, even if
they are in the zone of maximum possible detection directly ahead of the
vessel. i, however, postulated aone within which the observation ime is
long enough that any whales wereseen with certainty. Doi also inroduced a
correction factor (K) for the prospect that olservers mayfail to see some
whales, even though they do surface and "blow." This factor is:

fp \s
K=1-
(ﬁl)
where 0p represents the visual angle of the observedy is the angle searched

(on either side of the vessel) and s is the number of observers. Buckland et al.
(1993) described another method for whales called “cue counting”.
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The second modification to be considered here tbat required todeal
with animals, such asmall birds, thatare in motion during the course of the
survey. Yapp (1955) proposed anapproach based on thekinetic theory of
gases. The matheratical aspects were latereviewed by Skellam (1958). The
two equations involved are:

n z

=B (5.19)

where D = density of the population, z mumber ofencounters per unit time, v
= average elocity of the animals relative tothe moving observer, and r =
range orradial distance within which an animal must approach the observer
to effect an encounter.

2am2+w? (5.20)

where u= average elocity of the organisms and~w=average elocity of the
observer.

An important assumption is that the behavior of the animals is not
influenced by the presence ofthe observer. Eqg.(5.19) is based on the
assumption that the area in which encounters tpkace is a circleor radius r.
This, then isthe same sort otroublesome assumptionencountered before in
this chapter. If we let z = m/T, where m is the number of animals observed

during the total time of the survey (T), and also assume = Q, then:

A m m
C T 2rL
2rwT

where L represents theotal distance traveled byhe observer. Wehus have
the usual equation for a simple strip transect. One can, of course, let

w =0, i.e.,, assume that theobserver sits still and baseresults onthe awrage
velocity of the organisms:
N

- (5.21)

2rur
This has someattractive features, inthat the radius (r) can probably be
determined Wh reasonable accuracyunder such circumstances, and a
motionless observer isless likely to influence behavior ofthe animals. A
drawback is inthe "representativeness" odfhe spot selected for observation.
No doubt random selection of several spetsuld help on this score. However,
if the radii vary, as theylikely will, then questions othe effect of density vs.
cover type may need to be considered.

An important problem with the above method is that ofmeasuring the

average elocity of the animals (u). Clearly this cannot bedone during the
survey, atleast not if theobserver isalso moving. However, if the observer
sits still he might then use a stop watch to time movementammals and thus
estimate their velocity.

Little use seems tohave been mde of Yapp's method, so that it is
difficult to provide an evaluation based on experience.
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5.12 Survey design

Although much of the discussion of lineransect methods is couched in
terms of results obtained on single transect line, practical use of themethod
will frequently require combining results from a number of separate lines
into asingle sampling unit. This will be especially true in terms ofvariance
calculations, since precautions need to betaken toavoid individual sampling
units on which no animals are observed. As wehave already indicated, we
believe variance estimates based ontheory should mainly be used for such
purposes as coparing methods ofestimation, appraising bias, and thelike.
Another important use is inobtaining approximations suitable for estimating
sample sizes in planning a survey, as in Egs. (5.14) and (5.15).

In the actual analysis of surveyresults, werecommend variances be
estimated directly from the survey estimates, asillustrated in the several
examples. Howeverthe investigator should not wait wntil the data areall in
hand before considering how this is to be done. The arrangements for
analysis of the data should instead be decided at the survey design stage.

Usually the survey will require a number afays for completion sothat
a worthwhile precaution is taarrange the sampling plan so that thetransects
run in the samesub-area are spread out over the total time interval during
which the survey is conducted. Thus "replication in time" is introduced into
the survey, and it may be useful, Bnalysis ofthe data, totry to evaluate any
trends in time. When this kind o&rrangement is fedslie, it will be important
to randomize the locations of successive lines falling in the santearea. |In
fact, this may well bethe best way to useandomized sampling, irthat the
separation in timewill usually eliminate the need forconcern about having
two transects fall close together. Wen large areasmust be dealt with, iwill
usually not be possible to use a scheme of this sort.

The above scheme maybe illustrated by reference toFig. 5.11,which
shows a study area divided into three subunits, denotedvestical lines in the
figure. Onerandomly located transect line (L1, L2, and L3) is shown in each

sub-area for each day on four successive days. Toobtain avariance estimate
on the basis of "interpenetrating," or "replicate” sampling, one simply
calculates as estiate of density for each day, and usesthat estimate in the
variance calculation. That is, density is estimated as

n
VAN
:%— z Dj (5.22)
i=1
and variance as

n
28)= =25) (0. B)?
i=1
(5.23)

AN
where in this case n = 4. Note that the variance given is that of a mean, i.e., s(D
) is usually described as the standard error.
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For larger areas,travel time will be rather too costly to permit use of
single transects ineach sub-area. Alternatives are to useseveral randomly
located lines in eachsub-area, or touse asystematic amngement \th a
randomly selected starting point. Supposethree lines in each unit are to be
used. Then each base line lengthjVis divided intothree segments ofength

W /3. A random location is selected in the first and the remaining witaced
out by the interval W;/3. It may benoted that thebaselines (W) of Fig. 5.11

are not of the samdength. This is because ofthe irregular shape of the
region--it is best to try to keep the areas of thebunits about equal.Differing
lengths of transectline can behandled as described iExample 5.1.Note that
the three systematically placed lines discussed abowhould be treated as one
transect line in the analysis.

Stratified random sampling (Chapter 4) may wll be desirable inline
transect work. Example 4.6 illustrates use of stratification with a strip
transect. Unfortunately stratified sampling has notbeen used much with line
transects, so wehave little experience tadraw on for planning. One prospect
is that the use ofvariable sampling intensity (by strata) will call for making
individual population estimates for eac$tratum. Obtaining separatevariance
estimates for each stratum may thus require fairly intenssaenpling ineach
stratum.

A very important feature of surveydesign is to reviewthe underlying
assumptions (Sec. 5.9), and to consider whetther proposed design is likely to
result in violation ofone or more of the asmptions. | have reeatedly
recommended random sampling, @s is the basis for the esent theory. A
practical alternative is a systematic sample witlrandom start. With animals
that are highly mobile, one has to avoid asampling pattern that placeslines
near enough together that individual animatight be seentwice on the same
systematically arranged sampling unit.

The various assumptions that have to do with response behavior
obviously require good knowledge ofthe species andsituation. Somespecies
behave in ways that make them doubtful candidates for line transect
censusing. Wen right-angle distances are used, the "behavior" of the
observer is of crucial importance. Some desigh arrangements can rkelpce
the effect of observer differences. For example, ifseveral obsemrs are used
in a single aircraft, for an aerial survey, they should rotatethrough the
viewing positions fairly often (in small aircraft this may bepracticable only
on landing). This practice helps "average out" observer and position effects.
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Fig. 5.11. Randomization of transect lines within sub-areas on successive
census days.
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Since circumstances ofline transect surveys are quite variable, it is not
possible to review each situation wth regard to the assumptions. The
investigator needs tounderstand them, and to take precautions Vmerever
possible. Another example is that lines should not be run close to dhapks
in cover, topography, etc. One can, of coursemply not census onthe side of
a line that parallels such &reak. Sometimes it is possible tarrange that the
lines go atright-angles tosuch "discontinuities,” and this should help. A
similar reasoning dictates that transect lines shouatt run the "long way" of
an elongated study area. Methods to minimize errors of measurementd atred
recording are of course essential in survey design and planning.

A variety of recommendations concerning transect methods in
censusing marine mammals appears inEberhardt etal. (1979). Some ofthese
may be useful in other circumstances. Asoted earlier, much more detail on
recently developed methods appears in the book by Buckland et al. (1993).

5.13 Exercises

5.13.1 Calculate C¥p) from Table 5.2 using ratio estimation, and calculate a
standard error for p using the individual proportions. Show your calculations.

5.13.2 calculate the weighted average density from Table 5.2 using ratio
estimation, and its standard error. Show your calculations.

5.13.3 Carry out calculations for the Hayne and half-normal methods for the
lizard data of Table 5.4. Show calculations.

5.13.4 Do the calculations for Example 5.7.

5.13.5 Estimate the Di for Exercise 5.13.3 and tabulate these along with the Di
from Exercise 13.4. Compute coefficients of variation treating each transect as
an independent estimate. Compute correlations among the three sets of data.
Also compute the coefficient of variation for the Cox method given in Eq.
(5.13), combining the data from the several transects.

5.13.6 Components of variance

It was remarked in Sec. 5.5 that the fixed distance model could be used to
show that alarger variance results if right-angle distances are used for
estimation, rather than the flushing distancédne way to appreciate this is to
recall that the basis forestimation for the fixed distance model depends on
doubling the flushing-radius todetermine the probability of observing that
individual. Doing this with the right-angle distance introduces anadditional
component of variability due to the fact that the observed right- angle
distance (x) falls randomly between zero and the flushing-distance (r).
Students with some training in mathematical statistics may want to try
calculating coefficients oWariation for x and r, assuming x to beuniformly
distributed on (o,r) andhat r has someunderlying distribution, say m(r). One
can ten find the two C.V.'s in terms of the first 3 moments |iq,u2,u3) and

obtain a notion of the relative difference in efficiency.



5.40

5.13.7 Deriving a sighting probability

Students should attempt talerive Eq.(5.17), assuming sand u are fixed
and that t < u. Nothing beyond elementary probability consideratins is
involved, but a diagram helps.

5.13.8 A seal census

McLaren gives data as follows. Ship's speed 0.12 nautical mileshperr,
visibility limit 0.32 mles, s = 1minute and u = 3 nnutes, and 43 sealswere
counted on agiven transect. He doesiot give the transect length. Students
should convert Eq. (5.16) toepresent numbenf seals(N) in the area sanned
by the observer and carry out the relevant calculations.
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6.0 THE ANALYSIS OF VARIANCE
6.1 One-way Analysis of Variance

We will begin with the simplest case, the one-way analysis of k sets of
observations (the t-test considers k=2). The ANOVA is usually presented as a
table showing the sums of squares, degrees of freedom, mean squares and the
associated F-tests of significance (named for the pioneer worker and

originator of the test, R. A. Fisher, who devised much of the methodology in

the 1920's and 1930's).

The basic calculations depend only on algebraic identities yielding the Sums of
Squares. These hold for any k sets of numbers so there are no assumptions
involved in the basic calculations. We bring in various assumptions in order to
develop statistical tests of significance.

We will subject one set of data (the pheasant count data of Table 6.1) to several
different forms of ANOVA to demonstrate the mechanics of calculations for
various arrangements of data. The assumptions involved in F-tests will be
discussed more fully later, after we examine the basic calculations.

Table 6.1. Pheasant call count data reported by S.M. Carney and G. A. Petrides
Journal of Wildlife Management 21:393, 1957

OBSERVERS

STATIONS A B C D E F
1 39 3 33 32 29 27
2 46 36 32 30 35 35
3 45 36 44 31 31 23
4 15 5 29 18 18 14
5 17 14 14 9 14 7
6 27 24 26 14 20 15
7 24 19 15 13 19 15
8 22 2 22 13 16 13
9 28 35 33 32 26 28
10 26 24 23 26 22 17
11 12 13 5 9 8 8
12 8 11 9 9 12 7
13 6 5 9 4 10 3
14 7 6 7 2 7 6
15 7 11 n 6 10 6
16 9 11 9 6 10 4
17 1 2 4 2 5 0
18 5 4 4 4 6 2
19 3 2 3 1 3 1
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PHEASANT CALLS COUNTED BY 6 OBSERVERS
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Fig. 6.1 Counts of calling (crowing) pheasants at 19 stations counted
simultaneously by each of 6 observers.

The short horizontal lines in Fig. 6.1 mark the mean counts for each of the 6
observers. If it is assumed that the data all come from the same population or
process, then the apparent differences in means arise as a matter of chance.
Then any particular cluster of points will occupy roughly the same position as
any other cluster. On the other hand, if at least some of the populations (or
processes) do have quite different means, then the clusters of plotted points
will not occupy quite the same positions. Three ways in which the clusters of
points can differ are: (1) one or more clusters are shifted up or down from the
others (a "scale" or "location" difference), (2) the spread of the individual
clusters may differ, and (3) the shape of the clusters may differ. Sample
variances provide a measure of the spread of the data, being calculated for the
nj observations from each observer as:

S2:2(yi_)_/i)2
n-1
so that data with a wide spread (scatter) of points will have a large variance. If
the clusters have the same shape (this can't be reliably checked without very
large samples) and spread (same variance), then a simple shift up or down
scale can be detected by comparing the variability of individual clusters with
that of the whole set of data. If the clusters are shifted well apart, obviously an
overall variance will considerably exceed that of the individual clusters.
Offhand, it doesn't look as though the several sets of pheasant data differ
much. Another example, based on natural logarithms of counts of "signs"

(6.1)
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(mounds and dens) of pocket gophers at different locations appears in Fig. 6.2,
which does seem to suggest real differences between sites.

6 POCKET GOPHER SIGN COUNTS
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Fig. 6.2 Logarithms of counts of pocket-gopher signs at different locations
and/or years (Reid, Hansen, and Ward, Jour. Wildl. Manage. 30:330,1966).

A comparison between an overall variance and that of individual comparisons
can be constructed by examining the sum of squares making up the overall

variance. That is, let iy be the §h observation in thet column of tables of
data and p be the number of observations in that column. Denote the overall

mean by y and a column mean by iy Then the overall variance is written as:
z Z(yij - 7)2
[
z n-1
I

Considering only the numerator of eq. (6.2) (the sum of squares) for the
present, we can rewrite it as:

> 0=V =Y Iy -~ )+ -9 (6:3)
=30 Y > G-y
DW=V =Y > WY N -9’ (6.4)

TOTAL S.S. =WITHIN S.S. + BETWEEN S.S.

(6.2)

This results because a little algebra shows that the cross-product term
vanishes (students should do the algebra for themselves). The first of the two
resulting terms is just the sum of the components that would be used to
calculate a separate variance for each column and is thus denoted the "within"
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(within columns) sum of squares. The second component represents the
variability "between" columns. These quantities are usually displayed in an
Analysis of Variance (ANOVA) table (lek nj = n):

Table 6.2 Analysis of Variance for a one-way design.

Degrees of Mean

Source Sum of squares freedom squares

Between groupsS = Z n(y -y)’ k-1 %
L _ T ) SSw

Within groups SSw = Z Z(yij ¥) n-k o

Total = Z z (yIJ -y)? n-1

The "mean squares"” (MS) are estimates of variances, and under the
hypothesis of no difference between the populations (processes)
represented by the columns of the Figures above, these estimates should be
equal. Arriving at the divisors (degrees of freedom) can be remembered

by the following devices: (1) there are k means being considered in the
"between" groups so the usual practice for estimating a variance prevails,
i.e., divide by k-1, (2) within each group a variance would be

estimated by Eq. (6.1). A logical way to pool these within-group variances is to
weight by the degrees of freedom, i.e., calculate:

z (ni - 1)52
Z (ni - 1)

which gives the between-groups value used above (Table 6.2).

(6.5)

Whether the two variance estimates are significantly different or not is tested
by the "F-ratio”, which is:

SSp/(k-1)
SSwi(n-k)

Values denoting significant deviations are widely tabulated in textbooks in
statistics and are now printed out by the various computer programs used to
calculate ANOVAS. The advent of such computer programs has made it very
easy to do the calculations. The serious disadvantage of these "canned"
programs is that virtually anyone can calculate complex analyses without
having any real idea what the results mean. Students thus need to actually
work out the calculations for the above examples so as to understand how they
are carried out. This is easy to do on a spreadsheet, such as EXCEL.

Inasmuch as EXCEL will conduct one-way ANOVAS, we can first use that
function (Anova: single factor) and then calculate the sums of squares directly
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on a separate spreadsheet, as a way to understand what's going on. Thus the
EXCEL one-way program produces a listing of sample sizes, sums, averages and
variances for each column in the table of pheasant call-count data, followed
by an ANOVA table of Sums of Squares, degrees of freedom, mean squares, F
value, P-value (probability of significant difference between groups, and "F-
crit* (the significant value of F at tha = 0.05 level).

To check these results directly, one needs only to insert two columns between
each of the existing columns of data, calculate column mean3fofy the data

and the overall mean” (¥, and use these to calculate "within" and "total" sums
of squares and add them up to get the values produced by the program. The
"between" sum of squares is calculated directly from the definition given in
Table 6.2 above using column means and overall mean.

6.2 Two-way analysis of variance

One-way ANOVA usually does not involve much in the way of a study
design. The comparisons are likely to be obvious, and the only complication
that may arise is if it is desired to compare subgroups of the k sets of
observations. We will return to such comparisons later on. The "higher-order"
forms of ANOVA are more versatile and thus more powerful. More planning is
thus involved, and we need to distinguish between the various possible
approaches. The simplest of the more complex ANOVA's is the two-way analysis
without replications. As the name suggests, it is based on a two-way table.
There are k sets of data, each appearing in r rows, so that there are rk
observations. The pheasant call-count data provide an example, where we now
consider the rows (stations) as a factor in the analysis. This is done by
calculating a row sum of squares, and incorporating it in the ANOVA table. It is
worthwhile to depict the data as an table gf with k columns and r rows as
follows (some authors use r rows and c columns; others a rows and b columns -
- notation is not consistent in statistics books). It is useful to border the table

with row and column means. The dot notation (e.g.)xis used to signify that

the average is taken over a row or a column.ijx A double dot notation—(x.) is

used to designate the overall means (sometimes this appears with two bars over
x). Note that we have switched from yjj to xjj. Both notations are

common; it is worthwhile to usejxfrom now on becausejjywill be used as the
"independent" variable in regression analysis later on.
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COLUMN MAIN EFFECT

1 2 3 i k
1 X11 X21  X31 .. X1 ... X1 X.1
2 X12 X22 X32 Xj2  Xk2 X.2
ROW EFFECT 3 A3 X23 X33 X3 Xk3 X .3
j X1j  X2j  X3j  Xjj  Xki X4
r X1r  X2r  X3r Xir Xkr X g
X1. X2 X3 Xj. Xk X.

The sums of squares (S.S.) are obtained in the same way as in the previous
example, that is, we expand the Total S.S. to form the other sums of squares:

Total S.S. - Columns S.S. - Rows S.S. = Residuals (Error) S.S.
k r r r k r
(% =%y (% =X =k (%, =% )P =Y S % X, X)) (66)

These results are calculated by EXCEL as 2-way ANOVA without replication. The
program produces tables of row and column means and variances along with
an ANOVA table.

6.3 Randomized blocks designs

The two-way program is listed in EXCEL as being "without replication".
However, this is not necessarily true, as the row effects can indeed represent
replications. Such an arrangement results from a randomized blocks design.
These designs are widely applicable. Suppose we have k treatments to study,
and can arrange to test them in r "blocks", where each block is comprised of k
units that are relatively uniform in nature. For example, we might want to
evaluate the effectiveness of k drugs on weight gain in rats. We might thus
obtain r litters of k rats each, and give the different drugs to each of the k rats
of each litter (choosing individual rats out of a given litter at random to
receive one of the k drugs), and maintain the individual litters together under
uniform conditions. The trick is to keep the blocks as uniform as possible so as
to minimize "within block" variability so that most of the variance within a
block results from the treatments. The method was developed in agricultural
experimentation where the blocks are usually plots of ground selected for
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their uniformity. Each plot is made up of k subplots, to which some set of, say,
fertilizers, is applied. Fig. 6.3 shows how randomized blocks designs are laid out
in plots. Note that the blocks may be separated by some distance, being selected
for the uniformity of material within a block, which can reduce the "error"

M.S. considerably.

The randomized blocks design can be a powerful and efficient approach.
Note that the individual units in the blocks serve as true replicates so that the
randomized blocks design does have replication. In our pheasant example, the
stations are not replicates, so the ANOVA there is "without replication".
However, the two cases (with and without replication) use the same
calculations. The difference lies in the experimental design -- randomized
blocks may be far more efficient in assessing differences. Much of the
efficiency depends on the investigator's knowledge of the experimental
material -- there is an element of "art" in picking blocks. In long-term studies
one can sometimes take advantage of previous year's data to see how uniform
the blocks are. Also, "uniformity" studies can be run to measure the variability
within blocks. In these studies the same "treatment" (usually no treatment) is
applied to all plots, and the ANOVA run to measure variability within and
between blocks. One would, of course, like to have a very small "within" mean
square, and can tolerate a large "between" blocks M.S.

1
2 1
2 1
2 1
2
K .
1 k ”
2 z
3

r
A randomized block study design. T here are k units, assigned to a lo cation

at random within each block, and r blocks in all. Every treatment ap pears
in each block (randomly assigned t o a position).

Fig. 6.3 Randomized blocks layout. The blocks (often plots in agricultural
studies) are laid out to be as uniform as possible within individual plots.

6.4 Two-way analysis of variance with replication

The two-way analysis of variance with replication normally appears
with replicates "within cells" in a table of data. We thus need to consider
observations with three subscripts,ijkx as shown in the table below, which

has 3 replicates per cell. In general, we may have m replicates per cell where
m > 2, and thus rkm observations in the entire table.
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The calculations for S. S. in the ANOVA table now become somewhat
more complicated, but take on a general form that can be followed in even
more complex cases. The residual S. S. (error term) is always calculated from
the replicates within cells, i.e.,

Residual S.S= Z Z Z (X — %i.)° (6.7)
]

where x jj. is the cell mean (these are not shown in the table below as they are

an average of the m observations in the cell; 3 observations in the table
above). An easy way to remember how to calculate residual (error) mean
squares when there is replication, is to note that the units within a given cell
all get identical treatments, and thus furnish the best estimate of the
underlying variability. Hence the error mean square estimates the underlying
variance of the experimental units. Any other variance estimate (mean
square) may be inflated by treatment effects.

COLUMN MAIN EFFECT
1 2 3 [ k

X111 X211 X311 X11.--- %11

1 X112 X212 X312 .. Xj12 ..Xkl2 X.1.
X113 X213 X313 ... Xj13 ... Xk13

X121 X221 X321 Xj21 Xk21

2 X122 X222 X322 Xj22 Xk22 X .2.
X123 X223 X323 Xj23 Xk23

X1j1  X2j1  X3j1  Xij1  Xkj1
ROW EFFECT | Xj2 X2j2  X3j2  Xjj2  Xk2 X
X1j3  X2j3  X3j3  Xjj3  Xkj3

X1rl X2r1 X3rl1 Xirl Xkrl

r X1r2 X2r2 X3r2 Xjir2 Xkr2 X.r.
X1r3 X2r3 X3r3 Xir3 Xkr3

X1.. Xo2. %X3. %Xij. Xk. X..
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Another very general S. S. is the Total sum of squares, calculated from
the individual observations as before:

Total S.S= Z Z Z (X = X )2 (6.8)
T T

with x ... the overall mean.

The third general S. S. is the Treatment Sum of Squares, calculated from
the cell means

Treatment S.S= mz Z (. —X..)? (6.9)

If any of the treatments are effective, the treatments mean square will be
inflated. Of course, we want to be able to break this overall S.S. down into row
and column S. S. . As before, we do this with row and column means:

k
Row S. S= er(Y(i,, -X.. )? (6.10)
1=1
Column S.S= mkz (X —X..)? (6.11)
1=1

The two-way analysis with replication contains a new S. S., the interaction
Sum of Squares. This is often calculated as Treatment S. S. - Row S. S. - Column
S. S. but a direct calculation from the means is

k r
Interaction S.S= mz Z()‘gj, % =% —X.)’ (6.12)
=1 =1
The Total S.S. breaks down into Treatments and Error, and the Treatments S.S.
contains Rows, Columns and Interaction S.S. Textbooks usually show the ANOVA
table in this form, but EXCEL ignores Treatments, producing only Total, Rows
(labelled Samples for unknown reasons), Columns, and Interaction.

In the final ANOVA, the F-test of significance of the interaction mean
square (M$nter/ MSEgrror) is very important in deciding what can be said about
the main effects. This is because a significant interaction mean square
suggests that the row and column main effects are somehow correlated, i.e.,
they "interact". If this is the case, then one cannot discuss the two sets of main
effects (row and column) separately, making interpretation of the experiment
much more difficult.

Note the similarity of the equation for Interaction S. S. to that for the
Residuals (error) S. S. for the 2-way ANOVA without replication. This suggests
that the error term in that case is really an interaction term, making it
evident that we need to have replications to assess interaction (there is a test,
Tukey's test, for a particular form of interaction in a 2-way ANOVA based on
one observation per cell. It appears in many statistics texts (e.g., Snedecor and
Cochran , Statistical Methods, lowa State University Press, Ames, lowa, 6th
Edition, 1967).
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The pheasant count data of Table 1 were not replicated in a strict sense,
which would require repeated counts at the same station by the same
observers. One of the reasons this is not done is that calling activity drops off
quite sharply after the early morning hours. It is also obvious from Table 1
that there is a gradient over distance. High counts are obtained in the best
pheasant habitat, and this route apparently went into marginal habitat beyond
Station 10. Inasmuch as the stations are reasonably close together (usually 1
mile apart to keep from counting the same calling individuals a second time),
it isn't too much of a stretch of technique to regard adjacent stations as
"replicates”. To do this, we drop the counts on Station 19, and use successive
pairs as replicates (thus counts on Stations 1 and 2 are called replicates, while
Stations 3 & 4 are also replicates, etc., giving r = 9, while k= 6 for rkm= 9(6)2 =
108). The analysis of variance table is as follows.

Table 6.3 Analysis of variance of Pheasant count data with m=2.

Source SS df MS F
Rows 11189.91 8 1398.74 52.24
Columns 568.41 5 113.68 4.25
Interaction 605.76 40 15.14 0.57
Within 1446.00 54 26.78

Total 13810.07

6.5 Assumptions for the analysis of variance

The discussion thus far has focussed on the mechanics of the analysis of
variance, being mainly concerned with developing Sums of Squares for 3
models: (1) one-way ANOVA, (2) 2-way ANOVA without replication (and the
special case of randomized blocks designs), and (3) two-way ANOVA with
replication. The ANOVA tables present the S. S., their associated Mean Squares,
and the ratios of Mean-Squares (F-ratios). As previously noted, the tests of
significance (F-tests) depend on the assumptions underlying ANOVA, but the
underlying framework - the Sums of Squares, along with the Mean Squares
and F-ratios, can be calculated for any set of numbers. No assumptions are
required. We thus have a mechanical analysis that says something about
variability introduced by treatments, without assumptions about the
underlying data.

To consider the assumptions required for tests of significance, we write
a model for the observations for a 2-way ANOVA with replications:

iX= W+ 0 + Bj +vij + Ejj (6.13)

Here, u represents an overall mean valug; and ; are the main effects
(column and row effects)yjj represents the interaction between the two main
effects, andejj is the error term. This latter ternejf) is assumed to have an

"expected value" of zero. That is, when it is averaged over a large data set it
should equal zero. Usually it is assumed thatj = 0 andzpj; = 0. We thus have the
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Xjj made up of an overall mean valug)(plus an effect for its rowa() and its
column @j). As we noted earlier, an "interaction” is an effect that makes

adjacent observations tend to be correlated. When there are no interactions
(vij = 0) then the expected value ofj x(effectively xj averaged over very large

samples) can be written as Bix=p + oj+ Bj and we say that the model is

additive. Such analyses are far easier to understand and interpret than are
those where interactions are presentyjj (not equal to zero).

It is important to recall that we want to test several hypotheses that state that
the main effects and interaction are zero, and the assumptions become
important in assuring validity of the F-tests.

Assuming additivity, we can use the reduced model:
Xj = W+ 0 +Bj+Egj (6.14)
Two major assumptions underlying tests of significance in ANOVA are:

(1) the gj; are independent, i.e., uncorrelated.

(2) the gjj are from a normal distribution with mean zero and variamce
The normal distribution is a symmetrical, bell-shaped curve, with its "spread"
(variance) measured by?2 [Eq.(1.3)].

Consider a two-way ANOVA with many replications per cell (and no
interactions). The mean value in any cell should be approximately

X = B0t

and the xk in this cell should have the same varianee. Any two cells

should have the same variance?. This is often described as homoscedasticity,
which simply means equal variances.

The assumptions for ANOVA can be listed as:

(1) additivity yjj = 0).

(2) independence of thej;

(3) &jj normally distributed with mean zero and variancé.

Sometimes (3) is split into 2 assumptions:
(3) &jj normally distributed with mean zero

(4) homoscedasticity - variances in replicates are all equabdo
In most applications of ANOVA there simply are not enough replicates

within cells to test these assumptions. Given quite large samples in the cells
(say 20-30 replicates per cell) it is worth comparing variances. Testing for
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normality takes larger samples. Some authors recommend Bartlett's test, but
Scheffe (The Analysis of Variance, J. Wiley and Sons, 1959, p. 83) points out
that it "is extremely sensitive to nonnormality”, and recommends that a
preliminary test of homogeneity of variances not be made.

Ecological data often come as counts of some kind, and these tend not to
be normally distributed, often having a skewed frequency distribution -- a
long "tail" of less frequent observations on one side or the other of the bulk of
the observations. Such data can be brought into closer approximation to
normality by a transformation. Two of the most commonly used

transformations are the square root transformatiomj)({x5, and the
logarthmic transformation, lagxij). It often turns out that standard
deviations of ecological data tend to be proportional to the mean values

(coefficient of variation, s/x = approximately a constant). The logarithmic
transformation tends to "normalize" such data and to make variances more
nearly equal on the transformed (i.e., logarithmic scale).

Testing the need for or the effects of a transformation is often
recommended, but it is risky to let such tests govern a decision to use or not use
a transformation.

It is worthwhile to simulate data based on the assumptions for ANOVA.
We start with EQ.(6.14); no interactions, and produce a table of main effects
(using aj and Bj such that they sum to zero) to which we add(taken as 5

here). A table of random normal deviates can be produced using EXCEL (used
here as N(0,1), i.e. normal with zero mean and unit variance). These are added
to the main effects table giving a set of simulated data (3 replicates per cell
were used; they have the same main effect value, but different random draws
were used to addj). The table of data follows, along with the ANOVA table.

1 2 3 4

1 6.10 5.89 4.98 5.67

7.18 4.80 5.51 5.70

DATA 5.73 6.71 4.89 6.80
FOR 2 6.33 6.17 6.75 2.91
ANOVA 6.48 5.89 2.54 4.13
6.77 4.42 5.56 5.23

3 6.57 5.36 5.93 3.71

6.93 4.93 3.08 4.80

5.68 5.42 2.81 5.31

4 6.49 4.14 5.80 2.65

3.39 4.74 5.26 5.82

4.49 6.39 4.74 3.89

5 4.18 5.97 5.14 2.61

6.55 5.18 4.46 3.11
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4.10 3.99 3.93 3.57
6 5.69 4.40 4.20 4.25
4.15 3.63 4.18 4.78
3.97 2.88 3.75 4.49

Source SS df MS F P-value F crit
Sample 21.20 5.00 4.24 4.08 0.00 2.41
Columns 14.67 3.00 4.89 4.71 0.01 2.80
Interaction 18.29 15.00 1.22 1.17 0.32 1.88
Within 49.86 48 1.04

Total 104.02 71

We can repeat the above exercise with interactions. In this caseyjjthe
were taken as a fractional power of the product denoting row and column
positions of a main effect entryj = (xy)?-7. Again a random normal deviate is
added to give eq._(6.13). The table of "data" and ANOVA table follow.

1 2 3 4
1 7.10 7.51 7.14 8.30
DATA 8.18 6.42 7.67 8.34
FOR 6.73 8.33 7.05 9.43
ANOVA 2 7.96 8.81 10.25 7.20
8.10 8.53 6.04 8.42
8.40 7.06 9.07 9.51
3 8.73 8.87 10.59 9.40
9.09 8.44 7.73 10.50
7.84 8.93 7.47 11.00
4 9.13 8.43 11.49 9.62
6.03 9.03 10.96 12.79
7.13 10.67 10.44 10.85
5 7.27 10.98 11.79 10.75
9.63 10.19 11.12 11.25
7.19 9.00 10.58 11.71
6 9.19 10.09 11.77 13.50
7.65 9.33 11.75 14.03
7.47 8.57 11.31 13.74
Source of S df MS F P-value
Variation
Sample 78.15 5 15.63 15.05 0.0000
Columns 69.00 3 23.00 22.14 0.0000
Interaction 44.39 15 2.96 2.85 0.0030
Within 49.86 48 1.04
Total 241.40 71

As noted previously, some authors recommend testing the deviations
(given in Eqg.(6.12)) for normality. With the numbers of replicates usually
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available, this is not sensible advice. A plot (Fig. 6.4) of all 72 normal deviates
used in the simulations was generated from a normal distribution, but is not
too reassuring in terms of the assumption of normally distributed errors.

1 67
1 4
12
10;

o N B~ O

-3 -25-2-1.5-1 -5 0 .5 1 1.5 2

Fig. 6.4. Frequency distribution of 72 deviations from data used in simulations.

6.6 Comparisons in ANOVA

In a brief account like the present one, it is not possible to cover more
than a fraction of the features of the Analysis of Variance. The book by
Scheffe is a classic account, and should be examined for more details. It is,
however, couched in the language of matrix algebra. Another good account is
that of Snedecor and Cochran, Statistical Methods, the lowa State University
Press, Ames, lowa. It has gone through at least 8 editions, and is another classic
text. Important topics that we have not covered are those of comparisons or
contrasts. In most experimental work, the main interest will be in certain
comparisons (e.g. Exercise 6.12 on weight gains in rats). In the pheasant data
there were 2 observers with experience, so a comparison between experienced
and inexperienced observers is of considerable importance. The pocket-
gopher data (Exercise 6.5) was collected at different locations and over
different years. One would thus emphasize those comparisons. In Exercise 6.8
there is a "control" plot ("check" treatment) which would normally be
compared with all other plots. Snedecor and Cochran give good descriptions of
how to sort out such contrasts. A short account of two approaches follows.

When comparisons are planned in advance, a t-test can be used to test
these specific comparisons for significance. The test depends on computing a
linear combination of the observed means:

- - - A
L=aAX1+A2X 2+ ... + AkX k (6.15)
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with the Aj constants adding to zero, i.&.Aj = 0. The standard error of L is
estimated as:
—

SE.(L)=s =¥

Sk

(6.16)
N

The d.f. for the estimated standard error of L are those used to estimate s, and n

is the number of observations used to compute each mean,Skheffe

describes comparisons such as L as contrasts. The t-test for comparisons
planned in advance is:

t=— (6.17)

The Ajare dictated by the comparison desired. If, for example, 2 means, say x

] . ] X1 X3 .
and x3, are compared to a third one,pxhen =5 + - X2 with the Aj

being 1/2,1/2 and -1, and thus adding to zero. If there are additional means in
the overall analysis that are not to be involved in the comparison, themijthe

for those means are assumed to be equal to zero. The simplest comparison is
that for 2 means, with the comparison being 1 X X 2, so thatA; = 1 andio = -1,
and

s, = 21/25/nl/2 g0 that:

n1/2( X1 - -XZ)

t =

with n being the number in each group and s is obtained from the error M.S.

A test due to Scheffe provides a general method for finding significant
differences among a full set of means without designating these comparisons
in advance of conducting the experiment. The price paid is less sensitivity
(broader confidence limits). It uses the same set-up as above, but declafes L/s

significant only if it exceeds [(k-145]1/2 where Fs is the 5% level of the F-

distribution for k-1 and n-k degrees of freedom when we are considering a
one-way analysis. The test can be used in more complex ANOVAs using (k-1)
and the d.f. associated with the error mean square. Scheffe's test also reduces
to the t-test when k = 2. The test should not be used if the F-test in an ANOVA is
not significant, as there are then no significant contrasts in the data. It is
important to understand that the S-method can be used to check all significant
contrasts in the means, while preserving the choserevel.

We illustrate the two procedures by using data simulated as in Section
6.5 where the simulations were used to study the assumptions for ANOVA. In
this example the column main effects have been changed. The "data" are as
follows:
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1 2 3 4

1 5.90 5.39 5.48 5.87
6.98 4.30 6.01 5.90
5.53 6.21 5.39 7.00

2 6.13 5.67 7.25 3.11
6.28 5.39 3.04 4.33
6.57 3.92 6.06 5.43

3 6.37 4.86 6.43 3.91
6.73 4.43 3.58 5.00
5.48 4.92 3.31 5.51

4 6.29 3.64 6.30 2.85
3.19 4.24 5.76 6.02
4.29 5.89 5.24 4.09

5 3.98 5.47 5.64 2.81
6.35 4.68 4.96 3.31
3.90 3.49 4.43 3.77

6 5.49 3.90 4.70 4.45
3.95 3.13 4.68 4.98
3.77 2.38 4.25 4.69

Means 5.3995 4.5498 5.1398 4.6118

The ANOVA (two-way with replications) is:

Source S df MS F P-value
Sample 21.1987 5 4.2397 4.0818 0.0036€
Columns 9.1840 3 3.06132.9473 0.0421
Interaction 18.2903 151.21941.1739 0.3233
Within 49.8576 48 1.0387
Total 98.5306 71

If we suppose the planned comparison was between means 1 and 3 against
means 2 and 4, then:

L = 0.25(5.3995) -0.25(4.5498) + 0.25(5.1398) - 0.25(4.6118) = 0.3444

S

and: § = (£ A2)1/2 = 0.5[(1.0387)/(18}/2 = 0.122

nl/2
. L ~0.3444 .
then: t = S, =0 122 - 2.82 with 48 d.f.

From t-tables ¢ = 0.05) we have 0.005 <P <0.010. EXCEL has a function that will
compute the probability directly. Enter the statement = TDIST(t,d.f.,tails) where
t is the calculated value (2.82 here), d.f. are 48, and "tails" is 2 for a 2-tailed test.
This function yields P = 0.007. Quite possibly past experience would lead to a
one-tailed test for a planned comparison.

We can illustrate Scheffe's S-method for the same comparison. The t-
value remains the same (2.82) but we use:
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[(k-1)Fps]1/2 = [3(2.801/2 = 2.90
as the criterion for significance at the 5% level, where 2.80 is the tabulated F-
value ata = 0.05 with 3 and 48 d.f. Hence, the test is close to the 5% level of
significance. We can go on and look for other significant contrasts as
suggested by the data while still having= 0.05. This is definitely not the case
for the first comparison tested above, which has to be selected in advance of
the study. Because it is a general-purpose "data-snooping” tool, Scheffe (1959)
suggested his test might be used with= 0.10, rather than the usual 0.05. EXCEL
can be used to find the tabular F-value by using the function FINV(P, d.f.1,
d.f.2) where P = 0.05 here and, d.f.1 = 3, and d.f.2 = 48. This function gpygesF

2.798, and o = 2.201.

6.7 Type | and Il errors and "power"

Most ecologists are used to the notion of Type | error, routinely
conducting statistical tests, such as the t-test, at the 5% level of significance (
= 0.05). They understand that such tests give a 0.05 probability, over the long
run of many such tests, of erroneously claiming that the null hypothesis of
"no effect” can be rejected when it is in fact true. Many do not seem to realize
that there is another side to the issue, which is failing to find a significant
difference when it exists (possibly because there were not enough samples or
replications to detect an important difference. This is known as a type Il error.

This issue of type Il error can be discussed in terms of the "sensitivity"
of a study, i.e., how small a change or difference will a study of a given size
reliably detect? The statistician's answer is usually couched in terms of a
power function or the "power of a test". Consider the likely points of view as to
the impact on the environment of some new facility. There are usually two
sides, those who construct and operate the facility and those with
environmental regulatory authority. Suppose that both sides can agree on a
study method that has well-known statistical properties and can be applied in
the circumstances under consideration. Suppose that they further agree to
make certain modifications in the facility and/or operational procedures if a
field survey shows a specified degree of change has taken place (an "impact").
What remains is to decide how large a sample should be taken in the field
study. But that depends on the amount of protection each party requires
against errors damaging to their best interests.

These can be described as follows: (1) The people doing the construction and
operation would rather not have the survey results indicate a significant
change when the agreed-on degree of change really did not take place (Type |
error). Just how strongly they voice objections will depend on the
consequences of a determination of "change". If only minor modifications are
then necessary they perhaps will agree that a 10% mate= (0.10) of such "false
positive" results is acceptable. However, if the changes require costly
retrofitting and expensive operational modifications, they may well want to

try to insist on Type | error rates of 1% or maybe even less.

(2) On the other side, the staff of the regulatory agency would not like to fail to
recognize a significant impact when one does occur (Type Il error). If small
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samples are taken, the results almost always will come out not significantly
different. Hence the regulators may be guided by rules that require an 80%
chance of being sure to detect a real difference (of the magnitude agreed on)
when the impact is not of minor environmental consequence. But if very
substantial damage to an important resource may be involved, they may well
argue for a 99% assurance. All too often, by default or lack of understanding
the actual rate may be about 50%, much like settling the issue by flipping a
coin and doing no field work.

To make any progress in the ensuing arguments a way of estimating
sample sizes is needed. An easy solution is just to take a very large sample.
Usually that is either too expensive or impractical (it may also result in
environmental damage from the sampling process). A handy formula for
approximating sample size for given Type | and Il errors is given by Snedecor
and Cochran and in the useful book by Cochran (Planning and Analysis of
Observational Studies, W. G. Cochran 1983, J. Wiley and Sons). It can be written
as:

2

. 2(z, +5§ﬁ)za _ Az, +2,)’
{~}°
o

where z = normal deviate for Type | error,gz= normal deviate for Type Il

(6.18)

error, 62 = variance (assumed the same in both data sets being compared), and
d = true (unknown) difference between two population meaps -(u2) or two

areas being studied, and n = the desired sample size for each population or area
(thus 2n required). g is the familiar value used in confidence limits, i.e.,

Zps = 1.96, 720 = 1.64. Some values ofgzare:

Type Il Power
error @) (1-B)
0.20 0.80 0.84
0.10 0.90 1.28
0.05 0.95 1.64
0.01 0.99 2.33

A major problem is thato is always unknown, and must be either guessed at or
estimated from a preliminary survey (etc.). Thus the right-hand side of eq.
(6.18) is frequently used, i.e., one guesses at the ratio of the difference to be
detected too. Suppose we takegz= 1.96 and g = 1.28 (power = 0.90). Then

2(1.96 + 128 _ _21
n =< - S

32 42

Consequently, if we suppose that the true difference is one-half,af = 84,
while n = 21 if we assume = 3. Clearly, if we assume a small difference is to be
detected, the sample size required may be huge. Using a small sample without
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looking at power of the test amounts to operating in ignorance (but still
happens a lot).

6.8 Other aspects of ANOVA

We did not go beyond two-way tables with replications. Efficient designs
will use more factors in order to get the most information per dollar spent on
experimentation. Again Snedecor and Cochran provide good discussions. There
are text-books devoted entirely to the design and analysis of experiments, and
a bewildering array of prospects. We also did not investigate what are called
unbalanced analyses. These are typically two-way analyses with replications
where the same number of replications per cell is not present. Sometimes a
study is planned with m replicates per cell but some are destroyed or, in the
case of experiments with animals, die unexpectedly, etc. In other cases, it may
not be possible to get m replicates per cell. Analyses of unbalanced designs can
be complex and, in some cases, controversial. It may be noted that the pocket-
gopher example is unbalanced, but this is not a problem in one-way analyses.

The models described here are fixed-effects models, where interest is
solely in the set of main effects studied in the experiment. Very often we have
to consider random-effects models where the effect studied is regarded as a
sample from some large population of effects. The analysis then takes a
different form. Probably most practical work can be described by mixed-
effects models, where one set of factors is fixed and the remainder random. The
great advantage of the fixed-effects model is that the analysis of variance is
guite "robust" in such cases, i.e., non-normality is not as serious a concern as
in the random-effects models, where we assume sampling from a random
normal distribution, and depend much more on that assumption for tests of
significance. We remarked that significant interactions pose problems of
interpretation, but did not note that it the may be necessary to use the
interaction term as the denominator of F-tests.

The prominence of ANOVA in ecological studies is a bit puzzling. A quick
review of a major ecological journal a few years back showed that ANOVA was
then the dominant statistical technique used in that publication. However, |
suspect that many of the cases really stem from editorial and reviewer
insistence on statistical testing. The mere fact that some “significant” result
was obtained doesn’t really provide much information about the process being
studied. Hence | suggest that students use the data-snooping quality of the test
due to Scheffe (Section 6.6) whenever possible as a tool for searching out the
particular comparisons that really are significant in an analysis. As noted
there, Scheffe proposed using a 10% significance level with the test, but that
may not be very palatable to editors (who often will not realize that it is up to
the investigator to choose the significance level, not an editor or a referee).
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6.7 Exercises

6.1 Show that the cross-product terms in eq. (6.3) cancel out, resulting in
eq.(6.4).

6.2 Calculate a one-way analysis of variance for the pheasant data using the
ANOVA program in EXCEL.

6.3 Using the group variances printed out in the EXCEL output for Exer. 6.2,

calculate a value for Eqg. (6.5) and locate the corresponding value in the one-
way ANOVA table prepared in Exer. 6.2 (the calculations can be inserted to the
right of the summary of means and variances in the one-way output tables).

6.4 Copy the data from Exer. 6.2 to a new spreadsheet in the same Workbook and
calculate the S. S. for the one-way ANOVA directly from the definitions given
in eq. (6.4).

6.5 Repeat the calculations for Exer. 6.2 and 6.4 on the pocket gopher data
given below, but first convert the counts to natural logarithms [natural log =
LN(number)].

Pocket gopher counts
Black Mesa Grand Mesa
1962 1963 1964 1963 1964

1 61 237 82 167 62
2 61 271 68 183 172
3 132 253 168 297 106
4 158 157 190 188 87
5 90 244 33 238 89
6 52 180 57 285 81
7 107 269 30 124 29
8 73 138 25 209 75
9 155 159 50 248 65
10 77 237 131 204 46
11 82 108

12 97

13 167

6.6 Run the two-way ANOVA without replications on the pheasant data. Notice
that the total sum of squares remains the same as the one-way analysis, and
the between-groups S. S. is the same as that for columns in the new analysis.
However, the F-tests are now significant, and it is worth considering why this
should happen (look at the mean square for error, and compare it with the
within-groups value of the one-way analysis. What is your explanation?
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6.7 Calculate the S. S. for Exer. 6.6 directly.

6.8 Randomized blocks The data below are from a randomized block study
reported by Snedecor and Cochran (Statistical Methods, 6th Ed., p. 300). Do a
two-way analysis in EXCEL and compare the M. S. for replication with that for
treatments. What do the F-tests suggest?

Replicates
Treatments 1 2 3 4 5
CHECK 8 10 12 13 11
ARASAN 2 6 7 11 5
SPERGON 4 10 9 8 10
SEMESAN 3 5 9 10 6
FERMATE 9 7 5 5 3

6.9 Calculate the ANOVA table for Exer. 6.8 directly. It shouldn't take long, and
is first-rate practice in using EXCEL.

6.10 Calculate ANOVA for the pheasant data arranged as having 2 replicates as
described in the text section on 2-way ANOVA.

6.11 Copy the data from Exer. 6.10 to a new spreadsheet in EXCEL and calculate
the S. S. directly from the definitions of eq. (6.8) thru eq.(6.12). This is
something of a chore, with the main difficulty being in keeping things
straight (use good labelling). Use two spreadsheets. You will need 2 copies of
the original counts (one for computing Total S.S., the other for computing
error S. S.) and 2 copies of the cell means (to calculate Treatment and
Interaction S. S.). If you label things carefully and use the proper multipliers
(m, k, and r) you will get the same S. S. as in Exer. 6.10. Patience is necessary,
as is accuracy. If you do all of the exercises, it should help in remembering
how to use ANOVA.

6.12 Snedecor and Cochran (1967:p. 347) give the following data on gains in
weight (grams) of rats fed on six diets. The columns are replicates (individual
rats on the same treatment). Run an ANOVA and report the results. Note that a
two-way ANOVA with replications is indicated.

High level Low level
Beef Cereal Pork Beef Cereal Pork
73 98 94 90 107 49
102 74 79 76 95 82
118 56 96 90 97 73
104 111 98 64 80 86
81 95 102 86 98 81
107 88 102 51 74 97
100 82 108 72 74 106
87 77 91 90 67 70
117 86 120 95 89 61
111 92 105 78 58 82

COO~NOURAWNR

=
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6.13 Use the planned comparison method on the data of Exer. 6.12 to compare
the 2 levels of protein (High and Low). You may also want to look at the
breakdown given by Snedecor and Cochran for this example, as it uses
orthogonal comparisons to break down the treatment S.S. into 5 individual
comparisons. Apply Scheffe's S-method to the data. Discuss results.

6.14 Use the planned comparison method to compare the "check" (control)
mean with the other treatment means of the data in Exer. 6.8. Make the same
comparison with Scheffe's method. List his criterion fwr=0.10 as well as fon
=0.05. Discuss results.
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7.0 INTRODUCTION TO POPULATION ASSESSMENT
7.1 Viable populations

There has been much interest in recent years in maintaining viable populations of
various species. Many of the efforts stem from the requirements of the Marine Mammal
Protection Act of 1972 and the Endangered Species Act of 1973. Due to the complexities
of natural systems, legislative mandates often cannot readily be translated into programs
that can actually be implemented in a field setting. Thus an early question was "what is a
viable population?" One attempt at an answer led to definition of a "Minimum Viable
Population™ (MVP) as the population size that had a 95% probability of surviving for 100
years. Stochastic population models were implemented on a computer and starting
population size varied to find an initial population size that resulted in about 5% of the
simulated population going extinct in 100 years. A major problem with such models is
that the outcomes depend very much on the set of parameter estimates used in the model.
If the parameters are such that the average population trend is a decrease, then higher
initial population levels are required to meet the criterion than if the expected trend is
upwards. Interpreting the available field data provides another pitfall -- three such
stochastic models have been published that consider the Yellowstone grizzly bear
population, all with shortcomings of interpretation.

When the difficulties in the Minimum Viable Population approach began to
become apparent, appraisals using less specific and broader methodology were developed
and described as Population Viability Analysis (PVA). Various kinds of models
continued to be emphasized for the analysis of populations of endangered species (Soule
1987). These broader appraisals of Population Viability Analysis include the important
feature of the possible loss of genetic variability, but there is as yet controversy about the
minimum population size required to preserve sufficient genetic variability to maintain
the species (Boyce 1992). It does seem to be generally accepted that an occasional
exchange between isolated subpopulations is sufficient to maintain genetic diversity, so
that the genetic issue may be of major importance when only one small remnant of a
species exists.

A crucial uncertainty in modeling any natural population is the poorly understood
role of density-dependence. Consider a population containing 50 females in which births
and deaths are balanced so that the expected trend is to remain constant (A = 1.00). If a
stochastic model with no density-dependence is run 1,000 times for 100 years each run,
the outcomes may be as in Fig. 7.1, in which less than 2 % of the "populations™ were
extirpated, thus meeting the MVP criterion of "viable". A major problem with such an
approach is that constant rates cannot be expected to continue regardless of population
size. If the population is stable at about 50 individuals, then it is widely accepted that
increases much over this level will not occur due to “density-dependence”, which seems
largely to be expressed in large mammals as resulting in lower first year survival when an
asymptotic population level is approached. Conversely, if the population falls much
below the asymptotic value, then early survival increases so that it tends to return to the
asymptotic level. Unfortunately, the model (generalized logistic given in Chapter 13) that
seems to best fit data on larger animals does not account for the occasional “overshoot”,
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when a population exceeds the “carrying capacity” level, so there isn’t any really
satisfactory model for populations above carrying capacity. Consequently, an effort to
introduce density-dependence in the model used for Fig. 7.1 has to have an arbitrary
component for those cases where the population overshoots.

The model used here uses data for an elk population, as presented in Chapter 11.
Data for rapid growth of that population come from work by Houston (1982). More
recent data on a Yellowstone elk population (Garrott et al., 2003), gives adult female
survival rates of about 90%, in contrast to rates of about 99% from the work by Houston
(1982). In order to achieve the “stationary” population, first year survival was reduced
until the estimated value of A was unity, with adult female survival at 0.90 (only females
were considered in the simulations). Random draws for individuals were used to generate
the data of Fig. 7.1. Density-dependence was then introduced through the generalized
logistic model of Chapter 13, which seems to work reasonably well for populations
below carrying-capacity. When an “overshoot” occurred, rates for the stationary
population of Fig. 7.1 were introduced, giving Fig. 7.2 for the outcomes of 1,000 runs.
This arbitrary adjustment for “overshoots” means that the right side of Fig. 7.2 is of
somewhat dubious utility (but less than 8% of 1,000 simulations were “overshoots”). The
important feature here is that density-dependence resulted in no populations going
extinct, with a lower limit around 20.
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Fig. 7.1. Outcomes of 1,000 simulation runs of a population starting with 50 females with
parameters selected to give A = 1.00, and no density dependence.

Until much more is known about the mechanisms controlling trends in small
populations, the most prudent approach to maintaining viable populations is to
concentrate on "population analysis™, that is, to determine survival and reproductive rates
in an effort to determine whether the population can be expected to increase or decrease
in the immediate future. If a decrease seems likely, then management actions need to be
directed towards changing the rate most likely to be responsible. First-year or adult
survival appear to be responsible in the available examples. The same general principle
appears to apply in those cases where the goals are to control an over-numerous
population or to secure a maximum sustainable yield from an exploited population.
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Fig. 7.2. Outcomes of 1,000 simulation runs of 100 years for an initial population of 50
females with a density-dependence function acting on first-year survival and "carrying-
capacity” (K) set at 50 females.

Many studies may require 10 years or more to obtain enough data to determine
the key issues, and to begin to develop effective approaches to solutions. Often the initial
assessments of the perceived problem turn out to be in error, and it may take a long time
to correct these initial perceptions in the face of public pressure to "do something™. While
the "environmental movement” has created a climate in which actions to maintain
endangered or threatened species have become possible, the many private organizations
dedicated to fostering such actions may hamper progress in particular cases. This usually
results from the need to demonstrate their active participation in order to maintain a flow
of funds from the public. Litigation engenders publicity and thus funding, but may also
seriously limit the ability of a responsible agency to obtain required data.

7.2 Methods for population analysis

Administrators and the general public always ask "How many are there?" when
faced with some issue concerning a population. This seems to be a wholly reasonable
question, and is one that often has to be answered in one way or another. If sizable
removals are made for exploitation or control purposes, an estimate of absolute numbers
may be essential, in order to assess the likely impact of the removals. Endangered species
are often present in low densities, and may thus be very difficult to census. Consequently,
an investigator may expend much of the available resources in an attempt to obtain a
population estimate, only to discover that the precision of the estimate is not adequate for
the major goal of any study of an endangered species. This almost always has to be one
of determining trend of the population. If, as usually seems to be the case, a very large
effort has to be expended to get a census estimate of relatively low precision, then
repeating the census in another year very likely will not supply a useful measure of trend.



7.4

There are basically two alternatives. One is to opt for some measure of trend
based on an index of abundance that may be much less expensive to obtain than an
estimate of absolute abundance. The other is to obtain reproductive and survival data on
which to base an estimate of likely trend. This has a distinct advantage for studies of
endangered species, inasmuch as such studies usually also need to try to determine why
the species is "in trouble” and what might be done to insure a positive rate of increase. If
one relies only on trend data, it likely will take a sizable number of years to establish a
trend, and the mere observation of trend will not provide any information on reasons for
the change. It is true that the basic cause for a declining trend may be obvious, i.e., loss
of suitable habitat. Nonetheless, it may be essential to know how this cause affects rate of
change in the population, and this requires knowledge of reproductive and survival rates.
If positive steps to reverse a decline can be taken, then the impact of such steps will most
likely first be evident in reproductive and survival rates.

Virtually all field data on large populations is inadequate in scope for "textbook™
analyses of present status and likely future trends of the population. Each data set has
unique features, often in consequence of the unique nature of the particular species, but
also because of the difficulties and costs of data collection. A variety of approaches is
thus required, including various kinds of approximations and indirect methods of
estimating essential parameters of the population.

Most field studies of large populations seek to predict the future trend of a
population by assessing data collected over time. In some instances either research goals
or a legislative mandate (see, for example, Eberhardt 1977a) may direct attention mainly
to the past, often with a goal of evaluating present status of the population or predicting
the likely impact of some alteration of the landscape or its uses. A universal need in such
studies is to evaluate likely accuracy and precision of the outcome.

Because the methods used in practice all require assumptions that are very
difficult to support under field conditions, the only satisfactory demonstration of
accuracy may be independent estimates of the same quantity, usually rate of change of
the population. This can be achieved by comparing estimates based on trend data (e.g., a
log-linear regression of a population index) with those derived from reproductive and
survival data. Most studies fall short of this goal through lack of estimates of some
essential rate. Another need is thus to indicate something of the minimal requirements for
assessing accuracy of a population study.

Uncertainty about fulfillment of assumptions has similar effects on precision for
any given kind of estimate (e.g., of population size). Since an overall assessment will
require a number of individual estimates, appraising precision of the end-product (e.g., a
rate of increase) is also very difficult, and rarely attempted. The problem needs to be
faced, however, because improving population analyses will likely depend on combining
inferred parameter estimates (e.g., those derived from, say, age and sex ratio data) with
direct measurements (obtained, for example, through radiotelemetry). Combining two
such sources will usually require weighting by measures of precision. The non-
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parametric methods, such as bootstrapping and jackknifing, provide the necessary
flexibility.

The basic ingredients for an assessment are measures of population size and
estimates of reproductive and survival rates. These may be obtained in a variety of ways,
and can be used in an analysis based on either a direct projection of population size or by
estimating a rate of change from survival and reproductive rates alone. The major
difference between the two is that projections require estimates of population size. We
are thus concerned here with three sources of data and two methods of utilizing that data
(Fig.7.3). A brief listing of the individual sources and methods given in Fig. 7.3 follows.

Population estimation can be approached by making direct estimates of actual
abundance or through indices of abundance. There is a very large literature on methods
for estimating animal abundance (Seber's 1982 book is still the major reference) and
much theoretical and practical work continues to be published on these methods.

Survival estimates are usually obtained either indirectly through analysis of age
structure data or directly through evaluation of data from tags and marks. Use of age
structure data alone requires the very restrictive assumptions of constant population size
and constant recruitment to the population in the years in which the age structure was
developed, along with constant survival. If tags are used, then the assumption of constant
recruitment is not needed in estimating survival from tag recoveries. A major advance
has been use of radiotransmitters as tags, reducing uncertainties and variability associated
with tag recoveries.

Reproductive rate data are usually more readily obtained than information on
population size and survival. Often sizable numbers of individuals can be examined for
pregnancy and age-specific rates derived directly. However, some species (e.g., bears
and whales) do not reproduce annually, so that it may be necessary to use a composite
measure of reproductive rate, based on sex ratios at birth, litter sizes, breeding intervals,
and so on.
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Figure 7.3 An outline of techniques useful in analysis of large vertebrate populations.
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Methods for population assessment using the data outlined above can be
considered in two classes. Projection models require an estimate of population size and
apply birth and death rates to project the population from one year to the next. The
simplest such models that incorporate provisions for removal of known numbers of
individuals are:

Nt+1 = R(Nt - Kt) (7.1)
Nt+1 = RNt - Kt (7.2)

where Kt denotes removals at time t and R represents a rate of increase. The two
equations differ in terms of whether the removal takes place just before or just after
reproduction occurs. When age-specific birth and death rates are known, the equations
may be written as matrix models, with R = M, the Leslie matrix. When age-specific rates
are not available, the equations may be expressed as simple difference equation models,
with R = A, a constant annual rate of increase.

One of the major difficulties in actual applications of projection models is the
present uncertain state of knowledge about population regulation. If the prospect of
density dependence is to be incorporated in the model, then some sort of functional form
has to be assumed, operating directly on R for difference equation models and one or
more of the elements of the Leslie matrix for age-structured data.

In the absence of population estimates, a direct evaluation of population dynamics
may be conducted on the basis of age-specific reproductive and survival rates. The
classical approach is that of A .J. Lotka, who first demonstrated that constant age-specific
birth and death rates result ultimately in both exponential growth (or decline) and a
constant relative age structure (the stable age distribution). Lotka's basic equation is
equivalent to the characteristic equation of the Leslie matrix, so the models are here
described as Lotka-Leslie models. In practical applications, there usually is not enough
data to use more than a few reproductive and survival rates, so Figure 7.3 includes a class
of simplified models based on these rates.

7.3 Population estimation

Although there is a large array of methods for estimating population densities,
relatively few methods are actually used on large vertebrates. The principal techniques
used in the field are transect methods and those based on harvest data (largely "catch-
effort"” methods). For the most part, the use of a limited set of methods is a consequence
of the very large areas involved and the high costs of marking animals on such areas. The
catch-effort methods have mainly been applied to marine mammals, usually give highly
variable results, and suffer from several other difficulties (cf. Eberhardt, Chapman and
Gilbert 1979). Transect methods are largely used from aircraft or ships and thus are
frequently subject to uncertainty as to whether the assumptions required for density
estimation are met (Eberhardt, Chapman and Gilbert 1979; Burnham, Anderson, and
Laake 1980). As noted above, the major reference for estimating both population size and
survival rates is the book by Seber (1982). A monograph by Pollock et al. (1990)
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provides some further discussion of underlying models and access to a computer program
suitable for estimating parameters of these models. Program MARK maintained at
Colorado State University may be one of the most up-to-date of the many programs now
available.

In many applications, it is likely that the data on population abundance have to be
considered as an index, rather than as an estimate of absolute numbers. There are two
difficulties. One is just that very little quantitative work has been done on indices. A
more serious problem is that many field applications concern populations subject to
harvesting or other removals. Since removals are expressed in absolute terms, it is
necessary to also express population size in absolute terms, or to make the very
restrictive assumption that removals are directly proportional to abundance. Because the
projection models require estimates of absolute abundance, indices may be most useful to
check calculation of a rate of change from the Lotka-Leslie models in those cases where
the population is not subject to substantial removals.

Optimal use of index data for population analysis requires some sort of calibration
to convert the index to an estimate of absolute abundance. Often a method that provides
direct estimates is available, but is too expensive or time-consuming for application over
the entire area of concern. The appropriate means for calibration may then be the
statistical technique known as double sampling, in which small samples obtained through
an expensive but accurate technique are used to make ratio or regression corrections to
large samples obtained by a relatively inexpensive technique (the index). Unfortunately,
the available statistical basis for the method depends on approximations, so that the usual
recommendations for sample sizes (Cochran 1977) are larger than can be managed for
many animal population studies. Some simulations indicate that smaller samples can be
used, and various devices may be used to try to reduce the effort required for calibration
(Eberhardt and Simmons 1987).

The principal alternative to calibrating an index may be large scale marking. For
the most part, costs are too high to make capture-recapture uses of tagging and marking
feasible for large populations inhabiting sizable areas, so that the technique has mainly
been used to estimate survival. The high, stable survival rates necessarily exhibited by at
least the adult female age classses of many species of large vertebrates suggest the
possibility of periodic population estimates based on tagging or marking over a number
of years, so that enough marks are built up in the population to yield reasonably precise
estimates in a recapture series. DeMaster et al. (1980) reported one such attempt for polar
bears, but assumed a constant, known survival rate for estimation purposes.
Unfortunately, satisfactory direct estimates of survivorship are very difficult to obtain for
this species (and most others). Consequently, it seems likely that progress along these
lines will call for the imposition of appropriate restrictions on the Jolly-Seber method
(see, for example, Brownie, Hines, and Nichols 1986).

7.4 Survival estimation

Survival estimates are likely to be the most important ingredient in population
analysis, yet are often the least satisfactory estimate obtained in actual practice. Their
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importance is due to the magnitude of the effect of a small difference in adult female
survivorship on rate of change of the population (cf. Eberhardt and Siniff 1977). A few
percentage points one way or another spell the difference between a comfortably
increasing population and one threatened with extirpation. Subadult survival rates have
markedly less effect on rate of change, and may thus be the major factor in population
regulation, while adult female survivorship quite possibly provides the last mechanism to
come into play in a sequence of events under natural conditions (Eberhardt 1977b).

Poor quality or outright absence of survival estimates in many studies no doubt
reflects the high cost of obtaining useful estimates. The least expensive route is via age
structure data. If survivorship in adult age classes is constant from year to year, and the
same number of individuals are recruited to adult status each year, then the ratio of
numbers in successive age classes will ultimately reflect the common survival rate.
Averaging over a number of age classes in a sample is necessary to reduce variability in
the estimate, and Chapman and Robson (1960) described an efficient estimator for that
purpose. Other methods can be very much less efficient (see Eberhardt 1972 for
examples).

Unfortunately, the assumptions required for use of survival estimates from age
data are so restrictive that they are unlikely to be met in practice, and should be tested
whenever the method is used. A null hypothesis of constant annual survival rates plus
constant recruitment implies that age structures in successive years should be
homogeneous, so that chi-square might be used to test the hypothesis and thus the
assumptions. However, such homogeneity is not a sufficient condition to justify
estimating survival from age structure data since homogeneity of successive age
structures is implied by the stable age distribution (Keyfitz 1968). Such a distribution
results from populations changing at a constant rate. Consequently, adequate justification
for using survival estimates from age structure data also requires a demonstration that
population size has remained constant.

In many instances, a population may tend to increase (or decrease) at a relatively
constant rate (examples are given by Eberhardt 1987). The Chapman-Robson method
may then still be used, but now under the assumption of constant survival and of
recruitments changing at a constant rate. The parameter estimated then becomes s/ A,

where X denotes the "finite population multiplier”, i.e., A = el or A = 1+r depending on
whether continuous or discrete rates of population change are assumed.

The alternative to using age structure data is to mark or tag individuals, and
estimate survival rates on the basis of rates of recovery of these individuals in subsequent
years. This disposes of the assumption of constant recruitment, by virtue of the fact that
the number of marked individuals is now known. The Chapman-Robson estimation
procedure remains appropriate with recoveries from marking and tagging (Paulik 1962).
However, if marked animals are introduced over a series of years, the way is then opened
for a wide range of estimation procedures along with some additional tests of
assumptions. An extensive set of models and estimation procedures was developed by
Brownie et al. (1978), mainly with reference to applications to bird-banding. A general
method of analysis based on numerical solutions of maximume-likelihood estimators was
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proposed by White (1983), and illustrated on a set of large vertebrate data. The book of
Seber (1982) contains the most extensive coverage of methods, but should be
supplemented with the recent monograph by LeBreton et al. (1992) which covers recent
developments and lists the many computer programs now available for processing data.

One of the more troublesome aspects of use of marking and tagging for estimating
survival is that only a relatively small fraction of marked individuals are ever recovered.
This opens the door for a variety of biases (cf. Pollack and Raveling 1982) and results in
substantial variability in the estimates. A logical approach to the difficulty is then to use
telemetry, so that status of individuals is largely known throughout life of the
transmitters. Relatively little quantitative work has yet been done on survival rates
estimated from telemetry data. A useful reference dealing with circumstances in which
survival of an individual is checked at irregular intervals (Bart and Robson 1982) gives
results that should be useful in telemetry studies, while Heisey and Fuller (1985)
specifically discussed estimation of survival rates by telemetry, as did Pollock et al.
(1990).

A problem in using these methods is that they are based on the assumption that
survivorship is constant from day to day and among individuals. The results may thus be
suitable for relatively short time intervals, but cannot safely be extended to longer
periods, such as a year, due to the prospect that daily rates cannot be assumed constant
throughout long periods. An alternative is to do the analyses in terms of years, not days.
This will, in most cases, be necessary for long-lived animals in any case, due to
infrequency of mortalities. Another issue in need of attention is that of censoring, i.e.,
individuals may be lost to observation when the radios cease to function or by emigration
from the study area. Also, in long-lived species, many of the tagged individuals will
remain alive at the end of the study period.

7.5 Reproductive rate estimation

For those species that reproduce annually, there usually is little serious difficulty
in obtaining estimates of reproductive rates. The major sources are observations of
pregnancy rate and tallies of young per adult female. Normally only pregnancy rates can
be determined on an age-specific basis. In any case, survival rates for the youngest age
class used need to be defined in terms of the reproductive rate used, e.g., if pregnancy
rates are used then early survival includes mortalities in late-term pregnancy.

Species that do not reproduce annually may pose some special problems in
estimating reproductive rates, particularly when direct observation is not feasible. It may
then be necessary to use a composite rate, based on different sources of data. Litter size
may be directly observed, while sex ratios of young may be available only from those
individuals that can be caught and handled (often sex ratio is simply assumed equal at
birth). The composite rate might then be computed as:

(sex ratio)(mean litter size)
m=
breeding interval
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Direct measurements of breeding interval are likely to require marking or tagging, and
may best be done with radiotelemetry to reduce the prospect of missing a reproductive
event. Knight and Eberhardt (1985) discuss problems in estimating this composite rate
for grizzly bears.

In some situations it may be feasible to substitute proportion giving birth rather
than breeding interval since, in an equilibrium situation, the proportion giving birth will
approximately equal the reciprocal of breeding interval. When single births are the rule,
if sex ratios are assumed equal, then m simply equals proportion giving birth. It is, of
course, necessary to assume that only fully mature females are involved in the
calculations. In reality, individuals usually do not reach full reproductive capability in a
single year, so that some corrections for reproductive rates of younger animals may be
needed.

7.6 Projection models

The major uncertainty in using projection models is whether or not some
functional representation of density dependence needs to be incorporated in a given
example. Although most ecologists largely accept density dependence as reality, there
simply is not enough information available to specify how it may apply in particular
circumstances. If regulation is to be considered in a projection, then a specific model has
to be used. Two classes of models have been used in actual applications concerning
vertebrates. The model used for large vertebrates has been described as a "generalized
logistic™:

rt=r[1 - (NY/K)?] (7.3)

where the annual rate of increase (rt) is reduced from a maximal rate (r) as the population
(Nt) increases towards an asymptotic value (K). The rate (z) controlling approach to the
asymptote determines the inflection point:

p=(1+2)0lz (7.4)

When z = 1, this model reduces to the discrete form of the ordinary logistic growth
model, hence the term "generalized logistic". The main practical application thus far has
been in calculations performed for the International Whaling Commission.

The second class of models used in practice includes the stock-recruitment
models of fisheries research and management. The two main forms are those of Beverton
and Holt and of Ricker (Ricker (1975) gave extensive details). The Beverton and Holt
curve is essentially based on the ordinary logistic growth curve. As a growth model,
Ricker's model can be shown to be essentially equivalent to the Beverton and Holt curve
when r is in the range typical of large vertebrates (Eberhardt 1977c). It is only when
annual rates of increase approach those reported for some species of fish that the two
curves need to be distinguished.
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Probably the only real assurance as to whether a functional model of density
dependence needs to be incorporated in a given actual projection comes from experience.
There is a slowly increasing body of evidence that the inflection point for large mammals
is usually well above the 50 percent level of the ordinary logistic curve (Fowler 1981). If
this is generally true, then it may not be necessary to utilize a density dependence
function in a projection model unless the population approaches relatively high levels. At
present, past experience with the particular population likely has to be the principal
source of guidance on this score. Eberhardt (1987) described growth patterns for 16
populations with a simple exponential curve, but also found it necessary to use a density
dependent function at higher levels for several of these populations.

In a number of cases, projection-type models have been used for "back-
calculations”. Most examples result from the need to compare present population levels
with likely pre-exploitation abundance (see, for example, Breiwick, Eberhardt and
Braham 1984). It will then be essential to include density dependence in the model, and
the inflection point chosen will have an appreciable impact on outcome of the back-
calculation. Most such back-calculations have been made to comply with regulations that
mandate a given population should not be reduced below its "maximum net productivity"
or maximum sustainable yield level (cf. Eberhardt 1977a). However, choosing different
inflection points may influence the outcome substantially.

When it comes to actually using a projection model with data, very little work has
been done with fitting matrix models to large vertebrate populations. This is largely a
consequence of the fact that the necessary data are usually not available. About all that
can presently be done is to attempt to estimate the essential parameters for the Leslie
matrix at some point in time. If population estimates for a series of years are available, it
may then be feasible to attempt to see how well matrix calculations "track™ the observed
data. If age structure data are also available for a number of years, it should then be
possible to attempt to estimate some of the parameters in the matrix by iteritive fitting
procedures using a chi-square criterion.

In the much simpler case where the projection model is a difference equation, it
may then be feasible to estimate parameters by direct fitting procedures (some examples
were given by Eberhardt 1987). If it is necessary to use equation (7.3), or some other
functional representation of density dependence, then the fitting will become much more
complicated.

7.7 Some historical features of population analysis

The word "population™ derives from the Latin Populus, meaning people, while
"demography" stems from the Greek Demos, also meaning people. These roots indicate
clearly the origins of the terminology and methodology now applied to aggregations of
all kinds. It is now common practice to use "population” to mean any well-defined
collection of objects, both animate and inanimate. There are, however, those who
interpret "demography" as meaning only the study of human populations. Because the
bulk of the techniques in use in ecology stem directly from early work on human
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populations, it seems pointless to use a separate term for animal and plant populations. It
is obviously bad grammar to use "animal demography".

An excellent review by Cole (1954), under the title "Sketches of general and
comparative demography", provides many interesting historical details, and is the basis
for much of the present section. Students should also refer to the book by Allee et al.
(1949) for additional perspective on origins of ecological population studies. Although
over 50 years have elapsed since this book was published, it is still one of the better
references, due to its detailed and thorough coverage of many features of animal ecology.

Population enumeration was no doubt practiced well before the census was
developed by the Romans, and an elaborate system of population registration was in use
in China before Marco Polo's time. Surprisingly enough, not until the 17th century did
the "modern” nations begin complete population enumerations. Cole (1954) suggested
that "Plato, and probably Solon before him, had a definite concept of an optimum
population size and an understanding of factors regulating population size."

An ltalian, Botero, in 1588 clearly recognized the limitations placed on
population growth by environmental resources. He also preceded Malthus by some two
centuries in formulating the concept of potential geometric growth of populations.
Skellam (1955) noted that Linnaeus (in 1740) described potential population increase in
plants by a geometric growth scheme, thus also preceding the famous 1798 essay by
Malthus.

The Romans sold annuities at rates that changed with advancing age, but it was
not until 1662 that the basis for an effective life table was developed by John Graunt, and
then refined into something approaching modern versions by Huygens in 1669. In the
1750's Buffon enunciated a clear qualitative statement of the principles of the "balance of
nature”, while a century later Darwin and Wallace produced the ultimate key to
evolutionary understanding. In the same period, the forerunners of modern mathematical
and statistical development were at work. These included Quetelet, Gompertz, and
Verhulst (in the 1820's and 1830's) followed by Galton and the rapid development of
biometric methods culminating in the work of Karl Pearson and his associates in the early
20th century. Modern mathematical approaches to demography were pioneered in the
early 20th century by Pearl, Lotka, and Volterra.

7.8 A classification of methods for estimating abundance

The classification used here rests on a basic dichotomy between situations where
plants or animals can be readily and directly counted, and those where this is not feasible.
The direct sampling methods can be further subdivided in terms of the sampling units
employed in the field. Indirect sampling methods can be conveniently subdivided in
terms of whether or not an individual animal is likely to be observed on more than one
occasion. Single observations necessarily result when the animal is killed (e.g., catch-
effort methods) and are generally expected for most of the index methods. Repeated
observations on individuals are necessary for the capture-recapture methods.
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The classification is given below in segments, with each unit followed by a brief
discussion. References to Chapters or Sections are included, along with a few special
literature citations. Additional references are included in the appropriate chapters. The
classification is adapted from one given by Eberhardt (1978a). The first section deals
with direct counts of individuals.
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I. DIRECT SAMPLING Used where direct counts are Chapter 4
feasible
A. Area counts
1. Discrete sampling
units Parasites on or in hosts, colony
counts, artificial substrates,
sampling catches of individual
vessels, time-area counts
a. Counts of all
individuals
or absence

2. Quadrats
a. Counts of all
individuals Counts of plants, deer drive
counts, corers.
b. Tally of presence  Used in attempts to reduce

or absence sampling effort
c. Proportion of Used for plants when
plot occupied individuals difficult

to distinguish.

7. Strip transects

a. Counts of all Counts of plants, Section 5.10
individuals inanimate objects, sessile
animals.

b. Partial counts
i. Visibility Animals that do not flush or
decreasing are sessile, plants,
with distance  inanimate objects.
ii. Intermittently Marine mammals
visible

B. Counts at fixed Counts at dams or weirs,
points or vantage points along
streams or coastlines (usually
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migratory species).

C. Line methods
1. Line intercept  Plant canopies and other Section 5.3
sizable objects
2. Line transect

a. Animal flushes Animal censuses Section 5.5
b. Searching by  Inanimate objects, animals Section 5.6
observer that do not flush

D. Point methods

1. Point frames  Plants Greig-Smith (1964)
2. Distance methods
a. Radial Plants, sessile animals
b. Linear An alternative arrangement
("variable- more suitable for use in
area” plot) the field. Section 5.4
7. Bitterlich Used to estimate basal area
method in forestry Section 5.4

("angle-count™)

Fhhhhhkhkhkkkhkhkhirrhhhhkhkhhhrrrrhhrhhkhhkhihrrrhirhrhhhhhirrhikdhkhhhiiiiix

An important distinction in "area counts” is whether or not natural groupings can
be accurately distinguished. Examples of such natural sampling units include individual
plants, beaver colonies, fishing vessels, and the like. When natural sampling units are not
available, or cannot be precisely delineated, some sort of artificial sampling unit has to be
defined. The commonest example is a sample plot or quadrat. When natural sampling
units are available, two factors must be considered. One is whether or not a random
sample of such units can be obtained, and the other is whether all of the items of interest
on selected units can readily be enumerated. If random sampling of units is feasible, and
complete counts of individual items on the units are readily obtained, then standard
sampling methods are appropriate. When there are difficulties with either factor, then
other techniques need to be used. These can be quite complex, as will be evident from
looking through any of the sample survey texts (e.g., Cochran 1977). However, a simple
approach that works well in many practical situations is to use a plot sample to estimate
the number of units, and then to tally the items of interest on all or a subsample of the
natural units falling in the plots (cluster sampling).

In the case of either discrete sampling units or quadrats, various efforts have been
made to reduce the labor involved in tallying individual plants and animals by only
recording whether there are any individuals present or not (“presence and absence" data).
Sometimes this information is all that is wanted, e.g., in determining the proportion of
plants or animals infested by parasites. However, when this approach is used as a shortcut
for estimating a total count, it usually fails. This is because the usual underlying
assumption is that the individual items (e.g., parasites) are randomly distributed to
sampling units (hosts). If this is the case, then the binomial distribution (or Poisson
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approximation) holds, and the proportion of ""zero counts" can be used to estimate a total
number or density. Almost invariably some kind of clumping or "contagion™ (i.e., non-
randomness) holds, and the method does not work. It may be possible to assume some
kind of non-random distribution (e.g., the negative binomial) and proceed to make an
estimate from the frequency of zeros postulated by that distribution. Unfortunately, this
involves knowing or estimating one or more additional parameters for the assumed
distribution, so that it is almost always better to resort to stratified sampling or ratio
estimation.

Some plants do not have readily distinguishable individuals, so that counts are
very difficult. In this situation, and when it may not be desirable to attempt to tally all of
the individuals present, one may simply resort to measuring or estimating the proportion
of the plot covered by vegetation. An alternative is to measure the biomass present, either
by clipping and weighing material on the entire plot, or by subsampling.

Strip transects are essentially long, narrow plots, and thus can be treated by the
methods already discussed. They are, however, discussed separately because of the close
connections with other transect methods, and in consequence of some special problems.
One is that of objects present on the transect strip, but not observed, and another is that a
set of sample transects may have quite different lengths, requiring some provisions for
adjustments.

Counts at fixed points have mainly been used for migratory species, but not much
statistical analysis has been done on the resulting data, or in designing appropriate
sampling schemes. Stratification may be the best approach, with strata being times of
day, season, etc.

The "line" methods have two major categories. One depends on the interception
of some sizable object by a line laid out by the observer. Data may be collected to either
determine the proportion of the total area covered by the objects, or the number (density)
of objects on the study area. Two different measurements are taken (length of
interception, and width of object), and these permit unbiased estimation. The line transect
methods depend on measurements of distances from a transect line traversed by the
observer to objects of interest. When the "objects" are animals that are observed because
they are startled (by the observer's approach; they "flush™), one kind of theory seems
appropriate. If, on the other hand, detection depends on the observer's locating the object,
a different theoretical approach may be preferred.

The "point” methods depend on measurements taken at sample points. In one
version, the points are projected onto vegetation (e.g, by a set of long thin metal pins, a
"point frame") to determine proportions of vegetative cover provided by various species.
Several problems exist, including layering of vegetation and inefficiency in sampling,
and the method is not very widely used.

The distance methods have several variants, but the best-known and most useful

depend on the distance between a randomly selected sampling point and the nth nearest
object of interest (usually a plant). Although there has been much interest, and variety of
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theoretical developments, the current picture seems to be one of use for studying pattern,
and not for estimating density. The basic method depends on searching outward in a

spiral from the sampling point until the nth object is located. This can be rather difficult
in the field, so an alternative method is worth considering. This is to use an open-ended

plot that is extended until the nth object is located. The underlying theory approximately
that of the conventional plot approach if n is large enough.

The Bitterlich method is mainly used by foresters, and has an interesting
connection to line-intercepts. The basic method depends on whether or not an "angle-
gauge" appears to be narrower than the apparent width of a tree-trunk. The remaining
methods are based on indirect tallies of various kinds, conveniently split into two sections
based on whether or not individuals need to be observed on more than one occasion. The
first segment deals with methods that require only a single observation of individuals.
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Il INDIRECT SAMPLING Used where direct visual count not feasible
A. Single observation

of individuals
1. Catch-effort Mainly used with harvest data;,
methods also electro-shocking Ricker(1975)
a. Closed Population assumed unaffected by
population mortality, recruitment, emigration
or immigration during sampling.
I. Variable
effort
(1) Leslie Regression of catch per unit
method effort on cumulative catch. Seber (1982:297)
(2) Ricker Regression of log c.p.u.e. on Seber (1982:302)
method cumulative effort, catchability
coefficient large.
(3) DeLury Regression of log c.p.u.e. on Seber (1982:303)
method cumulative catch, catchability
coefficient small.
ii. Constant Same effort applied in each Zippin
effort sampling (1956,1958)
b. Open Situations where mortality,
population recruitment, emigration, immigration
are likely to be significant.
2. Indices
a. Visual Roadside counts, aerial counts, Chapter 9

roadkills, transects (unadjusted),
census with dogs (Overton and Davis 1969:427)
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b. Capture or Bag and creel census, drift-samplers
harvest nets, trawls, set-lines, traps
plankton-pumping, grabs, dredges, Ricker (1975)
electro-fishing, poison.
c. Signs Fecal counts, dens, mounds and nests,
tracks, beds, roosts, scent posts,
muskrat houses, beaver dams and Chapter 9
lodges, amount of food consumed.
d. Auditory
i. Active Echo-ranging (fish, aquatic
invertebrates).
ii.Passive Tallies of calls or other sounds.
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The catch-effort methods almost universally depend on data obtained by
exploitation of a population. It is thus not surprising that they were largely developed in
fisheries management, and continue to be mainly applied in that field. An important part
of the development of fisheries usage is due to W. E. Ricker, whose 1975 book should be
consulted for more details. The methods largely utilize simple regressions of catch per
unit effort (cpue) on either cumulative catch or cumulative effort. In exploitation, effort
normally varies from day to day (or week to week, depending on how records are kept),
so the variable effort models are of major importance. Seber (1982) used different names
for three main equations, but many authors lump the methods as "Leslie-DeLury
models”. One situation where effort usually remains constant from day to day is that of
"removal trapping".

The catch-effort models are very simple and easy to use when the population can
be assumed to be "closed", i.e., affected only by the harvests. When the duration of the
period of exploitation is not short, it becomes necessary to deal with losses from other
causes (e.g., "natural mortality"), and, in some cases, with additions to the population
("recruitment™). In these situations, the models may become rather complex, and the
results may be quite unsatisfactory unless additional information about the population is
available. One way to provide such auxiliary information is to introduce tagged animals
into the population at various times. Readers faced with this situation are advised to
consult Ricker's (1975) book and more recent texts on fisheries management.
Surprisingly little use has been made of catch-effort methods on game harvest data,
which is unfortunate, considering that such data are quite widely available.

A major source of information about relative levels of populations has received
very little quantitative and statistical treatment. This is data that can be expressed as an
"index of abundance”, or measure of relative abundance. The classification given above
amounts to a convenient way to categorize the data by the means by which an animal's
presence is observed. The actual analysis of such data depends on some sort of model, on
the sampling method used, and on any auxiliary information that may be available.
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Some indices can quite readily be converted to direct estimates of population
density, given the appropriate conversion data are available. One example is the deer
pellet-group count. Other indices may be expressed in terms of population density but are
known to be biased. Conceivably these methods might be treated separately as direct
estimates of abundance, but they seem most readily dealt with as indices. The best known
census methods depend on repeated observations of individuals (the capture-recapture
methods) and are usually divided into the simpler applications requiring the assumption
of a closed population, and the more complex situations where a population is "open" to
losses and gains. We first consider methods appropriate for closed populations.
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Classification Applications References
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B. Repeated observations

of individuals
1. Capture-recapture
a. Closed population
i.Petersen method
(Lincoln Index)

(1) Basic method
(2) Sampling with
replacement
(3) Sequence of

removals

(4) Subsampling

(5) Inverse
sampling

ii.Schnabel method

(1) Basic method
(2) Mean Petersen
method

(3) Inverse and
sequential
methods

(4) Corrections
for
catchability
(a) Frequency
of capture

Mobile and secretive animals Chapter 8

Usually only 2 sampling periods. Section 8.2
May also be applied with
stratification.

Second sample by visual

observation.

Second sample taken as sequence Seber (1982:125)
of observations (e.g., tag
recovery in commercial fishery).

Second sample observed on random
sample of subareas. Seber (1982:111)

Second sample size (tagged or
untagged) fixed in advance.

More than 2 sampling periods; Section.8.3
tagging continues throughout

sampling.

Petersen estimates from successive
pairs of samples averaged; may
reduce effects of departures from
assumption of closed population.
Fixing number of tagged or
untagged to capture in advance.

Attempts to correct for violation
of assumption of equal probabilities
of capture.

Number not captured estimated by
fitting frequency distribution to
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methods capture data.
(b) Marten's Assumes catchability changes at  Seber (1982:150)
model constant rate.

(c) Tanaka's Regression of log(prop. marked) on Seber (1982:145)

model log(cumulative marked

(5) Multi-sample  Each tag release followed by Seber 1982:193
single- permanent removals (as in commercial)
recapture fishery).
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As the name implies, the capture-recapture methods depend on catching an
animal, marking and releasing it, and then again capturing it at a later time. When the
population under study can be assumed “closed", that is, not to gain or lose members
during the study period, then rather simple estimation methods can be used. Also, the
marking method does not have to distinguish between individuals. It only needs to
indicate that a given animal has previously been captured. The simplest approach
(Petersen method) requires only an initial marking, followed by one recapture period.

In the basic method, it is assumed that a sample of the population is somehow
marked, and that a random sample is later captured and examined for marks. This
provides an estimate of the proportion marked in the total population, so that it is a
simple matter to calculate an estimate of the total population size. It is usually assumed
that the members of the second sample are all caught at nearly the same time. However,
this isn't necessarily the case. It may be possible just to observe the animals on a number
of occasions and to record the fractions marked. This amounts essentially to sampling
with replacement, and leads to a somewhat different model. In some situations, the
second sample may not be obtained from one recapture operation, but may come from a
sequence of removals from the population. Data of this kind may be treated by a
regression model.

When large areas are under study, it may be necessary to use subsampling,
leading to various complications, for which not enough experience is yet available for
definite recommendations on procedures. A final variant on the basic Petersen model
depends on fixing, in advance, the number of marked or unmarked animals to be captured
on the second occasion. Since this is rather difficult to do in practice, the approach is
mainly of theoretical interest.

The Schnabel method was developed to deal with situations where animals are
captured and released on more than two occasions, and the unmarked animals are marked
as they are caught. As the number of capture sessions increases, the number (or
proportion) of marked animals will increase, so that some sort of regression analysis can
be used to extrapolate to total population size. It is, however, also possible to calculate
Petersen estimates for each pair of successive capture occasions, and then average the
resulting estimates. This has some advantages when the assumption of a closed
population is doubtful. Various arrangements for fixing numbers to be examined in
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advance of the samplings have been developed for the Schnabel method, but again are
mainly of theoretical interest.

One of the major problems in the main capture-recapture models is that
probabilities of capture are assumed to be the same for all individuals at any given time.
There is a lot of practical experience to show that this is not usually true, so various
attempts to make adjustments or corrections have been proposed, but unfortunately none
of these modifications seems to work satisfactorily in all circumstances. Three such
models are listed in the above classification.

A final variant of Schnabel-like methods is the situation where a number of
releases of marked animals is followed by a single capture period. It is of main interest in
connection with commercial fishing investigations. The final section of the classification
deals with capture-recapture models applied to open populations.

*AhhkhkArkhkhkrkkhkhkhkhkhkhkhkhkkhkkhhkhkhhkhkihhkhkihhkhkhhkhkirhkhkihhkhkirhkhkrhhkirhhkkihihkkhihiihkiiikk

Classification Applications References

B R R R R R R R R R R R R R R R R R AR R R R R R R R AR A R R R R R R R R AR AR AR R R R R R R R R R R R R R R R R

b.Open populations  Gains and losses to population
occur during census period.

i. Jolly-Seber Stochastic model, estimates Section 8.4
method mortality and recruitment as well
as population size.
ii. Bailey's Limited to 3 sampling periods,
triple-catch simplest instance of more general
method theory.
iii. Fisher-Ford Deterministic model (“trellis" Cormack
method arrangement of data). (1968:476)
iv. Manly-Parr Avoids assumption that all Seber
method individuals have same survival rate (1982:282)

v. Regression
method

2. Change-in-ratio
method

7. Bounded count
method

as required in Seber-Jolly method
Mainly used for survival estimation

Uses change in ratio induced by
known removals. Principal use with
harvests, but much wider potential
scope.

Adjustment to maximum observed count

(assumes finite probability that every

member of population can be counted in

a single census).

(1982:237)
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As soon as it becomes necessary to assume a population "open™ to additions and
losses during the study period, the necessary models become quite complex. The main
method in current favor is due to independent work by Seber and by Jolly. It requires that
individual tag-releases be distinguishable, since this information is used to estimate
additions and losses to the population over time. The earlier methods are mostly now of
historical interest, but the Bailey "triple-catch™ method is worth consideration as the
simplest instance of the more general theory. The Manly-Parr method provides a way to
avoid one assumption required by the Seber-Jolly approach.

Two methods of population estimation that do not fit into the above classification
are the change-in-ratio method and the bounded-counts method. More experience is
needed with both methods to determine their ultimate value. The change-in-ratio method
depends on observing some ratio in a population, such as the sex ratio, before and after a
removal that is restricted to one of the two classes making up the ratio (e.g., males). The
method is conceptually very versatile, and can potentially provide various estimates other
than population size, such as recruitment and survival. It also turns out to encompass a
variety of other methods, and is thus worth study as a means for understanding the other
methods. A practical drawback is that the method will usually be based on observations
taken before and after a season of exploitation. Groupings and spatial distribution of the
population are likely to change meanwhile, making for various sampling problems.

The bounded counts method depends on the assumption that it is possible,
although perhaps with low probability, to see every member of a population in a given
survey. In practice, the confidence limits appear to be quite large, and the method may
not be very useful.
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8. CAPTURE-RECAPTURE METHODS.

8.1 Introduction

This chapter deals with some methods for estimating the absolute abundance of
an animal population, usingbservations ofmarked individuals. There aretwo broad
uses of marking for population studies. One use is in studying only the marked
population wth little attention paid to unmarked individuals. Such studies may be
concerned wwh temporal moverants (either local or migratory), delheation of
geographic range ("home range" of individuals, range oparticular population or
sub-group of a population), dife history aspects (growth rates, survival rates, age
specific reproductive rates, and so on). The other use isthat of concern here, in
which the primary interest is inthe change inobserved proportion tagged (which
may initially be zero) as &gging progresses.The basic principle isthe same in the
change-in-ratio method. An important distinction is that the more comlicated
capture-recapture methods domake use of information as tothe identity of single
individuals. A distinction is nade between "single-recapture” and "nultiple-
recapture” methods. In the early studies, the basisumption for virtually all of the
methods was that each and every individual in the population has the same
probability of capture in any given samfpng. Under such anassumption, any
individual behaveslike every other individual, and information that an individual
has been caught oncbefore or manytimes islargely irrelevant. One might equally
well replace amarked individual with one from another population insofar as the
theory of the method is concerned.

The assumption that individuals all behave alike insofar as capture is
concerned is not very acceptable nmst experienced field workers. In most cases, it
is clear that the assumption isnot realistic, andthe issue iswhether, in agiven
situation, the resulting biascan betolerated. Various aspects othis problem will
turn up in vwhat follows. It is worth rmentioning here, though, that one important
means of testingthe assumption ofequal probability of capture doesdepend on the
history of capture of individuals -- if individuals doot behave identically, then
their past history gives information on that fact. Bome modelssuch information is
used to produce an improved estimate of population size.

In describing the various methods, perhaps the mostimportant aspect isthat
of whether the population is"open" or "closed" to thosefactors that may produce
changes in the size of the population during the course cdpEure-recapture study.
Individuals may move into andout of the study areassome may dieand others may
be born or otherwise "recruited" to the population (in entomological studies,
transfers between instars, pupation, etcare additional such factors). A "closed"
population with constant probability of capturgermits very simple analges, mostly
based on the biomial distribution. Although such populations may not exist in
practice, such a model provides a useful starting place, and may at times be adequate.

"Open" populations produce many more complicatiomsarticularly if they are
small or if small changes are mportant. Then the models need to take intmccount
chance effets, that is, stochastic (as oppsed to deterministic) models need to be
employed. Onl quite recently have fully stochastic models been developed;
fortunately their applcation in practice idess difficult than many ofthe previous
methods. We are thusurrently at astage where only one geneal method may need
to be considered in many practicaituations. However, sincghat model also depends
on the same urealistic assumption of equal probability of capture, further
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developments are needed, and the practicing ecologist will have to spend adgraht
of effort in checking and cross-checking his estimates.

In some cases, thesimpler methods may beadequate, orconstitute about all
that can be doneunder the circumstances othe study. Occasionally they mayshed
some light on particular aspects of a problem, or weakness me@essary assumption
that may not be apprent in the analysis ofthe more sophisticated form. Students
will also need an understanding ofthe essentials ofthe various methods to
understand and appreciate much of what they will find in the literature on a
particular species. Thus a number of methods will be described here.

8.2 Petersen's method (Lincoln Index)

While the first recorded use of this method has beesmtribed to Aplace in the
16th century (Cormack 1968), there are two commonly cited origins foruses in fish
and wildlife work. Most fisheries workers know the technique "Bstersen's mthod"
due to asuggestion by @G.J. Petersen in1896. Wildlife workers tend to refer to
"Lincoln's Index" due to its use by F.C.htoln in efforts to estinate North American
waterfowl abundance inthe 1930's. Athird early use was byC.H.N.Jackson(1933) in
his studies of tsetse flies in Africa.

The method requires only two census periods, one involving the initial
marking of M individuals, ofwhich m are recovered inthe n animals caught on the
second occasion. Ifthe population isclosed (i.e.,there are no gains orlosses due to
immigration, emigration, mortality, etc.), then it can betuitively supmsed that the
fraction marked in the population (M/N) may be estimated bythe proportion of
marked animals (m/n) found in the second sample; that is:

AN

m/n = M/N and N =Mn/m (8.1)
The relevant probability distribution is the hypergeometric distribution.

The assumptions necessary tothe method can readily be understood by
reference to the model resulting in a hypergeometdistribution. One description is
via an "urn" model.Suppose we have a vessel sme sort(an "urn") containing N
objects, M of which beardistinguishing marks(tags). If the obgcts arethroroughly
mixed, one isremoved and recorded (but not returned), khen the remaining objects
thoroughly mked again, another removed and recorded, the objects mixed,another
removed, and so on utii n have beenremoved (m of which are marked), then the
hypergeometric distribution serves to describethe behavior ofthe random variable
m, the number of marked individuals recovered in a sample of n. In practice, als@
a random variable, but the wusual approach is toconsider the results to be
"conditional” on the nactually observed, orto supposethat we sampleon the second
occasion until exactly n individuals are examined for marks.

One advantage of theirn model is that ithelps clarify the position asregards
random sampling. In the urn model there is mequirement thatthe M marks be put
on according to any special schem#ie only requirementis thorough mixing before
each draw (equivalent torandom selection othe n animals taken onthe second
occasion). For all practical purposes, one thorough mixing is enough, sootteatcan
infer the essential assumption to beone of either a random marking or arandom
recovery. Both are not required, as has been stanedhe literature. Infact, it can be
shown that the only essential feature ishat the methods ofcapturing individuals
need only be such that thindividual probabilities ofcapture onthe first occasion
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are independent ofthose existing on the second (Junge 1963). Thus one might
attempt toput tags on by, saytrapping anduse another method (e.g., hunting) for
recoveries. A difficulty with such ampproach is inassuring that thetwo methods do
in fact result in independence ofthe two sets of probabilities. This cannot be
ascertained from twosampling periodsalone. Another, less crucial, limitation isthat
the variance formulas (given below) donot apply unless capture probabilities are
equal over all members of the population on the recapture occasion.

A summary of the assumptions is as follows:
(1) The marks (tags) are not lost and are always identified on recapture.
(2) The population is closed (but this assumption can be modified).
(3) Every individual has the same probability of capture (at recovery time).
Assumption (2) can be modified in two ways:

(2a) There arelosses oftagged and untagged animals which occur atthe samerate,
but there are no additions tothe population. This does notchange the proportion
tagged and the stimate of population size remains valid but applies only to the
population at the time of first sampling (tagging).

(2b) There aregains tothe population between initial tagging and recovery oftags,
but no losses, and the probability of capture is the same foindividuals during the
recovery period. If there are no losses, then at the timeeobvery, there are still M
tagged individuals in the population, and the proportion tagged (m/n) estimatest
fraction of the current population carries tags, sothat the stimate of eq.8.1 applies
to the population atthe time ofrecovery. Note that (2a) and (2b) thus etimate the
population size at tagging and at recovery.

As we have already noted, assumption (3) can be modified as:
(3a) Marking at random.

(3b) Independent probabilities ofcapture atboth marking and recapture (vhich
necessarily includes (3a) as a special case).

These several modifications depart from the conditions necessary for the
hypergeometric distribution to hold, and thus prevent strict applications of the
relevant variance formulas. One simple way to obtain a useful estimate of the
variance is to randomlysubdivide the number ofanimals initialy marked (M) into
several subgroups, and toséimat the population size separately for each such
subgroup. These independent estimates then providehe data forcalculating a valid
variance. Howmany subgroups touse depends onthe number marked initally (M)
and the fractionrecovered, since there are obvious drawbacks in havingany of the
subgroups result in no recoveries ofmarked individuals. Presumably one might
tolerate one such group, using the modified estimation formulas given below.

From a formal statistical point of view, the atimate of eq.(8.1) has the
drawback ofhaving an "infinite bias". This results because there &ways afinite
probability that m=0 (i.e., no marked animals are caught onthe second occasion).
Chapman(1951) proposed an adjusted equation to circumvent this difficulty:
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A (M+1)( n+1)
N ¢ = (m+1) (8.2)
which has variance estimate:
V= (M +1)(n +1)(M - m)(n - m) ©.3)

(m + 1)2(m + 2)

When N is large, the hypergeometric distribution (sampling wWthout
replacement) is very closely approximated by a binomddtribution (sampling with
replacement), and when P issufficiently snall, a Poissondistribution also provides
an excellent approximation. On thether hand, whenP is notvery snall, the normal
distribution may provide an adequateodel. Various rules have beersuggested as to
to when to apply the several approximations in practiGhapman(1948)used m/n as
a guide to magnitude of P, and gave the following criteria:

N < 500 m/n <.10 Poisson
m/n > .10 binomial

500 < N < 1000 m/n < ..075 Poisson
m/n > .075 normal

1000 < N m/n <.05 Poisson
m/n > .05 normal

However, other authors used less stringent rules. One of the best wayantansight
into the differences due to various approximations is to intercompats oftables of
the distributions for several examples.

The various approximations are particularly convenient incalculating a
confidence interval around an stimate from the Petersen method. DelLury (1951)
noted that, under the bnhomial assumption,P=M/N, sothat the expected value of the
random variable (m) here representing the number of successes is:

nM

E(m)=W (8.4)
with binomial variance:
V(m):% [1-(M/N)] (8.5)

so that if we substitute m/n as amstimate of P, an estimate ¢lie variance of m is
just m[1-(m/n)]. Ging one stepfurther, and assuming mis approximately normally
distributed, approximate 95 percent confidence limits for m are:

miZ[m(l—%)]llz

and Delury inserted these values in the Petersen estimate (eq.8.1) to provide
confidence limits on N, i.e.,

nM
U limit = 8.6
pper limi {m—2[n(1—rﬂn)]”2} (8.6)
. nM
Lower limit =

{m+Zn(1-nm N3
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An alternative way to proceed is to writethe estimate (eq.8.1) as N = M/pyhere p =
m/n, and to usetables orgraphs tofind confidence limits on Pin order tocalculate
upper and lower limits for N from those for p.

Still another approach (Leslie 1952) can be describedchgnging eqgs. 8.4 and
8.5 from those representing the random variable m, tothose for arandom variable
multiplied by a constant:

E(ax) = aE(X) and V(ax) = a2V(X)
. 1
where a is a constant. If we use a=sr o then:
m
E(nM ) = 1/N (8.7)
m 1 M
Vam )= By

but since N is unknown, we estimate tlvariance by replacingl/N by m/nM (eq.8.7

justifies this), and obtain:
m m
s2(—7 ) = rm—(nM)z - 1 (8.8)

whereupon, assuming 1/N to be approximately normally distributed, one can obtain
approximate 95% confidence limits on 1/N as:

1
g2 s(% ) (8.9)

The main advantage here is that estimators ofadd quite skewed agan be seenfrom
sampling experiments, or by considering {@Em/n) to be normally distributed and
reflecting what the distribution of 1/p will look like. It turns out that 1/N is much
more symmetrically distributed,hence confidence limits expressed as in eq.@® are
presumably less biased than those previously described here.

Assuming a binomial distribution(rather han the hypergeometric) leads to a
slightly different correction for bias in the estimation equations. Bailey (1952)

suggested:
N M(n + 1)
N B (m + 1) (8.10)
with variance estimate:
M2(n + 1)(n - m)

vl(_m + 1)2(m + 2)

(8.11)

The difference between eq.(2) and eq.(8.10) islearly very snall. Bailey (1952)
showed that N as estimated from eq.(8.1) tends to overestimate, having a bias "of order

1/m", while eq.(8.10) has a bias of orderTe

Cormack (1968:460) and Seber (1982) provide convenient summaries of a
number of schemes toavoid biased estimates through "inverse" sampling. These
schemes require sampling on asecond occasion tocontinue util some pre-
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determined event happens, e.g, untilaetty m marked animalsare caught. Inmany
field situations such schemes are very difficult to carry out, and, aspreviously
indicated here, the crucial source of bias isthat having to do with unequal
probabilities of capture, for which satisfactory corrections are presently difficult. In
most practical situdions, the investigator should use eqs. (8.2) or (8.10). If the
numbers of recaptures (m) ismall enough tomake the theoretical biases in
estimation impotant, itwill also be true that the estimates will be highly variable,
and thus will provide very little information onthe population under study in any
case.

Exanpl e 8.1 Petersen nethod

Ni xon et al. (1967) trapped and marked squirrels (Sciurus) in Chio in 1962. In
their first day of trapping, 22 individuals (M were caught, while on the
second day, 13 were caught (n). Seven of these were marked (m, having also
been caught on the first day. Fromeq. (8.1), we have:

N 22(13
N :—7(—1 =40.9, whil e Chapman's equation (8.2)
gi ves:
AN
N C:23814 -1=39.2,with variance estimte:
N 23(14)(15)(6)
V(N ¢) = 64(9) = 50.31

DeLury's estinmated confidence limts are (eq. 8.6) calculated from

13(22)

7
+ =911 /2
7 E207(1 - 1)
whi ch gives: 28.0 < N<84.0. Leslie's approach (eq.8.8 and 8.9) gives:

odm 7 . T\- 0.0000395
v )= g1

and 0.0119 < 1/N < 0.0370 which is useful if one has sone interest in the

reci procal of population size. Inverting gives essentially the same result as
DeLury’s approach. Bailey's nethod (eq. 8.10) gives:

Il\\l B =Az8ﬁl =385 with variance estimate (eq. 8.11):
A 2
52(N B) = M: 70.6.
64(9

8.3 The Schnabel method

We now consider a situation wherein sampling is not restricted to two
occasions, and all of the unmarkezhimals caught insuccessive samples are marked
and returned to the population. In most applications, the marks only servedtoate
that the animal has been caught previously and do notidentify individuals. The
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method was first proposed bySchnabel (1938) and further studied by Schumacher
and Eschmeyer (1943) who provided a variance setimatt and an alternative
estimation formula (also derived by Hayne 1949) . The basic assumptions are those
previously given, i.e., (1)marks are not lost nor missed, (2) thepopulation isclosed,
and (3) constant capture and recapture probabilities.

A very convenient way to visualize the process and to derive the various
equations is that of DeLury (1958). An initial sample servesintooduce some marked
individuals into the population, and ten k further samples are t&en (gving k+1
sampling periods inall). Estimates areobtainable for populationsize in each of the
subsequent sampling occasions buodt for the first (although the assumptions do, of
course, imply that the population is of constant size throughout the study). \oisth
noting that there is norequirement that the first set of marks be put on atrandom
(i.e., that all individuals have the same probability of capture). Thus if iteasible to
mark asubstantial number ofanimals by some inexpensive but obviously biased
method, the investigator might profitably do so, and ten revert tosome more
expensive mans ofcapture that is more in line with theassumptions for the Kk
subsequent recapture periods.

The notation used here is as follows:

Mij= number of marked individuals in the population jst before the ith sample is
taken; i = 0,1,2,...,k so that ¢Mis the number marked on the first occasion.

nj = number of individuals caught orfthi sampling (since, in most studiesg & M1, we
will be concerned here with 1nn2,...,nk).

mj = number oftagged individuals caught inthe ith sample; ny =0, and weconsider
mi,m2,...,nk.

In any given sampling (after the initial marking), mj/nj gives an esthate of

the proportion marked in the population. If sampling is random wth respect to
whether ornot the animal is marked(i.e., aconstant probability of capture holds),
then we have a binomial-type situation applying at the timesasfhpling, and we can

. . mij
write (with p :W ):

e ]=— (8.12)

mj i M
V[—i 1= 8 N (8.13)

Since N is unknown, it imecessary taise mj/nj to edimate the variance, as isisual
in dealing with samples from a bnomial distribution. The data from a capture-
recapture study can beconveniently plotted with mj/nj on the vertical axis and M
along the horizontal, and idedly should constitute aseries of points (nYnj and M;j)
scattered about astraight line through the aigin. Solutions tothe problem of
estimating N depend on the choice of methods for fitting a regression line toddhbe.
That is, eq.(8.12) can beepresented as straight line through the origin with slope
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equal to 1/N; if one writes jgymj/nj and ¥=Mij, then the line y=bxj is equivalent to eq.
(8.12) with b=1/N.

Since the "y" values (m/nj) are subject tosampling (clance) errors, a
weighted regression scheme is indicated.One choice is touse reciprocals of the
variance estimates [e(.(8.13)] asweights (thus the more precise data have greater
weights). This procedure leads to Schnabel's original formula, whiak to besolved
by iteritive (trial-and-error) methods; that isone finds avalue of Nmost nearly
satisfying:

e
Smi _zA( DL (8.14)
N- mj

for which Schnabel gave an approximate solution as:

A Z NiMj
However, DelLury pointed out that one of the common features of aapalication of
the method is that of &endency for tagged individuals to begrouped or clustered in
the habitat, which makes eq.8.13 apoor variance estimate(it underestimates). He
therefore proposed wighting by the "sample size" (nj) at each point intime. This

gives the simpler Schumacher-Eschmeyer formulation:

2
A ZniM;
N = STV, (8.16)

A variance for the estimate (8.16) is calculated inthe same manner as for
weighted regression equations. This gives:

2 M2
s2 :{Z(% ) - (Zm—'M'z)— Vi(k-2) (8.17)
i ZniM;

and confidence limits are calculated from:

C.L. = Zni Mi2
MM, £t [$Zn MY ?

(8.19

where the *sign determines lower and upper limits respectively, agdreffers to the

value obtained from t-tables for selecteadand k-2 degrees of freedom. Ammportant
point here is that a sal number of sapling times will result in fairly large values
of ty and hence wider confidence limits than might be obtainedwith more days of

tagging.
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Exanpl e 8.2 The Schnabel nethod

The trappi ng nmentioned above (Exanple 8.1) was continued for a total of 11
days. The data are given below, along with the calculations for eq.(8.16).

Number Tagged in
caught Recaptures population
N

Day (nj) (mj) (Mj) ImiMj _n_M'_z N
1 22 0 0 0
2 13 7 22 154 6,292 40.9
3 15 10 28 434 18,052 41.6
4 10 5 33 599 28,942 48.3
5 6 5 38 789 37,606 47.7
6 5 3 39 906 45,211 49.9
7 15 10 41 1,316 70,426 53.5
8 11 6 46 1,592 93,702 58.9
9 18 8 51 2,000 140,520 70.3
10 8 7 61 2,427 170,288 70.2
11 16 10 62 3,047 231,792 76.1

- : - mi 1
Using DeLury's regression approach to the data, we |et y|—m » Xi = Mi,» and B—ﬁ

Thus eq. (8.12) becones E(yj) = B Xj, and a weighted equation using sanple
sizes (nj) as weights is:

n ZWiXiYij ZmiMi

= 5 = > and this estimates the reciprocal of N, hence
ZWiXj ZniM;j
eq. (8. 16).

Calcul ating a variance estimate (eq. 8.17). we get:

2 A
s2 E [44.772 - 3,047 ]1=0.5243, and 95% confidence linmts for N ,from
9 231792
eq. (8.18) are:

231792 _ 231792

- or 60.4< N < 102.6
3047+ 2 2¢( 052 23179P'> 3047+ 788 59

Since the last day's trapping turned up 6 unnarked squirrels, there were at
least 68 (M1 = 62 and 6 unnmarked) in the population, so the lower limt

shoul d be 68. In the next hunting season, 41 squirrels were shot, of which 25

694
were marked. Using eq.(8.2), we have N(C = 95—63_1:1105 which is
appreci ably above the wupper limt. The authors felt that probabilities of
capture were not constant, with some individuals being nore likely to be
recapt ured.

Exanple 8.3 Estimation from frequency of capture

In a situation like that of Exanple 8.1 and 8.2, where it appears that the
popul ation i s being underesti mated, the best cure no doubt is to identify the
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faulty assunption and do sonething about it. This is not always as easy as it
sounds. One way is to mark by one technique and recover by another, e.g., to
tag by trapping and recover tags in hunting. However, this approach doesn't
necessarily cure the problem (see, for exanple, Eberhardt et al. (1963:43-47),
in which a particular nodel, the geonetric distribution was postulated for
recaptures). There is, of course, no assurance that this nodel should hold
wi dely. Seber (1982:Ch.4) summarizes the theory and gives sone other nodels
that m ght be used. Eberhardt (1969) found that the geonetric distribution did
seemto fit a wide range of recapture data (40 sets on 10 species). An exanple
of application of the nethod is available in the paper by Edwards and
Eber hardt (1967). A series of taggings were carried out on a population of
cottontail rabbits confined to a 40 acre pen in Chio, in the fall of 1961.
Data for a Schnabel census are set forth bel ow

No. of Tagged in
captures Recaptures Population
nj mij Mi

Oct. 24 0
9
15
18
29
33
34
42
45
51
52
53
62
63
68
74
74
74

WRNNNNN
QOO U
[ [

Nov.

=

=
OCQUIO R UINMNOWONm U1 N OO

NOoOUuokrJUa~NNWMOR_AMMWODNO

w
Bom\lmmhwm,_\p

Totals 142 66 76

Students should carry out the Schnabel calculations in order to gain
famliarity with the nethod. Edwards and Eberhardt (1967:Table 3), using eq.
8.16, obtained a population estimate of 97 aninmals. The actual population in
the pen was 135 rabbits, previously caught by drive-netting (to avoid previous
experience with box-traps, which were used for the experinental study of
capture-recapture nmethods), and introduced on Cctober 19, and 29, 1961.
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Frequenci es of capture were:

Number of Number of Number of
times caught rabbits captures
1 43 43
2 16 32
3 8 24
4 6 24
5 0 0
6 2 12
7 1 7
76 142

The underlying nodel for the frequency distribution (geonetric distribution)
is a very sinple one:

f(x) = pg* (x=0,1,2,....)

where qg=1-p, and p is the probability that the animal wll not be caught at
all, i.e., f(0) = p. Strictly speaking, the geonetric distribution applies to
a conceptually infinite series of trials, and can be at best an approxi mation
to reality. Seber (1982:Ch. 4) can be consulted for various other theoretical
difficulties and for the nature of the approximtions on which the nethod
rests. In the present instance, there were 18 trapping days and the naxi num
nunber of tine any individual was caught was 7. In sone situations, when the
maxi mum nunber of captures approaches the nunber of capture occasions, an
adj ustrent for truncation may be needed (the number of trapping occasions sets
an upper limt on the possible nunber of recaptures). Seber (1982:172-174)
gives a nethod for doing this and uses the data of Exanple 8.2 above to
illustrate the nethod.

The essentials for estinmation by the frequency of capture nethod are as
fol |l ows:

n S -r N (s -1)
q = and N SRC
s -1 S - r

where r is the nunber of individuals that are caught s tines. Referring to the
data above, it nmay be seen that r = 76 and s = 142. Estimates thus are:

N 142 - 76 _ Ao 76(141) _
——141 = 0.468 and N =142 - 76 = 162.4

In this instance, the nethod thus overestimates the known population. The
estimates above can be used to set up a goodness of fit test by calculating
expect ed nunbers as:

N N
and introducing estinates of N and q . This yields the followi ng results:
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Original
Number of number of Calculated
times caught rabbits number
1 43 40.42
2 16 18.92
3 8 8.86
4 6 4,15
5 0 1.94
6 2 0.91
7 1 0.42
76 75.62

These are obtained from Nﬁkf2162.4(0.5319)(0.4681) = 40.43 for the

first entry, Npof =162.4(0.5319)(0.4681)2 = 18.92, and so on (multiplying
each successive entry by 0.4681). It can be seen that the data are fitted
reasonably well. However, students should do a chi-square calculation to check
this. In the present exanple, 135 rabbits were introduced into the pen, so we
have 135 - 76= 59 in the not-caught (0) category. The expected nunber is
162.4(0.5319) = 86, which is substantially |arger

Exanpl e 8.4 Mean Petersen net hod

The Schnabel nethod depends on the population being closed (i.e., the sane
population of N individuals is present throughout the study). |If this
assunption is doubtful or disproven, then it is necessary to use a nore
conplex method in which rates of loss (and/or gain) to the population are
estimated. Before doing so, it may be worthwhile to consider a very sinple
approach, in which Petersen estinmates are formed from successive entries in
the table of data. That is, referring to the data of Example 8.2, the first 2
days can be used to obtain a Petersen estimate, then the results from day 2
and day 3 can be used, and so on. As noted in Sec. 8.2, the assunption of a
cl osed popul ati on can be rel axed sonewhat for a Petersen estimte (assunptions
2a and 2b), so that the sequence of Petersen estinmates may be used to | ook for
evidence of a trend in the population. If both gain and |osses are taking
pl ace, the method isn't, strictly speaking, acceptable. However, if day to day
changes aren't large, the overall average may be useful. This leads to the
"mean Petersen" estinate proposed by Chapnan (1952; see al so Seber 1982:138).

Estimates are formed according to eq.8.2 and averaged:

N 1 k
N = ————:EI% (only k-1 estimtes can be obtained fromk
k_1|:2
peri ods) .
Vari ances can be estimted by averaging the estinmates of eq. 8.3 as:

1 k

(k _1)2 ZV(N{))

(w(N) =

or as the variance of the individual estinnates:
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v,(N) = T 1)( Z[N ave(N )]

Students shoul d performthe cal cul ati ons using the data of Exanple 8.3.

8.4 Methods for "open" populations

All populations are subject tochange, sothe methods described thus far are
mostly useful undercircumstancessuch that any change in populationsize islikely
to be of minor importance. As we notegarlier, if there are only gains or bsses, the
Petersen method may give a validtimate for one of thetwo sampling @casions. In
general, however, one needs tohave a method capable of taking into account
temporal changes in populations.

Early workers largely dealt with opempopulations by assuming constamates
of gain or loss. When populations are larg, such deterministic models can be quite
satisfactory. However, even when a large populationbé&éng studied, itusually turns
out that some aspects of the stud§ll depend on smallnumbers, andthus introduce a
stochastic elementinto the analysis. Consequently, awumber of models have been
developed that have both deterministic and stochastic elements. Some of tobels
are very complex and require cumbersome omtricate calculations. Versions of a
fully stochastic model for open populations wre published by G.M.Jolly (1965) and
G.A.F.Seber (1965).Cormack (1968) suggested that, inasmuch as virtually identical
results were obtained independently byJolly and Seber, thetechnique should be
called the Jolly-Seber method.

Sone of the earliest efforts todeal wth open populations arose from the
pioneer studies of C.H.N.Jacksonon tsetse fly populations in Africa (Jackson
1937,1939,1940,1948). Haused two rather different ehemes, oe (the "positive
method") depending on a singleelease of darge number ofindividuals followed by
a series of samplings in which markeahd unmarked individualsnvere tallied, but no
further marking was done (however, marked individuals were released againafter
capture). In the second, "negative" method, markiwgs accomplished on aeries of
occasions but recaptures wre tallied only in one finalintensive saming. The
negative method uses thegreater reductionin returns from the earlier releases (as
compared tothose from laterreleases) to &imate survival rates, which are in turn
used to estimate the number of markadimals alive in the population atthe time of
the final large scale recapture sampling. An stimate of population size atthe final
sampling can thus beobtained from the Petersen formla, but M is now estimated
rather than known exactly. Because any imgrants are reflected in the final
sampling, it isnot necessary tamake special provision for measuring immgration
(of course the rate of immigration is not estimated).

On the other hand, the positive method may be expectethetasure dilution by
immigrants since all of the marking isdone in theinitial survey. Thus the decrease
in proportion markedin successive surveys should reflect the effect of immigration
(or other sources ofunmarked animals). Combining the two methods gives the
necessary ingredients for a complete analysis,and this is what the moregecently
developed methodsare designed toaccomplish. Although direct use of the Jackson
methods is not now recommended, it may happen that one oftwheschemes may be
useful in special circumstances -- for example, Jackson's work unskilled &sistants



8.14

were sometimesused tocarry out marking on abroad scale. Bailey (1951,1952) gave
improved estimates for Jackson's methods, while Chapman and Robson (1960)
described methods to improve on his survival estimates.

A method ascribed to Fisheand Ford(1947) ismainly of hisbrical interest by
virtue of its use of a'trellis" diagram to chssify recaptures onreach day by the dates
of release. The method thususes data on all previousecaptures ofindividuals. No
variance etimate was given. Adetailed study by Leslie andChitty (Leslie and Chty
1951, Leslie 1952, and Leslie, Chitty, and Chittyl953) developed arather extensive
approach todealing with open populations. They assumed that,with small samples,
observational data as to various classes (e.g., date last caught) cespresented as a
multinomial distribution, andthereby produced aeries ofestimating equations. One
problem isthat the solutions are very difficult to obtain if there are anumber of
sampling periods.

It is intuitively evident that estimation ofgains and lossesfrom a population
will require a minimum of three sampling periods. Thus "Bailey's triple catch”
method (Bailey 1951, 1952) is of interest both as anillustration and a prospetive
method for either pilot studies or rapid estimates. The various items of data are as
follows:

Period(i) Time Total Total tagged Marked individuals
captured and released caught later
0 0 So
1 t1 ni s1 mQ1
2 t1+t2  n2 mQ12.mp2,m12

In the above table, gy are thosecaught inthe first time period and recaptured in
the second. Some of these appear againthe third periodand arelabelled np12. The
estimates are:

nim., +
Nl _S (Mg + M) (8.19)
My, M,
A A mqQin2
A = ex t2) = 8.20
P 2) = frmosTmoTs) (8.20)
A A s1(mp2+mQ12)
= exp(-a t1) = 8.21
i p(-d t1) Somia (8.21)
Vari ance estimates are:
N N 1 1 1 1
v(N 1)= N 12 + .= 8.22
(N 2) 1T *miz T mo2 + mo1z2 ni ! 8.22)
N n 1 1 1 1
VA )= A 2 + e 8.23
*) [m01 mop2 + mQg12 ni n2 ] ( )
N N 1 1
- 2
\Y; = + 8.24
@)= 1255 * o s mors ! (8.24)
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Note that exp(ﬁ(z) estimates the gains tothe population in the time interval ()

between second and third catures (B’ is an instantaneous rate, while exp(-a,)
measures losses in the first time intervall ftetween initial marking and the second
sample (first recaptures). For the method to diectly valid, it hasto be assumedthat
rates of loss and gain are constant during the study period, sdntpertant estimates

are ﬁand o. With this arrangement, one avoids the necessity for having t.

The fully stochastic (Seber-Jolly) models usesome additional notation and, in
common with many earlier models, require knowledge ofthe identity of individual
animals, or atleast the occasions on which individuals are maked, so that inmany
cases identification of individuals is practically essential. Additional symhased are
as follows:

si = markedanimals released othe ith occasion (the jsmay be equal to the pif all

unmarked animals are marked and no individuals are Kkilled in handlingtlberwise
removed from consideration).

ri= the number of thejsthat are again caught before the study is concluded.

zi =number ofindividuals in the population that have beenmarked before the ith

period and are caught agai after the ith period but not during the ith period (this

then is ameasure ofthe marked animals known to bpresent during the ith period
but not caught then).

The first estimaterequired isthat of the number ofmarked individuals (M) alive at
the {h period:

A Zjsj .

o= = +m (=1,2,....k-1) (8.25)

There areagain k+1 marking periods, the first (denoted by asubscript ofzero) and
the last (k) for which there is not sufficient data to estimatg TMe basis foreq.(8.24)

can be seenintuitively by consdering the fraction Zz/(Mj-mj) -- this is the
proportion ofthe marked animals alive at time i that are notaught then but are
subsequently caught. Furthermore, out of the g released onthe ith occasion, [ are

caught later. If theanimals behavealike (the key assumption ofequality ofcapture
probabilities, again), hen clearly these two fractions should measure the same
guantity; hence equating them gives:
zZj ri
Mij - mj Si

and rearranging yields the stimate of M given in eq.8.26. Perhaps itshould be

mentioned that mj represents number oftagged animals inthe catch (n) at the ith

period, as ithas in previous models. Igo, we retain the assumptions that tags are
neither lost nor misread, as &l asthat of equality of probability of capture among
individuals on each occasion (however, this probability can change between
occasions).
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Population size on theth occasion is simply estimated by the Petersen method:

AN
niMj
e

N | = (i=12..k1) . (8.26)

Again, estimates for the first and last periods are not available.

Survival between sampling occasions dtf) is estimated very simply from the
data on M:
A
A Mi+1 .
O = — (i=0,1,...,k-2) (8.27)
Mj + sj - mj

N
The denominator iscomprised ofthe M j animals estimated to bealive at the ih
trapping plus any newly marked animals actually released at that timenjfs

The number of animals coming into the population is estimated as:

Bi=Nis1-® (N j-ni+sp (i=1,2,...k-2) (8.28)

and the logic of the estimate is evident from its structure. There aranikals in the
population at the th sampling ofwhich nj-sj are removed (i.e., the nj caught minus

any removals; often jgsj and none are removed bythe experimenter). Afraction&{
of these survive to the next period, so the equation estimates the numbErofuits"
still alive at the i+8! sampling.

A fifth estimate, that of the probability of capture at tHé isampling is often
useful:

Wi =~ (8.29)
Again the logic is straightforward, and an equivalent estimateiis mi/Mi.

The variances of the several estimates are complicated, reflecting the
complexity of the underlying theoretical development. Seber (1982:Chapter 5) gave a
full treatment. A briefer version with simpler equations appears in the monograph
by Pollock et al. (1990). They use corrections for small sample biases of the kind used
in eq.(8.2). Most users will no doubt depend on a computer program to estimate
variances. A number of programs are availab