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Appendix 3.1

dealing with the study of selective extinction and 

speciation. Also included is a listing of factors 

and species-level features considered in regard to 

selective extinction and speciation beyond those 

treated in more detail in Chapter 2. In many cases 

numeric data are lacking for graphic presentation 

of frequency distributions or patterns. Much of the 

literature on extinction risk points to the cause-

and-effect relationships between human activities 

and their contributions to the extinction that is 

occurring in today’s world (e.g., Cardillo et al. 2004, 

Donazar et al. 2005, Fisher et al. 2003).

It must be emphasized that there are often syn-

ergistic effects among extinction risks making it 

difficult to see evidence for any one (e.g., Davies 

et al. 2004, Isaac and Cowlishaw 2004, Mattila et al 
2006, Owens and Bennett 2000). Thus, in cases 

wherein claims are made for a particular factor 

contributing to risk, it is often a risk identified 

through analysis in which other factors are taken 

into account through the statistical analysis used. 

Thus, ‘‘all else being equal’’ (which it never is), the 

factors identified as sources of extinction risk often 

function in conjunction with others to give rise to 

correlative patterns such as those covered in the 

latter sections of Chapter 2 where more than one 

dimension  (species-level attribute) is involved sim-

ultaneously.

Small population size is a feature obviously asso-

ciated with extinction risk (e.g., O’Grady et al. 2004). 

The volume of literature associated with this char-

acteristic (well beyond being adequately treated 

here) provides a glimpse at what is in store for sci-

ence focused on other species-level attributes. It is 

clearly a characteristic believed to contribute to the 

risk of extinction.

Another factor clearly accepted as a risk of 

 extinction is reduced evolutionary plasticity. When 

faced with environmental change, species that 

The following material is Appendix 3.1 
for Chapter 3 of: Fowler, C.W. 2009. 
Systemic Management: Sustainable 
Human Interactions with Ecosystems 
and the Biosphere. Oxford University 
Press

1 Species characteristics and selectivity 
in extinction and speciation

Science has not ignored the roles of selective rates 

of speciation and extinction in the dynamics of 

species numbers and their contribution to the for-

mation of patterns among species (exemplified by 

those presented in Chapter 2). Nonevolutionary 

factors seem to be better understood, accepted, and 

the focus of more research; however, selectivity at 

the species-level is of growing attention. It is use-

ful here to provide access to a sampling of some of 

the literature in which we find consideration of the 

detail of selectivity in species-level dynamics with 

specific reference to species-level features thought 

to be subject to such selectivity. The objective is 

that of illustrating yet another aspect of science 

that is beyond our capacity to be exhaustive; the 

complexity of reality prevents our ever knowing 

all there is to know about the selectivity of either 

speciation or extinction. Does this amount to an 

argument to cease such studies? Absolutely not! 

We become convinced of the reality of such select-

ivity through such work. Such conviction will help 

substantiate in the minds of managers what scien-

tists already know: selectivity occurs at multiple 

levels and is part of what contributes to the for-

mation of integrative patterns, to be accounted for 

when these patterns are carefully used as the basis 

for  management.

Thus, the following is far from an exhaustive 

account, but provides references and a brief treat-

ment of related arguments for a sample of work 
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was not found. But their results were not consistent 

from group to group. The results presented in Table 

1 of their paper show that only four out of 22 sam-

ples showed negative correlations—between –0.10 

and –0.82—which, nonparametrically, is statistic-

ally significant. Thus, as a statement for the over-

all sample (a sample of species), there is empirical 

basis for having shown a relationship between rate 

of increase (specifically fecundity) and extinction 

rates. All else being equal, extinction rates tend to 

be higher for species with lower rates of increase. 

This conclusion is supported by other work (e.g., 

Pimm and Gilpin 1989).

The rate of increase is the Malthusian capacity for 

increase that prevents extinction (Bateson 1972). As 

argued by Pimm et al. (1988), species with low rates 

of increase have a higher rate of extinction because 

of the extra time spent at low population levels 

 following population decline. Modeling studies 

suggest that higher rates of increase carry less risk 

of extinction (Goodman 1987a,b). Richter-Dyn and 

Goel (1972) found that time to extinction (specific-

ally for colonizing species) is related to birth rates. 

Marzluff and Dial (1991) argue that large intrin-

sic rates of increase reduce rates of extinction in 

part due to the capacity to expand the range and 

recolonize areas where local populations became 

extinct. Species with lower rates of increase are 

subject to higher risks of extinction in the face of 

hunting pressure (by humans, Price and Gittleman 

2007). Species with large litter size tend to be less 

prone to extinction than species with smaller lit-

ters (Cardillo 2003). Johnson (2002) found the risk 

of extinction to be related to reproductive rate.

Evolutionary plasticity is one of the advantages 

of sexual reproduction (Emerson 1960, Ghiselin 

1974, Lewontin 1957, Maynard Smith 1976a, Schultz 

1977, Simpson 1953, Stanley 1975b, 1979, 1990a, 

Williams 1971). Thus, mode of reproduction serves 

as a simple example of the selectivity of both 

extinction and speciation (Fowler and MacMahon 

1982, Maynard Smith 1978a, 1989, Stanley 1975b, 

1979, 1990a). As Simpson and Beck (1965) sum-

marize the matter (for species as populations in 

selective extinction and speciation, or subpopula-

tions in group selection): “There is, therefore, no 

mystery attached to the nearly universal occur-

rence of sex in organisms. Those populations of 

have limited capacity to change have less chance of 

 survival than species that are more flexible (i.e., can 

evolve fast, Fowler and MacMahon 1982, Maynard 

Smith 1989, Pease et al. 1989). Generation time is 

a recognized component of evolutionary plasti-

city (Fowler and MacMahon 1982, Freeland 1986, 

Lenski et al. 1991, Marzluff and Dial 1991, Maynard 

Smith 1976a, Pimm and Gilpin 1989, Simpson 1953, 

Wilson and Willis 1975). Species with large body 

size have long generation times (Blueweiss et al. 
1978, Fenchel 1974, Peters 1983) and limited capacity 

for change compared to species with small bod-

ies and shorter generation times. Thus, extinction 

risk tends to increase with body size (Brook and 

Bowman 2005, Cardillo and Bromham 2001, Coe 

1980, Davies et al. 2000, del Monte-Luna and Lluch-

Belda 2003, Diamond 1984a,b, Fagan et al. 2001, 

Gage et al. 2004, Hallam and Miller 1988, Isaac and 

Cowlishaw 2004, Murray and Hose 2005, Owen-

Smith 1988, Pimm et al. 1988, Raup 1986, Reynolds 

et al. 2005, Thomas et al. 2006, Van Valen 1973a,b, 

Vrba 1980, Wilcox 1980) so as to count among the 

factors causing the drop in species numbers with 

increasing body size (above an intermediate mode, 

Fig. 2.1). The extinction and speciation assumed as 

explanatory factors for observed macroecological 

patterns by Gaston and Blackburn (2000) relate to 

various life history characteristics, range size, and 

population variation as they are associated with 

body size (and clearly related to risk of extinction 

on their own). Cardillo et al. (2005) provide insight 

to the explanation of interacting factors behind 

the increased risk of extinction with increasing 

body size.

The maximum rate of increase per unit time 

(r
max

, in most literature on population biology) is a 

feature of species that is correlated with body size 

(Blueweiss et al. 1978, Peters 1983, Western 1979) 

and contributes to risk of extinction. Species with 

low rates of increase are also often (but not always) 

 species with large body size and thus likely to 

experience elevated extinction risks relative to 

those with higher rates of increase (Dickerson and 

Robinson 1986). The higher rates of increase, them-

selves, are part of what contributes to evolutionary 

plasticity (Marzluff and Dial 1991). In the original 

analysis by Marzluff and Dial, a statistically signifi-

cant relationship between extinction and fecundity 
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In terms of tolerance of environmental condi-

tions, specialization may be related to geographic 

ranges. As indicated by Brasier (1988) and Gaston 

(1990), species that have broad ecological tolerance 

or use a wide variety of resources will also tend 

to have much broader distributions and be less 

likely to become extinct. Other considerations of 

the effects of specialization (especially habitat spe-

cialization) are found in Diamond (1984a), Dunn 

(2005), and Safi and Kerth (2004).

Specialization of various kinds has also been 

considered in regard to speciation (particularly 

cladogenesis, the splitting of a phyletic lineage to 

form two species; Gilinsky 1986, Vrba 1980, 1985).

Beyond intermediate levels, risk of extinction 

may increase with numbers of species consumed, 

through dynamics involving factors such as popu-

lation instability, thus placing limits on how many 

species can be consumed. This combined with ten-

dencies toward specialization through evolution-

ary changes contributes to limits on connectance 

observed in the field of food-web analysis (May 

1972, McNaughton 1978).

Speciation rates are thought to vary with the 

extent of specialization as well as the positions in 

which species occur in trophic chains and symbi-

otic interactions. Evolutionary changes are expected 

among all species, including those at the first level 

in any such chain. Consumers of these resources 

are then faced with new circumstances and only 

those species that have the evolutionary plasticity 

to avoid extinction in tracking these evolutionary 

changes are expected to survive. Thus, species 

higher in such chains (or webs) of dependency 

would be expected to be characterized by increas-

ing evolutionary plasticity and undergo more spe-

ciation than species upon which they depend. The 

idea of species evolving in reaction to each other in 

evolutionary systems (coevolution) is described or 

exemplified in the work of Benton (1987), Futuyma 

and Slatkin (1983a), Maynard Smith (1989), Raup 

(1988), Stenseth (1985), Stenseth and Maynard Smith 

(1984), and Van Valen (1973a) and often referred to as 

the Red Queen concept.1 Coevolutionary  ecology/

biology (e.g., Thompson 2005) are fields of science 

devoted to the study of such interactions which 

involve evolutionary webs that permeate ecosys-

tems and the biosphere as do food webs.

organisms most able to vary have been those most 

able to survive changing conditions in the envir-

onment and those most able to evolve new ways of 

life as the opportunities arose. Sex is widespread 

because, like any other adaptation, it has promoted 

the long-term survival of the populations having 

it”. Like everything, however, there is another facet 

to sex: sexual selection is one of the factors under 

study in its contribution to evolutionary dead-ends 

(evolutionary suicide; Morrow and Fricke 2004, 

Morrow and Pitcher 2003).

Trophic level is another factor in the risk of 

extinction, in part because species at higher 

trophic levels suffer higher rates of extinction 

because of their dependency on species at lower 

levels (Fowler and MacMahon 1982). Empirical 

information has demonstrated that species at 

higher trophic  levels are more vulnerable to 

extinction than their counterparts at lower levels 

(e.g., Purvis et al. 2000). Work related to these con-

cepts is found in J. Brown (1971, 1981), Davies et al. 
(2000), Glazier (1987a), Marzluff and Dial (1991), 

Pagel et al. (1991), Patterson (1984), Petchey et al. 
(2004), Purvis et al. (2000), Terborgh (1974), and 

Wilson and Willis (1975).

Other forms of interdependence lend to extinc-

tion, the greater the dependence the higher the risk. 

Not surprisingly, the extinction of species exhibit-

ing more interdependence has been observed to be 

higher than others that are less dependent. In par-

ticular, species showing symbiotic interdepend-

ence undergo extinction at higher rates than species 

without such strong dependence (e.g., Raup and 

Jablonski 1993, Rosen and Turnsek 1989).

Boulter et al. (1988) provide evidence that spe-

cialist species suffer high rates of extinction 

among plants when compared to less specialized 

species. Further evidence and basis for concluding 

that specialist species suffer high rates of extinc-

tion when compared to generalists are found in 

Anstey (1978), Davies et al. (2004), Davis (1990), 

Diamond (1976), Eldredge (1992), Futuyma and 

Moreno (1988), Geist (1978), Jablonski (1986a), Koh 

et al. (2004), Norton (1987), Patterson (1984), Paul 

(1988), Raup and Jablonski (1993), Ricklefs (1976), 

Rosen (1981), Simpson (1953), Stanley (1984), Unwin 

(1988), Vermeij (1983), Vrba (1992), and Watling and 

Donnelly (2007).
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population crash. Species that exhibit significant 

reduction in their resource species count among 

keystone species (Mills et al. 1993, Paine 1966, 

Roughgarden 1983). But, as explained, these cir-

cumstance can give rise to population fluctu-

ation in which the magnitude of the fluctuations 

is related to the degree the resource species is 

(are) reduced by the consumer (May 1973, 1981a). 

Thus, one of the contributing factors in the drop 

in species numbers with increasing interaction 

strength may relate to the risk of extinction from 

any resulting population variability. Jonsson et al. 
(2006) found interaction strength to be a source of 

extinction risk in model systems.

The kind and level of density dependence that 

species exhibit in their populations is related to 

risk of extinction (Henle et al. 2004). With no dens-

ity dependence a species is doomed to extinction 

(Bateson 1972, Ginzburg et al. 1990, Royama 1977, 

Whittaker 1975). Quoting Whittaker: “In prin-

ciple, a population that randomly walks in time, 

without some density-dependent limitations, must 

walk randomly to extinction. In this view, density-

independent population control is a contradiction 

in concepts. Influences limiting fluctuation are 

necessary to the long-term survival of popula-

tions”. According to Godfray and Hassell (1992): “It 

is a logical necessity that any population of plants 

or animals that persists in the environment must 

experience some form of density-dependent feed-

back on population growth . . . ”. For further treat-

ment of this argument see Brown (1995), Godfray 

and Hassell (1992), Hanski (1990), Hanski et al. 
(1993), and Shepherd and Cushing (1990). As Hanski 

et al. (1993), Holyoak and Lawton (1992), Royama 

(1977), and Woiwod and Hanski (1992) argue, with 

time and increased sampling, it is expected that 

virtually all species will be shown to have some 

degree of density dependence. This conclusion is 

based in large part on the argument that species 

without, or with low levels of, density dependence 

suffer high extinction rates that are much higher 

than for species that show density dependence. 

However, at extreme levels of density dependence, 

populations run a higher risk of cyclic or chaotic 

behavior (Ginzburg et al. 1990, May 1975) and the 

risk of extinction associated with high population 

variability mentioned above.

Species with small geographic ranges are more 

susceptible to extinction than species with larger 

ranges. Literature related to this conclusion includes 

island biogeographic work as well as work by pale-

ontologists (e.g., Diamond 1984a, Gage et al. 2004, 

Gaston 1990, Gaston and Lawton 1990a, Glazier 

1986, 1987b, Hanski 1982, Hope 1973, Jablonski 1987, 

Raup 1986, Rey 1984, Richman et al. 1988, Schoener 

and Schoener 1981, Scrutton 1988, Stanley 1989, 

Terborgh 1974, Terborgh and Winter 1980, Unwin 

1988, Wilcox 1980). Species with large geographic 

ranges suffer the combined risks of increased num-

bers of species with which they interact and the 

potential of shear forces from diverging conditions 

in different areas to result in speciation (Glazier 

1987b, Miller 1956, Rosenzweig 1995).

For population variability, the many explana-

tory processes contributing to the observed pat-

terns include the risks of extinction associated with 

small population levels (J. Brown 1971, Crowell 

1973, Dennis 1989, Dickerson and Robinson 1986, 

Goodman 1987a, Hallam and Miller 1988, Hull 

1976, Karr 1982a,b, Pielou 1977, Raup 1986, Rey 1984, 

Richter-Dyn and Goel 1972, Simberloff and Abele 

1974, and Terborgh and Winter 1980). Part of the 

risk of low population levels is that of Allee effects, 

wherein the slope of density dependence curves 

changes to be positive (depensatory) at low popula-

tion levels. In extreme cases, the rate of population 

increase at low levels is negative and there is a ten-

dency to decline to zero (Dennis 1982, 1989, Fowler 

and Baker 1991, Henle et al. 2004, Lande 1988, 

Mosimann 1958, Odum and Allee 1954). Papers 

that treat population variability, related selectiv-

ity in extinction, or provide more information on 

related patterns include Brown (1995), Connell and 

Sousa (1983), Diamond (1984a), Fowler and Baker 

(1991), Glazier (1986), Gaston and Lawton (1988a,b), 

Mosimann (1958), Pagel et al. (1991), Patterson 

(1984), Pimm et al. (1988), Schoener (1985).

Population variability can result from con-

sumer/resource relationships in which the popu-

lation level of the resource is reduced through the 

effects of consumption by the consumer. If such a 

resource species briefly escapes the effect of pre-

dation, it can grow to large population size, thus 

stimulating growth and higher consumption by 

the consumer and then experience a resulting 
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would be patterns in decomposition. The energetic 

or thermodynamic patterns in communities, eco-

systems, and the biosphere are subject to a great 

deal of research involving microevolution and the 

interactions among both individual organisms 

and species. These, more conventional, kinds of 

research are being joined by work on selectivity at 

the species level that also contributes to observed 

patterns (Brown 1995, Damuth 1981, 2007, Fisher 

1986, Jørgensen 1992, May 1981b). The amount, 

kinds, and variation of genetic material (see poly-

ploidy below) are observed to fall in patterns 

(Ayala 1978, Beardmore 1983, Fisher 1986, Fowler 

and MacMahon 1982, Holland et al. 1982, May 1978, 

Raup and Jablonski 1986) that involve selectivity, 

not only at the chemical and individual levels, but 

also at the species-level. In addition to special-

ization measured in terms of resource specializa-

tion, habitat association and utilization involves 

 specialization that is likely subject to selectivity 

in both extinction and speciation (e.g., Schoenly 

et al. 1991).

Interaction strength (e.g., rates of consumption 

of resource species) involves more than population 

level effects. They also involve the intensity of any 

selectivity involved to result in ‘‘coevolutionary 

intensity’’ as an interaction of varying magnitude 

that undoubtedly lends itself to varying probabil-

ities of either extinction or speciation (Jordano 

1987). In addition to the life history traits of rates 

of increase, ages at first reproduction, and mortal-

ity schedules, there are species with morphological 

and developmental stages, and behavioral patterns 

such as dormancy, also subject to species-level 

selectivity (Bush 1975, Carlquist 1965, Cristoffer 

1990, Dial and Marzluff 1989, Diamond 1974, Glazier 

1980, 1987a, Herrera 1992, Jablonski and Lutz 1983, 

Marzluff and Dial 1991, May 1978, Maynard Smith 

1989, McKinney 1990, Mertz 1971, Scheiner 1992, 

Spicer 1989, Stearns 1992, Sukopp and Trepl 1987, 

Upchurch 1989). Mimicry and chemical communi-

cation signals count among factors thought to be 

important at the species-level (Gilbert 1980, 1983).

One of the more clearly established patterns 

thought to be important in selective extinction and 

speciation are the elements of mobility and dispersal 

(Brown 1995, Eldredge 1991, Gilinsky 1986, Glazier 

1980, 1986, 1987a, Jablonski 1986b, 1989, Jablonski 

and Lutz 1983, Marzluff and Dial 1991, Pacala 1989, 

Evidence of the advantages of mobility in redu-

cing the risk of extinction is far from rare in the 

scientific literature as seen in Diamond (1984a), 

Dickerson and Robinson (1986), Eriksson and 

Bremer (1991), Farnworth and Golley (1974), Janzen 

(1983), Marzluff and Dial (1991), Norton (1987), 

Owen-Smith (1988), Pimm et al. (1988), Raup (1986), 

Reinhardt et al. (2005), Terborgh (1974), Van Valen 

(1971), and Wilcox (1980). Unwin (1988) indicates 

that the birds of today are the principle descend-

ing survivors of the dinosaurs owing at least in 

part to their mobility. As indicated by Eldredge 

(1991), organisms that fly, swim, walk, or have their 

seeds carried to a new habitat can avoid changes 

caused by shifts in their habitat owing to climatic 

changes over evolutionary time. As pointed out by 

Davis (1990) and Roberts (1989) the survivors of the 

extinction processes involve many with insured 

seed dispersal as a means for the species to relocate 

during times of environmental change. Knoll (1984) 

also presents information and arguments indicat-

ing that plant species that have effective dispersal 

mechanisms survive periods of changing climate 

better than those that do not. Bats may be much 

more numerous as species than other mammals of 

the same size because of their mobility.

Selectivity at the species level is frequently men-

tioned for a variety of factors beyond those men-

tioned above. Very few are represented by graphic 

illustrations of related patterns. The examples in 

the following paragraphs are presented here as a 

means to make the points that (1) in the end, the 

complexity of reality is such that we, as scientists, 

can never hope to find, account for, or understand 

all such factors, especially in their combination(s) 

(see Table 2.1), (2) there is a rich opportunity for sci-

ence working on these matters to further substanti-

ate what managers must know: selective extinction 

and speciation count among the factors that result 

in patterns that we see, and (3) the patterns we see 

provide information that accounts for such factors 

(including those we have yet to discover) when we 

use the resulting patterns in management.

Behavior (including communication, social 

organization) has been seen as a factor in selectiv-

ity at the species level (Glazier 1987a, Munoz-Duran 

2002). The biochemical composition of species 

show patterns (e.g., Woodward 1993) that may be 

partially explained by differential  extinction, as 
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here, you see, it takes all the running you can do, to keep 

in the same place”). Such processes are thus termed the 

Red Queen model of evolution (Maynard Smith 1988).
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