SPOTTED SEAL (Phoca largha): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE
Spotted seals are distributed along the continental shelf of the Beaufort, Chukchi, Bering, and Okhotsk Seas south to the northern Yellow Sea and western Sea of Japan (Shaughnessy and Fay 1977, Fig. 10). Satellite tagging studies have recently provided considerable insight into the seasonal movements of spotted seals (Lowry et al. 1998, Lowry et al. 2000). These studies indicate that spotted seals migrate south from the Chukchi Sea in October and pass through the Bering Strait in November (Lowry et al. 1998). Seal overwinter in the Bering Sea along the ice edge and make rapid east-west movements along the edge (Lowry et al. 1998). During spring they inhabit mainly the southern margin of the ice, with movement to coastal habitats after the retreat of the sea ice (Fay 1974, Shaughnessy and Fay 1977). In summer and fall, spotted seals use coastal haulouts regularly, and may be found as far north as 69-72°N in the Chukchi and Beaufort Seas (Porsild 1945, Shaughnessy and Fay 1977). To the south, along the west coast of Alaska, spotted seals are known to occur around the Pribilof Islands, Bristol Bay, and the eastern Aleutian Islands. Of 8 known breeding areas, 3 occur in the Bering Sea, with the remaining 5 in the Okhotsk Sea and Sea of Japan. There is little morphological difference between seals from these areas. Spotted seals are closely related to and often mistaken for North Pacific harbor seals (Phoca vitulina). The 2 species are often seen together and are partially sympatric, as their ranges overlap in the southern part of the Bering Sea (Quakenbush 1988). Yet, spotted seals breed earlier and are less social during the breeding season, and only spotted seals are regularly associated with pack ice (Shaughnessy and Fay 1977). These and other ecological, behavioral, and morphological differences support their recognition as two separate species (Quakenbush 1988).

The following information was considered in classifying stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) Distributional data: geographic distribution continuous; 2) Population response data: unknown; 3) Phenotypic data: unknown; 4) Genotypic data: unknown. Based on this limited information, and the absence of any significant fishery interactions, there is currently no strong evidence to suggest splitting the distribution of spotted seals into more than one stock. Therefore, only the Alaska stock is recognized in U. S. waters.

POPULATION SIZE
A reliable estimate of spotted seal population abundance is currently not available (Rugh et al. 1995). However, early estimates of the world population were in the range of 335,000-450,000 animals (Burns 1973). The population of the Bering Sea, including Russian waters, was estimated to be 200,000-250,000 based on the distribution of family groups on ice during the mating season (Burns 1973). Fedoseev (1971) estimated 168,000 seals in the Okhotsk Sea. Aerial surveys were flown in 1992 and 1993 to examine the distribution and abundance of spotted seals in Alaska. In 1992, survey methods were tested and distributional studies were conducted over the Bering Sea pack ice in spring and along the western Alaska coast during summer (Rugh et al. 1993). In 1993, the survey effort concentrated on known haul out sites in summer (Rugh et al. 1994). The sum of maximum counts of hauled out animals were 4,145 and 2,951 in 1992 and 1993, respectively. Using mean counts from days with the highest estimates for all sites visited in either 1992 or 1993, there were 3,570 seals seen, of which 3,356 (CV = 0.06) were hauled out (Rugh et al. 1995).
Studies to determine a correction factor for the number of spotted seals at sea missed during surveys have been initiated, but only preliminary results are currently available. The Alaska Department of Fish and Game placed satellite radio transmitters on four spotted seals in Kasegaluk Lagoon to estimate the ratio of time hauled out versus time at sea. Preliminary results indicate that the proportion hauled out averages about 6.8% (CV = 0.85) (Lowry et al. 1994). Using this correction factor with the maximum count of 4,145 from 1992 results in an estimate of 59,214.

Minimum Population Estimate

A reliable minimum population estimate (N_{MIN}) for this stock can not presently be determined because current reliable estimates of abundance are not available.

Current Population Trend

Frost et al. (1993) report that counts of spotted seals have been relatively stable at Kasegaluk Lagoon since the late 1970s. As this represents only a fraction of the stock’s range, reliable data on trends in population abundance for the Alaska stock of spotted seals are considered unavailable.

An element of concern is the potential for Arctic climate change, which will probably affect high northern latitudes more than elsewhere. There is evidence that over the last 10-15 years, there has been a shift in regional weather patterns in the Arctic region (Tynan and DeMaster 1996). Ice-associated seals, such as the spotted seal, are particularly sensitive to changes in weather and sea-surface temperatures in that these strongly affect their ice habitats. There are insufficient data to make reliable predictions of the effects of Arctic climate change on the Alaska spotted seal stock.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES

A reliable estimate of the maximum net productivity rate is currently unavailable for the Alaska stock of spotted seals. Hence, until additional data become available, it is recommended that the pinniped maximum theoretical net productivity rate (R_{MAX}) of 12% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL

Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5 R_{MAX} \times F_R$. The recovery factor ($F_R$) for this stock is 0.5, the value for pinniped stocks with unknown population status (Wade and Angliss 1997). However, because a reliable estimate of N_{MIN} is currently not available, the PBR for this stock is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information

Three different commercial fisheries operating within the range of the Alaska stock of spotted seals were monitored for incidental take by NMFS observers during 1990-95: Bering Sea/Aleutian Islands groundfish trawl, longline, and pot fisheries. The only fishery for which incidental kill was reported was the Bering Sea/Aleutian Islands groundfish fishery, with 3 mortalities reported during 1996. These mortalities resulted in an estimated 5 mortalities during that year, and an average of 1 (CV = 1.0) mortality per year over the 1995-99 period.

An additional source of information on the number of spotted seals killed or injured incidental to commercial fishing operations is the logbook reports maintained by vessel operators as required by the MMPA interim exemption program. During the 4-year period between 1990 and 1993, logbook reports from the Bristol Bay salmon drift gillnet and set gillnet fisheries (see Table 9) resulted in an annual mean of 1.5 mortalities from interactions with commercial fishing gear. However, because logbook records are most likely negatively biased (Credle et al. 1994), these are considered to be minimum estimates. These totals are based on all available logbook reports for Alaska fisheries through 1993. In 1990, logbook records from the Bristol Bay set and drift gillnet fisheries were combined. As a result, some of the spotted seal mortalities reported in 1990 may have occurred in the set net fishery. Logbook data are available for part of 1989-1994, after which incidental mortality reporting requirements were modified. Under the new system, logbooks are no longer required; instead, fishers provide self-reports. Data for the 1994-95 phase-in period are fragmentary. After 1995, the level of reporting dropped dramatically, such that the records are considered incomplete and estimates of mortality based on them represent minimums (see Appendix 7 for details).
The estimated minimum mortality rate incidental to commercial fisheries is 2.5 animals per year based on logbook and observer data. Yet, it should be noted that most interactions with these fisheries are likely to be harbor seals rather than spotted seals, and that due to the difficulty of distinguishing between spotted and harbor seals, the reliability of these reports is questionable. Further, no observers have been assigned to the Bristol Bay drift gillnet fisheries that are known to interact with this stock, making the estimated mortality unreliable. Because the PBR for this stock is unknown, it is currently not possible to determine what annual mortality level is considered to be insignificant and approaching zero mortality and serious injury rate. However, if there were 50,000 spotted seals the PBR would equal 1,500 \((50,000 \times 0.06 \times 0.5 = 1,500)\), and annual mortality levels less than 150 animals (i.e., 10% of PBR) would be considered insignificant. Currently, there is no reason to believe there are less than 50,000 spotted seals in U. S. waters.

Table 9. Summary of incidental mortality of spotted seals (Alaska stock) due to commercial fisheries from 1990 through 1999 and calculation of the mean annual mortality rate. Mean annual mortality in brackets represents a minimum estimate from logbook reports.

<table>
<thead>
<tr>
<th>Fishery name</th>
<th>Years</th>
<th>Data type</th>
<th>Range of observer coverage</th>
<th>Reported mortality (in given yrs.)</th>
<th>Estimated mortality (in given yrs.)</th>
<th>Mean annual mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea/Aleutian Is. (BSAI) groundfish trawl</td>
<td>90-99</td>
<td>obs data</td>
<td>31-74%</td>
<td>0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0</td>
<td>0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0</td>
<td>1</td>
</tr>
<tr>
<td>Bristol Bay salmon drift gillnet</td>
<td>90-93</td>
<td>logbook</td>
<td>n/a</td>
<td>5, 1, 0, 0</td>
<td>n/a</td>
<td>[≥ 1.5]</td>
</tr>
<tr>
<td>Minimum total annual mortality</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≥2.5(^{CV = 1.0})</td>
</tr>
</tbody>
</table>

Subsistence/Native Harvest Information
Spotted seals are an important species for Alaskan subsistence hunters, primarily in the Bering Strait and Yukon-Kuskokwim regions, with estimated annual harvests ranging from 850 to 3,600 seals (averaging about 2,400 annually) taken during 1966-76 (Lowry 1984). From September 1985 to June 1986 the combined harvest from five Alaska villages was 986 (Quakenbush 1988). In a study designed to assess the subsistence harvest of harbor seals and Steller sea lions in Alaska, Wolfe and Mishler (1993, 1994, 1995, 1996) estimated subsistence takes of spotted seals in the northern part of Bristol Bay. The spotted seal take (including struck and lost) was estimated to be 437 in 1992, 265 in 1993, 270 in 1994, and 197 in 1995. Variance estimates for these values are not available. The mean annual subsistence take of spotted seals in this region during the 3-year period from 1993 to 1995 was 244 animals.

The Division of Subsistence, Alaska Department of Fish and Game, maintains a database that provides additional information on the subsistence harvest of ice seals in different regions of Alaska (ADF&G 2000a, b). Information on subsistence harvest of spotted seals has been compiled for 135 villages from reports from the Division of Subsistence (Coffing et al. 1998, Georgette et al. 1998, Wolfe and Hutchinson-Scarbrough 1999) and a report from the Eskimo Walrus Commission (Sherrod 1982). Data were lacking for 22 villages; their harvests were estimated using the annual per capita rates of subsistence harvest from a nearby village. Harvest levels were estimated from data gathered in the 1980s for 16 villages; otherwise, data gathered from 1990-98 were used. As of August 2000; the subsistence harvest database indicated that the the estimated number of spotted seals harvested for subsistence use per year is 5,265.

A recent report on ice seal subsistence harvest in three Alaskan communities indicated that the number and species of ice seals harvested in a particular village may vary considerably between years (Coffing et al. 1999). These interannual differences are likely due differences in ice and wind conditions that change the hunters’ access to different ice habitats frequented by different types of seals. Regardless of the extent to which the harvest may vary interannually, it is clear that the harvest level of 5,265 spotted seals estimated by the Division of Subsistence is considerably higher than the previous minimum estimate of 244 per year based on reports from the northern Bristol Bay portion of the spotted seal’s range. Although some of the more recent entries in the ADF&G database have associated measures of uncertainty (Coffing et al. 1999, Georgette et al. 1998), the overall total does not. The estimate of 5,265 spotted seals represents a mean estimate rather than a minimum estimate of subsistence harvest.
STATUS OF STOCK

Spotted seals are not listed as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. Reliable estimates of the minimum population, PBR, and human-caused mortality and serious injury are currently not available. However, due to a lack of information suggesting subsistence hunting is adversely affecting this stock and because of the minimal interactions between spotted seals and any U.S. fishery, the Alaska stock of spotted seals is not classified as a strategic stock. This classification is consistent with the recommendations of the Alaska Scientific Review Group (DeMaster 1995).

CITATIONS

Alaska Department of Fish and Game. 2000b. Seals+ Database for Access 97. Division of Subsistence, Anchorage.

50