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ESTTMÀTTON OF THE FISHING POVIER CORRECTION FACTOR

Russell F. ,Kappenman
A1aska Fisheries Science Center

. Seattle, I,lashington

1. Introduction

.One of the ¡nissions of the ÀIaska Fisheries Science Center is
to monitor changes in abundance of many different speci.es of fish
in several different areas of the Pacific Ocean. One hray of
accomplishing this mission is to conduct trawl surveys, where

fishing boats trawl for a specified perj.od of tine at each of a

number of stations in the region of interest.
The fish caught by ,each trawl are separated according to

species, and the weight of each of the species caught is
determined. Also recorded is the area swept by each trawl. For any

species of Lnterest, the ratio of the weight caught by a trawl to
the area swäpÈ by the trawl Ís referred to as the catch per unit
effort (cpue) random variable.

Typical.ly, more than one fishing vessel is used in a trawl
survey, and for a given species of fish, it may well þe that one of
the þoats is more efficient at catching the species. Consider the
hypothetical situation in which two boats could trav¡1 the same area
at the same time. Let X and y represent the cpuers for a -given
species for the mqst efficient boat and another, respect,ively. Then

X/y would be some unknown parameter which is at least one. This
unknown parameter is commonly referred to as the fishing po$ter

correction (fpc) factor, and it must be estirnated by use of cpue

obsérvations for the two vessels.
The problem of estinating the fpc may be slated as the

following statistics problem. Let X and Y represent two positive
random variables whose distributions are unknown but identical,
except possibly for the values of the scal-e parameters of the
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distributions. That is, the p.d.f. rs of X and Y are of the forms

lttël and ! ttål, respectively, where f is some unknown
.Þx Dx þy þy

p. d. f . Find an est,Ímate of t=b^lbr, given randorn samples of
observations of X and of Y.

A good estimate of the fpc is critical, because for estimation
of abundance of a species, the cpuets of a vesseL are adjusted by

rnultiptying them by an est,imate of a fpc. The est,imate of abundance

is quíte sensit,ive to the estirnate of the fpc used.
procedures for estimating the ratio of scale parameters have

been þroposed in the statistical Literature. Undoubtedly, the rnost

popular one is a jackknife estimator sugEested by Miller (1968),

who also discussed the others and their drawbacks. Millerts
jackknÍfe estimator is discussed in detail in Hollander and Wo1fe

(1,973). At, the beginning of the research which led to this paper,

the jackknife esÈimator vtas applied to many sets of cpue data.
Several times it was found that the jackknife estimate ldas pretty
clearly unsatisfactory. At the tine, the belief stas that poor

estimates of the fpc could be produced by the jackknife estinator
because of the nature of the cpue distributions. These

disÈributions are routinely heavily skewed to the righÈ-
Thus a search was conducted for a bétter way of esti¡nating the

ratio of scale parameters of distributions which are identical
except for the values of their scale parameters. The estimator
discussed in Section 2 is the one, of many studied, which performs
the best. A bonus of the research is that this estimator appears to
perform Lernarkably better than. the jackknife estimator even in
situations where the latter estj,rnator should, bY its nature, do

except,ionally welt. These situations will be discussed in Section
3, where some sinulat,ion studies, conducted to assess the
performances of the estirnators, are described.

2. Development of the Ratio Estimator

Suppose that x1r... rXn and y, Y, represent, respectively,
random samples of observations of two positive random variables X
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and Y¡ Let bx and b, denote, respectively, the unknown Scale

pararneters of the distributions of X and Y. The goal is to use the

samples of observations of X and Y to estimate r=b"/br. !{e shall
assume that the p.d.f. rs of X and Y are ídentical, except possibly
for the values of their scale parameters.

An irnportant irnplication of the latter assumption is that X

and ry have identical distributions. This implication plays a

prominent role in the development of an estimator for r. This

esti¡nat,or !,till now be developed step by step
The first step is to find a number d such that Xd and rdYd

have, appr6ximately at least, the samelnormal distribution. The

number r is treated as an unknown constant. À value for d may be

found by assuming , for some constant t, that
xldr... rXndrodyrd,... t¡dy.d are independently and identically normally

distributed with an unknown.mean and variance. A üraxinum likelihood
esti¡nation argument suggests, âS a value for d, the solution, for
d, to thè equation

ry*u-+lÐx?d rn xr-vEx¡d ln xr+q2Ûyid rn yr-vq|Yid Ln.Yi!=0, (l)dw

where

u=Elnx¡+Ð]-r,yt, ¡¿=! tD (xf -v) r*¡ (wid-v¡21 ,
n+m

q=
.-s*rf@

' P=*ÐY?o-# (zYio)? 
' "=ÆZx¡d 

Dyrd,
ln+m) -

and

Ë= fr (Ex.d) 2- Itt' gx?d- (n+m) 2 '-"t ' n+m---'

Next, let ro represent, some arbitrary val'ue for r, and Suppose

one is forced to decide between two conjectures:

2p

(a) *,,or... rxnd,rodyrd,...,tooyro all have the same distribution



and

. (b) the. distribution of *rt,... rxnd is different from the
distribution of, rodYld, . . -,rooYro

To choosé between these two conjectures, one night Use the

following procedure:

./
1. Assume, for the moment, that (a) is the correct choice'

CalculaÈe a predicted value for x¡d, j=lr... ¡lI, bY rnaking

use of alt observations except for x, itself, and

. calculate a predicted value'for rodY¡d, for h=l¡... ¡IIl¡

by rnaking use of all observationq except for yn itself.,
Bècause of the way d is chosen, the most reasonable such

predicted values for xrd and rodYnd are, respectively,

*ro'n =#tili x¡o * rody¡dfÉ
l¡.1

and

i 'oo'no'"'

Calculate the sum of squares of the diff,erénces between

the xrd's and the rodYng'' s and tn"it -predicted values,
under the assurnption that (a) is the best choice. This
sum of squares is .

.s"=Ë wf -xf (') I'*Ë Írodyf -rodyf t"t )'
i4 à-1

3. Assume that (b) is the correct choice. Calculate a,

predicted.value for xrd, )=L,... rn, using aII observations
except, for x, its.elf , and calculate a predicted value f or

r'dy¡d, h=lt .. . ¡llt, Using all oþservatiOns eXCept for yn

= #lå "f * ¡l¡ rody¡dl

2.
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this case, the most reasonable such pred,icted
xrd and tooyno are, respectively,

.vllbt_ 1 .l ..,..dã{"J n-]- 7*J "t

rodvf to)=# 
iÌn ,fvf .

4.

and

Calculat,e the sum of
the 'x.d,r s and the rudyn

under the asèumption
sum of squares ís

squares of the differences between
drs and their predícted valuest
tÈaÈ (b) is the best choice. This

lrodyf;-rudynd 
tbt lz

a

5. The choice between (e) and (b) may be made. by comparing
the values of S" and So. Conjecture (a) would be chosen

if S" ( S¡i otherwi.se, conj'ecture (b) would be chosen.

In general, Ëhere are two nu¡nbefs, r.,.and rz say, such that
conjecture (a) will be chosen by thís cross-validation procedure j.f
and only if rr<ro<r.. The actual values of r' and r. tldpend upon the
ObserVations X1r...rxn and Yrr...rYm. Eacþ is a value of rO s.uch that,
s"=sb'

Thus any number between r1 and Íz rnight be regarded as a

reasonable estinate of r, if onê uses the procedure described above

to decide whether or not an estimate is reasonable. l{hen one is
forced to seLect, just one estirnate of t, the intuitively best
choice would'be the value of ro whieh makes Sa as small âs it can

possibly be relative to- So. This is the value of ro'which mini¡nizes .

the _dÍfference S.-Sur and it is the estirnate proposed here as an

so=Ë Íxf -xf to)l ,*Ë
j;t h'L
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alternative to the jackknife estimate of the ratio of scale
parameters.

To sumrnarize, the proposed estimate of the ratio of scale
pararneters r is the value of r which mÍnimizes the function
g(r),where g(r) is given bY

g(r) = (#) 2 t> (xf-,>*!!l!>vit )z+rzd1 (y jd-.Ðv¡o* 
gnljl / t o 

,"t

' tf-1)1" [Þ (xjd- -?'ïry),- (:+) 2 rE (yrd-'Lj t"t Ízdo zvfd

n m-l m

and d satisfies (1).

3. Si¡nulation Studies

To assess the performance of the ratio of scale paramefers

estimator proposed in Section 2, some simulation studies were

conducted.
A number of well-known distributions hlere used as models for

the distributions of X and Y. These included ¡ne¡nbers of the
Iognormálr gamma, and !,leibull families of distributions. The

members of the lognorrnal family used were tùe ones corresponding to
the shape parameter (o) values 2.2,1.3, 0.8, and 0.5. The members

of the gamma fanily used $Iere the ones corresponding to the shape

parameter values 0.5, l,2t and 4, and the members of the Weibull
family used were the ones corresponding to the shape parameter

values 0.65 , L, L.5, and 2.2. The lognormal, gamma, and !{eibull
distributions, whose shape parameter is c, are denoted here by

LN(c), G(c) , and V[(c) , resPectívelY
These distributions, f or the shape parameter values Ì,'te are

considering here, are all fairly highly skewed to the right. The

skewness increases as the shape pararneter vaLue increases in the

lognormal distribution case, but it increases as the shape

parameter value decreases in the gamma distribution and Weibull



distribution cases.
AIso used as,modeLs f or the distributions of X .and Y were some

distributions derived from. members of the Tukey lambda family. If

ur- (1-u) r
'=T'

where u is a uniform (Or1) random variable, then st has a lambda

distribution. This distribution, denoted here by t(À), is a

symnetric distributíon, and its range is (-+, f l, if À>0. rf À<0,

the range is (--,-) . The tail weights of the Ia¡nbda distribution
decrease as À increases. L(-1) is rnuch like a Cauchy distribution,
and L(0. :-34g) is very sinilar to the normal distribution. For

t>0.L349, the tails of the lambda distribution are lighter than

normal distribuÈion taits, and L(1) is, in fact, a uniform
distribution.

Two of the distributional models used for X and Y were the

distributions of r* +, for l=0. l34g ànd l=0.5 . These are

distributions of positive random variabres with symnetric
distributions. One of these has normal-like tail weights, and the
other has trighter than nor¡na1 tails.

Another distribut,ional model used for X and y hlas a L(-1)
distribution truncat,ed at its O.01 and 0.99 percentiles and shifted
so that the left endpoint of the range $/as zero. Thus this model is
a slzmmetric, heavy taiLed distribution of a positive random

variable
For the simulation studies, two sample sizes h¡ere used, a

moderate one n=m=30 anq a large one n=m=100. For each of these

sample sizes and each of the distributions described above, 500

tines random samples of size n and m were generated. Each time a

pair of random samples vJas generated, the samples stere used to
obtain the Miller (1968) jackknife estimate of the ratio of scale
parameters, denoted here by f, and ,the ratio of scafe parameters
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estimate developed in Section 2 and denoted here by î2.

of interest'is the performance of i2 relative to that of 4-
one measure of this relative performance is the ratio of the root
mean squared error (RMSE) of 12 to the'RMSE of î1. It is eàsify
shown that this ratio of RMSEts does not depend upon the actual
value of r. Thus r was taken to be one.

The goaL of the simulation studies was to 9eE, for a rather
broad range of sarnpling 'dÍstrÍbutions and sample sizes, estimates
of the ratio of the RMSETs for the two estimators of the ratio of
scale parameters. Table 1 gives the estimates of RMSE(f2)/RMSE(f1)

obtained by the studies.

Ratíos of the rooÈ
squared error of f1.

Sampling
Distribution

LN (2.2 )
LN(1.3)
LN(0.8)
LN (0.5)
vr(0.65)
w(1)=G(1)
vv(1.5)
w (2.2)
c (0.5)
c (2)
c(4)
L(-1)
L ( o. L34el
L(0.5)

TABLE 1

mean squared error

Sample Size

n=m=3 0

0. 13
0.30
0.39
0.39
o. 69
0.78
0. 78
0. 68
1. 04
0.65
0.51 .

0. 04
o.27
0.90

of î2 to the root mean

n=m=100

0. 06
o.2L
o.32
0. 35
0.58
o.76
0.81
0.71
1. 00
0. 63
0. 53
0. 05
o.27
0.91

in Tabl-e 1 are less than
implications of this are
r, over a broad range of
most of the time, is

Note that almost aII of the ratios
one, and most are realIy quite snall. The

that i2 is generally more efficient than

types of sarnpling distributions, and,
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substantially'more efficient. Further, a comparison of the two

columns in Table 1 indicates that the efficiency of î2 over ft
generally increases with sanpÌe size.

One other aspect of the resultÉ of the sinulation studies is
particularly noteworthy and somewhat surprising. As was pointed out
above, the L(0. L34g) distribution is very similar to a normaL

distribution. Since Îa is essentially the ratio of one sample

standard deviation to another sample standard deviation, one râ¡ould

expect that îL wilt perform extremely well when the samples are

drawn from L(0. L34g) distributions. The simulation studies
estimates of the ratios of RMSE(f2)/RMSE(ft), for n=m=30 and

n=m=100, are both O.27, indicating that 12 performs much better.

4. Estimation of the Fishing Power Correction Fact,or

The results of the simulation sÈudies, discussed in Section 3,

demonstrate the potential of the ratio of scale parameters
est,imation procedure, developed in Section 2, for providing good,

robust estirnates.. This estimator of the ralio of scale parameters
is the estimator which would be recommended for use in estinatÍng
the fpc, fof the case where a specified vesselrs cpuers are to be

adjusted by nultiplying then by an. estimate of the fpc. The

specified vesseÌ need not be the least efficient one.
Often though, the cpuers for the vessels are used to select a

iessel as being the more efficient of two vessels. for a given
species. The cpuers of the vessel which appears to be the least
efficÍent are then multiplied by an eéti¡nate of the fpc which is
also based on the vesselsr cpuets. This practice is normally
followed when the index used to moniÈor change in abundance, of a

gÍven species, is an estimate of biomass. For this case, the fpc
must be at least one. This procedure, in effect, defines an fpc
estimator whích is slightly different from the ratio of scale
parameters estimator developed in Section 2. The latter estimator
is essentially based on the assumption. that the vessel, whose

cpuers are to be adjusted, is known before the cpuers are observed.
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The practice of using cpuers to select a most efficient vessel and
to estimate an fpc causes the fpc estimator to be positively
biased, if, in fact, the fpc is one.

The method used, in Section 2, t,o deveLop an estimator of the
ratio of scale parameters has a distinct advantage which may be

used to produce an fpc esti¡nator with reduced bias. One may make

use of t1, defined in Section 2 to be the smallest solution of
9(r)=0, where g(r) is given.by (2). Any estimator of the form

(3)

where â)0, b>0, and a*b=l, will, by the argument of Section 2, be

a reasonable estimator of r. Further, it will have less positive
bias than f2 has, when r=1. At the Alaska Fisheries Science

Center, (3), with a=b:*, is now being used to estimate the fpc,2'

because it appears as though the amount of positive bias in the
resulting estirnator, when the fpc is equal to one, is about the
same as the amount of negative bias, when the fpc ís L/O.75.
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