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ESTIMATION OF THE FISHING POWER CORRECTION FACTOR

- Russell F. Kappenman
Alaska Fisheries Science Center
Seattle, Washington

1. Introduction

- One of the missions of the Alaska Fisheries Science Center is
to monitor changes in abundance of many different species of fish
in several different areas of the Pacific Ocean. One way of
accomplishing this mission is to conduct trawl surveys, where
fishing boats trawl for a specified period of time at each of a
number of stations in the region of interest.

The fish caught by each trawl are separated according to
species, and the weight of each of the species caught is
determined. Also recorded is the area swept by each trawl. For any
species of %nterest, the ratio of the weight caught by a trawl to
the area swépt by the trawl is referred to as the catch per unit
effort (cpue) random variable.

Typicaily, more than one fishing vessel is used in a trawl
survey, and for a given species of fish, it may well be that one of
the boats is more efficient at catching the species. Consider the
hypothetical situation in which two boats could trawl the same area
at the same time. Let X and Y represent the cpue's for a .given
species for the most efficient boat and ahother, respectively. Then
X/Y would be some unknown parameter which is at least one. This
unknown parameter is commonly referred to as the fishing power
correction (fpc) factor, and it must be estimated by use of cpue
observations for the two vessels.

The problem of estimating the fpc may be stated as the
following statistics problem. Let X and Y represent two positive
random variables whose distributions are unknown but identical,
except possibly for the values of the scale parameters of the
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distributions. That is, the p.d.f.'s of X and Y are of the forms

-ij(iﬁ) and — f(X), respectively, where f is some unknown
bx . bx by b_y '

p.d.f. Find an estimate of r=b,/b , given random samples of
observations of X and of Y.

A good estimate of the fpc is critical, because for estimation
of abundance\of a species, the cpue's of a vessel are adjusted by
multiplying them by an estimate of a fpc. The estimate of abundance
is quite sensitive to the estimate of the fpc used.

Procedures for estimating the ratio of scale parameters have
been proposed in the statistical literature. Undoubtedly, the most
popular one is a jackknife estimator suggested‘by Miller (1968),
who also discussed the others and their drawbacks. Miller's
jackknife estimator is discussed in detail in Hollander and Wolfe
(1973). At the beginning of the research which led to this paper,
the jackknife estimator was applied to many sets of cpue data.
Several times it was found that the jackknife estimate was pretty
clearly unsatisfactory. At the time, the belief was that poor
estimates of the fpc could be produced by the jackknife estimator
because of the nature of the <cpue distributions. These
distributions are routinely heavily skewed to the right.

Thus a search was conducted for a better way of estimating the
ratio of scale parameters of distributions which are identical
except for the values of their scale parameters. The estimator
discussed in Section 2 is the one, of many studied, which performs
the best. A bonus of the research is that this estimator appears to
perform remarkably better than the jgckknife estimator even in
situations where the latter estimator should, by its nature, do
exceptionally well. These situations will be discussed in Section
3, where some simulation studies, conducted to assess the
performances of the estimators, are described.

2. Development of the Ratio Estimator

Suppose that x,,...,%x, and y,,...,Y, represent, respectively,
random samples of observations of two positive random variables X
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and Y. Let b, and by denote, respectively, the unknown scale
parameters of the distributions of X and Y. The goal is to use the
samples of observations of X and Y to estimate r=b,/b,. We shall
assume that the p.d.f.'s of X and Y are identical, except possibly
for the values of their scale parameters.

An important implication of the latter assumption is that X
and rY have identical distributions. This implication plays a
prominent role in the development of an estimator for r. This
estimator will now be developed step by step.

The first step is to find a number d such that X? and r¢
have, approximately at least, the same! normal distribution. The
number r is treated as an unknown constant. A value for d may be
found by assuming, for some constant r, that
xf,...,xf,rdyf,...,r”yf are independently and identically normally
distributed with an unknown mean and variance. A maximum likelihood
estimation argument suggests, as a value for d, the solution, for

d, to the equation

n+m

+u—%’ [Zx29 1n x_i-v).‘,x_,;d 1n xi+q22yj2d in yj—quyjd ln.y;1=0, (1)

where
Sxi+qly?
u=Zlnx;+Zlny;, v= lnjn Y3 , W= nim [z (xf—v)2+‘2 (qyjd—V)z] ,
_ -s+/s2-4pt -0y, 2d__ 1 dy2 o__-n d d
q zp + P _n+m YJ (n+ )2 E'-VJ).I S —(n+m)22xl 2}’3,
and
m «.d m- 2d
t=——— (Zx{)%-——2Zx;" .
(n+m)2( $) - ppeX

Next, let r, represent some arbitrary value for r, and suppose

one is forced to decide between two conjectures:

(a) xf,...,xf,rfyf,...,rfyf all have the same distribution




and

(b) the distribution of x9,...,%x3 is different from the

distribution of rfyf,-l-,rfo-

To choose between these two conjectures, one might use the

following procedure:

1.

I} -

Assume, for the moment, that (a) is the correct choice.
Calculate a predicted value for xf, j=1,...,n, by making
use of all observations except for X; itself, and
calculate a predicted value for ryf,% for h=1,...,m,

by making use of all observations except for y, itself. .
Because of the way d is chosen, the most reasonable such
predicted values for x;° and rly,® are, respectively,

dla_ 1 z d - d, d
X ey Uiy X4+ ), Zoy]
and
; d. d(a) 1 N4 z d,, dy’
N IoYn =m[z X +i¢hr°y-i] .

g1

Calculate the sum of squares of the differences between
the xf's and the ry,Y's and their predicted values,
under the assumption that (a) is the best choice. This

sum of squares is

n . mn
? d_. d(aq; d )
J= =

Assume that (b) is the correct choice. Calculate a
predicted value for xf, j=1,...,n, using all observations
except for x; itself, and calculate a predicted value for

ry,Y, h=1;...,m, using all observations except for Yy,
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itself. In this case, the most reasonable such predicted
values for xf and rjy° are, respectively,

c.dw_ 1 D d
M Tperde
and
d . dwm_ 1 I d. d =
ToYn =giTien ToVL

4. Calculate the sum of squares of the differences between
the:if's and the rSy,d's and their predicted values,
under the assumption that (b) is the best choice. This

sum of squares is

n -m . . \
' d d (b) Y d._d d_,d (b)
Sb=E [x;-%; ]2""2 [z0Yr-Toyn 1% .
51 A1

5. The choice between (a) and (b) may be made. by compa}ing

the values of S, and S,. Conjecture (a) would be chosen

if s, < §,; otherwise, conjecture (b) would be chosen.

In general, there are two numbets, r,.and r, say, such that
conjecture (a) will be chosen by this cross-validation procedure if
and only if r,<r,<r,. The actual values of r, and r, depend upon the

observations x%,,...,%, and y,;,...,Y,. Each is a value of :b such that.

S, =S : ‘ |
Thus any number between r, and r, might be regarded as a
reasonable estimate of r, if one uses the procedure described above
to decide whether or not an estimate is reasonable. When one is
forced to select just one estimate of r, the intuitively best
choice would be the value of r, which makes S, as small as it can

possibly be relative to'SV'This is the value of r;, which minimizes .
the difference S,-S,, and it is the estimate proposed here as an '
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alternative to the jackknife estimate of the ratio of scale
parameters.

' To summarize, the proposed estimate of the ratio of scale
parameters r is the value of r which minimizes the function
g(r),where g(r) is given by

d_ Exid'i'r dzyj'd ) 2

Ty +{Bx{} /x4
= (M 2 2d d_ 45 i 2
gn) = (o) B - e R )
(B yapp (e B e (e g e BV ey gae (2)
n-1 T m-1 I T

and d satisfies (1).
3. Simulation Studies

To assess the performance of the ratio of scale parameters
estimator proposed in Section 2, some simulation studies were
conducted.

A number of well-known distributions were used as models for
the distributions of X and Y. These included members of the
lognormal, gamma, and Weibull families of distributions. The
members of the lognormal family used were the ones corresponding to
the shape parameter (o) values 2.2, 1.3, 0.8, and 0.5. The members
of the gamma family used were the ones corresponding to the shape
parameter values 0.5, 1, 2, and 4, and the members of the Weibull
family used were the ones corresponding to the shape parameter
values 0.65, 1, 1.5, and 2.2. The lognormal, gamma, and Weibull
distributions, whose shape parameter is c, are denoted here by
LN(c), G(c), and W(c), respectively.

These distributions, for the shape parameter values we are
considering here, are all fairly highly skewed to the right. The
skewness increases as the shape parameter value increases in the
lognormal distribution case, but it increases as the shape
parameter value decreases in the gamma distribution and Weibull




distribution cases.
Also used as models for the distributions of X and Y were some
distributions derived from members of the Tukey lambda family. If

ur~(1-u)?
A ’

W=

where u is a uniform (0,1) random variable, then w has a lambda

distribution. This distribution, denoted here by L(A), is a

symmetric distribution, and its range is (--%,-%), if A>0. If A<0,

the range is (-=,«). The tail weights of the lambda distribution
decrease as A increases. L(-1) is much like a Cauchy distribution,
and L(0.1349) is very similar to the normal distribution. For
A>0.1349, the tails of the lambda distribution are lighter than
normal distribution tails, and L(1) is, in fact, a uniform
distribution.

Two of the distributional models used for X and Y were the

distributions of w+-%, for A=0.1349 and A=0.5. These are
distributions of positive random variables with symmetric
distributions. One of these has normal-like tail weights, and the
other has lighter than normal tails.

Another distributional model used for X and Y was a L(-1)
distribution truncated at its 0.01 and 0.99 percentiles and shifted
so that the left endpoint of the range was zero. Thus this model is
a symmetric, heavy tailed distribution of a positive random
variable. ] »

For the simulation studies, two sample sizes were used, a
moderate one n=m=30 and a large one n=m=100. For each of these
sample sizes and each of the distributions described above, 500
times random samples of size n and m were generated. Each time a
pair of random samples was generated, the samples were used to
obtain the Miller (1968) jackknife estimate of the ratio of scale

parameters, denoted here by f,, and the ratio of scale parameters
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estimate developed in Section 2 and denoted here by 7,.
Oof interest is the performance of 7, relative to that of'fi.

One measure of this relative performance is the ratio of the root
mean squared error (RMSE) of £, to the RMSE of f,. It is e;sily
shown that this ratio of RMSE's does not depend upon the actual
value of r. Thus r was takén to be one.

The goal of the simulation studies was to get, for a rather
broad range of sampling distributions and sample sizes, estimates
of the ratio of the RMSE's for the two estimators of the ratio of
scale parameters. Table 1 gives the estimates of RMSE(Z,) /RMSE(Z,)

obtained by the studies.

TABLE 1

Ratios of the root mean sguared error of £, to the root mean
squared error of Z,.

Sample Size

Sampling

Distribution n=m=30 n=m=100
LN(2.2) 0.13 ' 0.06
LN(1.3) 0.30 0.21
LN(0.8) 0.39 0.32
LN(0.5) 0.39 0.35
W(0.65) 0.69 0.58
W(1)=G(1) 0.78 0.76
W(1.5) 0.78 0.81
W(2.2) 0.68 0.71
G(0.5) 1.04 1.00
G(2) 0.65 0.63
G(4) ‘ 0.51 . 0.53
L(-1) 0.04 0.05
L(0.1349) 0.27 0.27
L(0.5) 0.90 0.91

Note that almost all of the ratios in Table 1 are less than
one, and most are really quite small. The implications of this are

that 7, is generally more efficient than £, over a broad range of

types of sampling distributions, and, most of the time, is
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substantially more efficient. Further, a comparison of the two

columns in Table 1 indicates that the efficiency of £, over 1,

generally increases with sample size.

One other aspect of the results of the simulation studies is
particularly noteworthy and somewhat surprising. As was pointed out
above, the L(0.1349) distribution is very similar to a normal

distribution. Since £, is essentially the ratio of one sample

standard deviation to another sample standard deviation, one would

expect that £, will perform extremely well when the samples are

drawn from L(0.1349) distributions. The simulation studies
estimates of the ratios of RMSE(F,)/RMSE(f,), for n=m=30 and

n=m=100, are both 0.27, indicating that £, performs much better.

4. Estimation of the Fishing Power Correction Factor

The results of the simulation studies, discussed in Séction 3,
demonstrate the potential of the ratio of scale parameters
estimation procedure, developed in Section 2, for providing good,
robust estimates. This estimator of the ratio of scale parameters
is the estimator which would be recommended for use in estimating
the fpc, for the case where a specified vessel's cpue's are to be
adjusted by multiplying them by an. estimate of the fpc. The
specified vessel need not be the least efficient one.

Often though, the cpue's for the vessels are used to select a
vessel as being the more efficient of two vessels for a given
species. The cpue's of the vessel which appears to be the least
efficient are then multiplied by an estimate of the fpc which is
also based on the vessels' cpue's. This practice is normally
followed when the index used to monitor change in abundance, of a
given species, is an estimate of biomass. For this case, the fpc
must be at least one. This procedure, in effect, defines an fpc
estimator which is slightly different from the ratio of scale
parameters estimator developed in Section 2. The latter estimator
is essentially based on the assumption that the vessel, whose

cpue's are to be adjusted, is known before the cpue's are observed.
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The practice of using cpue's to select a most efficient vessel and
to estimate an fpc causes the fpc estimator to be positively
biased, if, in fact, the fpc is one.

The method used, in Section 2, to develop an estimator of the
ratio of scale parameters has a distinct advantage which may be
used to produce an fpc estimator with reduced bias. One may make
use of r,, defined in Section 2 to be the smallest solutién of
g(r)=0, where g(r) is given .by (2). Any estimator of the form

ar,+bf, , (3)

where a>0, b>0, and a+b=1, will, by the argument of Section 2, be
a reasonable estimator of r. Further, it will have less positive

bias than f, has, when r=1. At the Alaska Fisheries Science

Center, (3), with a=b£€§, is now being used to estimate the fpc,

because it appears as though the amount of positive bias in the
resulting estimator, when the fpc is equal to one, is about the
same as the amount of negative bias, when the fpc is 1/0.75.
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