The Alaska Fisheries Science Center website is now part of the NOAA Fisheries website.
Some information may not be up to date. Join us at our new location, www.Fisheries.NOAA.gov/region/alaska.
Please contact afsc.webmaster@noaa.gov with any questions.




link to AFSC home page
Mobile users can use the Site Map to access the principal pages

link to AFSC home page link to NMFS home page link to NOAA home page

Fisheries Behavioral Ecology - Abstracts

Hurst, T.P., D.W. Cooper, J.S. Scheingross, E.M. Seale, B.J. Laurel, M.L. Spencer. 2009. Effects of ontogeny, temperature, and light on vertical movements of larval Pacific cod (Gadus macrocephalus). Fish. Oceanogr. 18:301-311.

Abstract

The role of behavior, especially vertical migration, is recognized as a critical component of realistic models of larval fish dispersion. Unfortunately, our understanding of these behaviors lags well behind our ability to construct three-dimensional flow-field models. Previous field studies of vertical behavior of larval Pacific cod (Gadus macrocephalus) were limited to small, preflexion stages (≤11 mm SL) in a narrow range of thermal conditions. To develop a more complete picture of larval behavior, we examined the effects of ontogeny, temperature, and light on vertical responses of larval Pacific cod in experimental columns. While eggs were strictly demersal, yolk-sac larvae displayed a strong surface orientation as early as 1 day post hatch (∼ 5 mm SL). Consistent with field observations, small preflexion larvae (<10 mm SL) showed no response to varying light levels. However, there was a direct effect of temperature on larval behavior: Pacific cod larvae exhibited a stronger surface orientation at 4°C than at 8°C. The behavior of larger, postflexion larvae (>15 mm SL) in experimental columns was consistent with a diel vertical migration and independent of water temperature: fish were more widely distributed in the column, and median positions were consistently deeper at higher light levels. These laboratory observations are combined with observations from discrete-depth (MOCNESS) sampling in the Gulf of Alaska to characterize the vertical distribution of larval Pacific cod and contrast ontogenetic patterns with walleye pollock (Theragra chalcogramma). The vertical movements of larval Pacific cod described here will be applied in the development of dispersal projections from Gulf of Alaska spawning grounds.

 

 

Last updated 11 January, 2011


            | Home | Site Map | Contact Us | FOIA | Privacy | Disclaimer | USA.gov | Accessibility | Print |           doc logo