The Alaska Fisheries Science Center website is now part of the NOAA Fisheries website.
Some information may not be up to date. Join us at our new location,
Please contact with any questions.

link to AFSC home page
Mobile users can use the Site Map to access the principal pages

link to AFSC home page link to NMFS home page link to NOAA home page

Fisheries Behavioral Ecology - Abstracts

De Robertis, A., C.H. Ryer, A. Veloza, and R.D. Brodeur. 2003. Differential effects of turbidity on prey consumption of piscivorous and planktivorous fish. Canadian Journal of Fisheries and Aquatic Sciences 60:1517-1526.


Contrast degradation theory predicts that increased turbidity decreases the visibility of objects that are visible at longer distances more than that of objects that are visible at short distances. Consequently, turbidity should disproportionately decrease feeding rates by piscivorous fish, which feed on larger and more visible prey than particle-feeding planktivorous fish. We tested this prediction in a series of laboratory feeding experiments, the results of which indicated that prey consumption by two species of planktivorous fish (juvenile chum salmon (Oncorhynchus keta) and walleye pollock (Theragra chalcogramma)) is much less sensitive to elevated turbidity than piscivorous feeding by sablefish (Anoplopoma fimbria). Planktivorous feeding in the turbidity range tested (0–40 nephelometric turbidity units (NTU)) was reduced at high light intensity, but not at low light intensity. Comparatively low (5–10 NTU) turbidity decreased both the rate at which sablefish pursued prey and the probability of successful prey capture. These results suggest that turbid environments may be advantageous for planktivorous fish because they will be less vulnerable to predation by piscivores, but will not experience a substantial decrease in their ability to capture zooplankton prey.


Last updated 31 March, 2009

            | Home | Site Map | Contact Us | FOIA | Privacy | Disclaimer | | Accessibility | Print |           doc logo