HARBOR SEAL (Phoca vitulina):
Western North Atlantic Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

The harbor seal is found in all nearshore waters of the Atlantic Ocean and adjoining seas north of 30°N (Katona et al. 1993). In the western North Atlantic, they are distributed from the eastern Canadian Arctic and Greenland south to southern New England and New York, and occasionally to the Carolinas (Mansfield 1967; Boulva and McLaren 1979; Katona et al. 1993; Gilbert and Guldager 1998; Baird 2001). Stanley et al. (1996) examined worldwide patterns in harbor seal mitochondrial DNA, which indicate that western and eastern North Atlantic harbor seal populations are highly differentiated. Further, they suggested that harbor seal females are only regionally philopatric, thus population or management units are on the scale of a few hundred kilometers. Although the stock structure of the western North Atlantic population is unknown, it is thought that harbor seals found along the eastern U.S. and Canadian coasts represent one population (Temte et al. 1991). In U.S. waters, breeding and pupping normally occur in waters north of the New Hampshire/Maine border, although breeding occurred as far south as Cape Cod in the early part of the twentieth century (Temte et al. 1991; Katona et al. 1993).

Harbor seals are year-round inhabitants of the coastal waters of eastern Canada and Maine (Katona et al. 1993), and occur seasonally along the southern New England, to New Jersey coasts from September through late May (Schneider and Payne 1983; Barlas 1999; Schroeder 2000; deHart 2002). Scattered sightings and strandings have been recorded as far south as Florida (NMFS unpublished data). A general southward movement from the Bay of Fundy to southern New England waters occurs in autumn and early winter (Rosenfeld et al. 1988; Whitman and Payne 1990; Barlas 1999; Jacobs and Terhune 2000). A northward movement from southern New England to Maine and eastern Canada occurs prior to the pupping season, which takes place from mid-May through June along the Maine Coast (Richardson 1976; Wilson 1978; Whitman and Payne 1990; Kenney 1994; deHart 2002). While earlier research identified no pupping areas in southern New England (Payne and Schneider 1984; Barlas 1999), more recent information suggests that some pupping is occurring at high-use haulout sites off Manomet, Massachusetts (Rubenstein pers. comm.). The overall geographic range throughout coastal New England has not changed significantly during the last century (Payne and Selzer 1989).

Prior to the spring 2001 live-capture and radio-tagging of adult harbor seals, it was believed that the majority of seals moving into southern New England and mid-Atlantic waters were subadults and juveniles (Whitman and Payne 1990; Katona et al. 1993). The 2001 study established that adult animals also made this migration. Seventy-five percent (9/12) of the seals tagged in March in Chatham Harbor were detected at least once during the May/June 2001 abundance survey along the Maine coast (Gilbert et al. 2005; Waring et al. 2006).
Since passage of the MMPA in 1972, the observed count of seals along the New England coast has been increasing. Coast-wide aerial surveys along the Maine coast were conducted in May/June 1981, 1986, 1993, 1997, and 2001 during pupping (Gilbert and Stein 1981; Gilbert and Wynne 1983; 1984; Kenney 1994; Gilbert and Guldager 1998; Gilbert et al. 2005). However, estimates older than eight years are deemed unreliable (Wade and Angliss 1997), and should not be used for PBR determinations. Therefore, only the 2001 estimate is useful for population assessment. The 2001 survey, conducted in May/June, included replicate surveys and radio tagged seals to obtain a correction factor for animals not hauled out. The corrected estimate (pups in parenthesis) for 2001 is 99,340 (23,722). The 2001 observed count of 38,014 is 28.7% greater than the 1997 count. Increased abundance of seals in the Northeast region has also been documented during aerial and boat surveys of overwintering haul-out sites from the Maine/New Hampshire border to eastern Long Island and New Jersey (Payne and Selzer 1989; Rough 1995; Barlas 1999; Schroeder 2000; deHart 2002).

Canadian scientists counted 3,500 harbor seals during an August 1992 aerial survey in the Bay of Fundy (Stobo and Fowler 1994), but noted that the survey was not designed to obtain a population estimate. The Sable Island population was the largest in eastern Canada in the late 1980’s, however recently the number has drastically declined (Baird 2001). Similarly, pup production declined on Sable Island from 600 in 1989 to around a dozen pups or fewer by 2002 (Baird 2001; Bowen et al. 2003). A decline in the number of juveniles and adults did not occur immediately, but a decline was observed in these age classes as a result of the reduced number of pups moving into the older age classes (Bowen et al. 2003). Possible reasons for this decline may be increased use of the island by gray seals and increased predation by sharks (Stobo and Lucas 2000; Bowen et al. 2003). Helicopter surveys have also been flown to count hauled-out animals along the coast and around small islands in parts of the Gulf of St. Lawrence and the St Lawrence estuary. In the estuary, surveys were flown in June 1995, 1996, and 1997, and in August 1994, 1995, 1996 and 1997; different portions of the Gulf were surveyed in June 1996 and 2001 (Robillard et al. 2005). Changes in counts over time in sectors that were flown under similar conditions were examined at nine sites that were surveyed in June and in August. Although all slopes were positive, only one was significant, indicating numbers are likely stable or increasing slowly. Overall, the June surveys resulted in an average of 469 (SD=60, N=3) hauled-out animals, which is lower than a count of 621 (SD=41, N=3) hauled-out animals flown under similar conditions in August. Aerial surveys in the Gulf of St. Lawrence resulted in counts of 467 animals in 1996 and 423 animals in 2001 for a different area (Robillard et al. 2005).

Table 1. Summary of abundance estimates for the western Atlantic harbor seal. Month, year, and area covered during each abundance survey, resulting abundance estimate (N_{best}) and coefficient of variation (CV).

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Area</th>
<th>N_{best}</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>May/June 2001</td>
<td>Maine coast</td>
<td>99,340 (23,722)</td>
<td>CV=.097</td>
</tr>
</tbody>
</table>

*Pup counts are in brackets

Corrected estimate based on uncorrected count of 38,011 (9,278)

Minimum Population Estimate

The minimum population estimate is the lower limit of the two-tailed 60% confidence interval of the log-normally distributed best abundance estimate. This is equivalent to the 20th percentile of the log-normal distribution as specified by Wade and Angliss (1997). The best estimate of abundance for harbor seals is 99,340 (CV=.097). The minimum population estimate is 91,546 based on corrected total counts along the Maine coast in 2001.

Current Population Trend

Between 1981 and 2001, the uncorrected counts of seals increased from 10,543 to 38,014, an annual rate of 6.6 percent (Gilbert et al. 2005).

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is currently unavailable for this population. Based on uncorrected haulout counts over the 1981 to 2001 survey period, the harbor seal population is growing at approximately 6.6% (Gilbert et al. 2005). However, a population grows at the maximum growth rate (R_{max}) only when it is at a very low level; thus the 6.6% growth rate is not considered to be a reliable estimate of (R_{max}). For purposes of this assessment, the maximum net productivity rate was assumed to be 0.12. This value is based on
theoretical modeling showing that pinniped populations may not grow at rates much greater than 12% given the constraints of their reproductive life history (Barlow et al. 1995).

POTENTIAL BIOLOGICAL REMOVAL

Potential Biological Removal (PBR) is the product of minimum population size, one-half the maximum productivity rate (½ of 12%), and a “recovery” factor (MMPA Sec. 3, 16 U.S.C. 1362; Wade and Angliss 1997). The minimum population size is 91,546. The recovery factor (F_R) for this stock is 0.5, the value for stocks of unknown status. PBR for U.S. waters is 2,746.

ANNUAL HUMAN-CAUSED MORTALITY

For the period 2003-2007 the total human caused mortality and serious injury to harbor seals is estimated to be 477 per year. The average was derived from two components: 1) 467 (CV=0.14); Table 2) from the 2003-2007 observed fishery; and 2) 10 from average 2003-2007 non-fishery related, human interaction stranding mortalities (NMFS unpublished data).

Researchers and fishery observers have documented incidental mortality in several fisheries, particularly within the Gulf of Maine (see below). An unknown level of mortality also occurred in the mariculture industry (i.e., salmon farming), and by deliberate shooting (NMFS unpublished data). However, no data are available to determine whether shooting still takes place.

Fishery Information

Detailed Fishery information is given in Appendix III.

U.S.

Northeast Sink Gillnet:

Annual estimates of harbor seal bycatch in the Northeast sink gillnet fishery reflect seasonal distribution of the species and of fishing effort. The fishery has been observed in the Gulf of Maine and in southern New England (Williams 1999; NMFS unpublished data). There were 551 harbor seal mortalities observed in the Northeast sink gillnet fishery between 1990 and 2007, excluding three animals taken in the 1994 pinger experiment (NMFS unpublished data). Williams (1999) aged 261 harbor seals caught in this fishery from 1991 to 1997, and 93% were juveniles (e.g. less than four years old). Estimated annual mortalities (CV in parentheses) from this fishery were 332 (0.33) in 1998, 1,446 (0.34) in 1999, 917 (0.43) in 2000, 1,471 (0.38) in 2001, 787 (0.32) in 2002, 542 (0.28) in 2003, 792 (0.34) in 2004, 719 (0.20) in 2005, 87 (0.58) in 2006, and 92 in 2007 (Table 2). The stratification design used is the same as that for harbor porpoise (Bravington and Bisack 1996). There were 2, 9, 14, 8, and 14 unidentified seals observed during 2003-2007, respectively. Since 1997, unidentified seals have not been prorated to a species. This is consistent with the treatment of other unidentified mammals that do not get prorated to a specific species. Average annual estimated fishery-related mortality and serious injury to this stock attributable to this fishery during 2003-2007 was 446 harbor seals (CV=0.15) (Table 2).

Mid-Atlantic Gillnet

No harbor seals were taken in observed trips during 1993-1997, or 1999-2003. Two harbor seals were observed taken in 1998, one in 2004, two in 2005, one in 2006, and none in 2007. Using the observed takes, the estimated annual mortality (CV in parentheses) attributed to this fishery was 0 in 1995-1997 and 1999-2003, 11 in 1998 (0.77), 15 (0.86) in 2004, 63 (0.67) in 2005, 26 (0.98) in 2006, and 0 in 2007. Average annual estimated fishery-related mortality attributable to this fishery during 2003-2007 was 21 (CV = 0.49) harbor seals (Table 2).

Northeast Bottom Trawl

Seven harbor seal mortalities were observed between 2001 and 2007, one in 2002, one in 2005, and three in 2007. (Table 2). The estimated annual fishery-related mortality and serious injury attributable to this fishery has not been generated.

Gulf of Maine Atlantic Herring Purse Seine Fishery

The Gulf of Maine Atlantic Herring Purse Seine Fishery is a Category III fishery. This fishery was not observed until 2003. No mortalities have been observed, but 11 harbor seals were captured and released alive in 2004 and 4 in 2005. In addition, 5 seals of unknown species were captured and released alive in 2004, 2 in 2005, and one in 2007. This fishery was not observed in 2006.

CANADA

Currently, scant data are available on bycatch in Atlantic Canada fisheries due to a lack of observer programs (Baird 2001). An unknown number of harbor seals have been taken in Newfoundland, Labrador, Gulf of St. Lawrence and Bay of Fundy groundfish gillnets, Atlantic Canada and Greenland salmon gillnets, Atlantic Canada
cod traps, and in Bay of Fundy herring weirs (Read 1994; Cairns et al. 2000). Furthermore, some of these mortalities (e.g., seals trapped in herring weirs) are the result of direct shooting.

Table 2. Summary of the incidental mortality of harbor seals (*Phoca vitulina*) by commercial fishery including the years sampled (Years), the number of vessels active within the fishery (Vessels), the type of data used (Data Type), the annual observer coverage (Observer Coverage), the mortalities recorded by on-board observers (Observed Mortality), the estimated annual mortality (Estimated Mortality), the estimated CV of the annual mortality (Estimated CVs) and the mean annual mortality (CV in parentheses).

<table>
<thead>
<tr>
<th>Fishery</th>
<th>Years</th>
<th>Vessels</th>
<th>Data Type</th>
<th>Observer Coverage</th>
<th>Observed Mortality</th>
<th>Estimated Mortality</th>
<th>Estimated CVs</th>
<th>Mean Annual Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northeast Sink Gillnet</td>
<td>03-07</td>
<td>unk d</td>
<td>Obs. Data, Weighout, Logbooks</td>
<td>.03, .06, .07, .04, .07</td>
<td>21, 45, 70, 3, 6</td>
<td>542, 792, 719, 87, 92</td>
<td>.28, .34, .20, .58, .48</td>
<td>446 (0.15)</td>
</tr>
<tr>
<td>Mid-Atlantic Gillnet</td>
<td>03-07</td>
<td>unk d</td>
<td>Obs. Data, Weighout</td>
<td>.01, .02, .03, .04</td>
<td>0, 1, 2, 1, 0</td>
<td>0, 15, 63, 26, 0</td>
<td>0, .86, .67, .98, 0</td>
<td>21 (0.49)</td>
</tr>
<tr>
<td>Northeast Bottom Trawl</td>
<td>03-07</td>
<td>unk d</td>
<td>Obs. Data, Weighout</td>
<td>.04, .05, .12, .06, .06</td>
<td>0, 0, 1, 0, 3, 0, 0</td>
<td>0, 0, 0, unk, 0, unk</td>
<td>0, 0, 0, unk, 0, unk</td>
<td>21 (0.14)</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>467 (0.14)</td>
</tr>
</tbody>
</table>

* Observer data (Obs. Data) are used to measure bycatch rates, and the data are collected within the Northeast Fisheries Observer Program. NEFSC collects landings data (Weighout), and total landings are used as a measure of total effort for the sink gillnet fishery. Mandatory logbook (Logbook) data are used to determine the spatial distribution of fishing effort in the Northeast sink gillnet fishery.

b The observer coverages for the Northeast sink gillnet fishery and the mid-Atlantic gillnet fisheries are ratios based on tons of fish landed and coverages for the northeast bottom trawl are ratios based on trips.

c Since 1998, takes from pingered and non-pingered nets within a marine mammal time/area closure that required pingers, and takes from pingered and non-pingered nets not within a marine mammal time/area closure were pooled. The pooled bycatch rate was weighted by the total number of samples taken from the stratum and used to estimate the mortality. In 2003-2007, respectively, 0, 8, 3, 3, and 2 takes were observed in nets with pingers. In 2003-2007, respectively, 21, 37, 67, 0, and 4 takes were observed in nets without pingers.

d Number of vessels is not known.

e Analysis of bycatch mortality attributed to the Northeast bottom trawl fishery for the years 2003-2007 has not been generated.

Other Mortality

Historically, harbor seals were bounty hunted in New England waters, which may have caused a severe decline of this stock in U.S. waters (Katona et al. 1993, Lelli et al. 2009). Bounty hunting ended in the mid-1960s.

Currently, aquaculture operations in eastern Canada are licensed to shoot nuisance seals, but the number of seals killed is unknown (Baird 2001). Other sources of harbor seal mortality include human interactions, storms, abandonment by the mother, disease, and predation (Katona et al. 1993; NMFS unpublished data; Jacobs and Terhune 2000). Mortalities caused by human interactions include boat strikes, fishing gear interactions, oil spill/exposure, harassment, and shooting.

Small numbers of harbor seals strand each year throughout their migratory range. Stranding data provide insight into some of these sources of mortality. From 2003 to 2007, 1871 harbor seal stranding mortalities were reported in all states between Maine and Florida (Table 3; NMFS unpublished data). Seventy-three (3.9%) of the seals stranded during this five year period showed signs of human interaction (15 in 2003, 15 in 2004, 14 in 2005, 8 in 2006, and 21 in 2007), with 24 having some sign of fishery interaction 8 in 2003, 3 in 2004, 0 in 2005, 8 in 2006, and 5 in 2007). An Unusual Mortality Event (UME) was declared for harbor seals in northern Gulf of Maine waters in 2003 and continued into 2004. No consistent cause of death could be determined. The UME was declared over in spring 2005 (MMC [Marine Mammal Commission] 2006). NMFS declared another UME in the Gulf of Maine in autumn 2006 based on infectious disease.
Stobo and Lucas (2000) have documented shark predation as an important source of natural mortality at Sable Island, Nova Scotia. They suggest that shark-inflicted mortality in pups, as a proportion of total production, was less than 10% in 1980-1993, approximately 25% in 1994-1995, and increased to 45% in 1996. Also, shark predation on adults was selective towards mature females. The decline in the Sable Island population appears to result from a combination of shark-inflicted mortality, on both pups and adult females and inter-specific competition with the much more abundant gray seal for food resources (Stobo and Lucas 2000; Bowen et al. 2003).

<table>
<thead>
<tr>
<th>State</th>
<th>2003b</th>
<th>2004b</th>
<th>2005</th>
<th>2006b</th>
<th>2007b</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME</td>
<td>169</td>
<td>348</td>
<td>121</td>
<td>371</td>
<td>106</td>
<td>1115</td>
</tr>
<tr>
<td>NH</td>
<td>15</td>
<td>21</td>
<td>31</td>
<td>28</td>
<td>6</td>
<td>101</td>
</tr>
<tr>
<td>MA</td>
<td>88</td>
<td>150</td>
<td>101</td>
<td>94</td>
<td>51</td>
<td>484</td>
</tr>
<tr>
<td>RI</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>CT</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>NY</td>
<td>7</td>
<td>12</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>63</td>
</tr>
<tr>
<td>NJ</td>
<td>7</td>
<td>5</td>
<td>1</td>
<td>7</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>DE</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>VA</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>NC</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>FL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>304</td>
<td>552</td>
<td>297</td>
<td>527</td>
<td>191</td>
<td>1871</td>
</tr>
<tr>
<td>Unspecified seals (all states)</td>
<td>27</td>
<td>33</td>
<td>59</td>
<td>46</td>
<td>34</td>
<td>199</td>
</tr>
</tbody>
</table>

a. Some of the data reported in this table differ from that reported in previous years. We have reviewed the records and made an effort to standardize reporting. Records of live releases and rehabbed animals have been eliminated. Mortalities include animals found dead and animals that were euthanized, died during handling, or died in the transfer to, or upon arrival at, rehab facilities.

STATUS OF STOCK

The status of the western North Atlantic harbor seal stock, relative to OSP, in the U.S. Atlantic EEZ is unknown. The species is not listed as threatened or endangered under the Endangered Species Act. Total fishery-related mortality and serious injury for this stock is not less than 10% of the calculated PBR and, therefore, cannot be considered to be approaching zero mortality and serious injury rate. This is not a strategic stock because fishery-related mortality and serious injury does not exceed PBR.

REFERENCES CITED

