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Introduction 

In 2012, the Groundfish Plan Teams and Crab Plan Team appointed a working group 
(Robert Foy, Jim Ianelli, Diana Stram, Grant Thompson) to list and evaluate alternatives 
for a number of assessment and management issues related to recruitment.  Phases I and 
II of the working group’s report were structured around the list of items considered at an 
April 2012 workshop, and were submitted in May and September of 2012, respectively.  
Other working group members (Anne Hollowed, André Punt, William Stockhausen, and 
Farron Wallace) were added following completion of Phase II.  Phase III of the report 
was submitted in September 2013.  After reviewing the Phase III report, the Groundfish 
Plan Teams had suggestions for further work on items B1, B2, B4, B5, B7, and C1.  The 
Teams’ suggestions for two of these items (B1 and B7) were addressed by the working 
group in 2014.  Because only two items are addressed, the present report is referred to as 
an “interim” report rather than a full Phase IV report.  Revised lists of alternatives and 
recommendations for items B1 and B7 are shown below (the original version of 
Appendix D, a revised version of Appendix F, and a new Appendix G are attached). 

B1: Establishing criteria for excluding individual within-regime year classes from 
estimates 

(Text under Alternatives B1.1-B1.4 is unchanged from the Phase III report.  Text under Alternative B1.5, 
and its associated Option, is new.  A simple but quantitative evaluation of some of the alternatives listed 
here is contained in Appendix D.  Alternative B1.5 and its associated Option are based on Appendix G.) 

Alternative B1.1:  Do not exclude any individual within-regime year classes from estimates.  

Pro: 1) Eliminates the need to specify quantitative criteria for excluding individual year classes. 
Con: 1) May include poorly estimated year classes (e.g., will stock assessment authors be required to 

estimate strengths of all year classes in the current regime, even age 0 in the current year?). 

Alternative B1.2:  Exclude all year classes with model-estimated CVs greater than X. 

Pro: 1) Very easy to implement, where feasible.  2) Clear relationship to precision of estimated year 
class strengths. 

Con: 1) May not be feasible, because model-estimated CVs vary greatly across assessments (for 
example, looking at the CVs of estimated year class strengths from 1977-2009 in the sablefish 
and EBS Pacific cod assessments, sablefish had only 3 year classes with a CV of less than 10% 
compared to 25 year classes for Pacific cod, while sablefish had 25 year classes with a CV of 
greater than 20% compared to 1 year class for Pacific cod). 

 



Alternative B1.3:  Exclude all year classes with model-estimated CVs greater than a fraction X (<1) of 
the CV at the first age included in the model. 

Pro: 1) Very easy to implement, where feasible.  2) Clear relationship to precision of estimated year 
class strengths.  3) May be more feasible than B1.2, because the relative CV (rather than the 
absolute CV) is the criterion. 

Con: 1) May still be infeasible (i.e., if X is set too low). 

Alternative B1.4:  Exclude all year classes with model-estimated CVs greater than a fraction X (>1) of 
the asymptotic CV (i.e., the limiting CV that is approached as the number of times a year class is 
observed becomes large). 

Pro: 1) Clear relationship to precision of estimated year class strengths.  2) Where feasible, may be 
more intuitive than the other approaches, because this approach explicitly focuses on using only 
those year classes where the estimates have truly stabilized. 

Con: 1) May be infeasible, because an asymptotic CV does not always exist.  2) The most difficult 
alternative to implement, because the asymptotic CV may vary from year class to year class. 

Alternative B1.5 (recommendation; see also “Option” below):  Adopt one of the models estimated in 
Appendix G, which were fit to a large sample of data reflecting current practices in groundfish stock 
assessments. 

Pro: 1) Extremely easy to implement.  2) Always feasible, unless the recommended age is higher 
than the largest age in the model.  3) All but one of the models includes consideration of the 
natural mortality rate, which was a criterion requested by the SSC.  4) Because the models were 
fit to data reflecting current practices, use of one of these models should minimize (to some 
extent) the number and magnitude of changes to current practices. 

Con: 1) No necessary relationship to precision of estimated year class strengths. 

Option under Alternative B1.5 (recommendation):  Adopt Model 7 from Appendix G: 
first_age=round((0.05/M)+A10%), where first_age is the first age for which the recruitment corresponding 
to the model's estimated abundance in the current year is included in the recruitment time series, M is the 
instantaneous natural mortality rate, and A10% is the first age in the assessment model for which survey 
selectivity is at least 10%. 

Pro: 1) Has the best performance of any of the seven models developed in Appendix G in terms of 
AIC if data with first_age<A10% are excluded.  2) Ranks at least in the top three of any of the 
seven models in terms of R2 if data with first_age<A10% are excluded.  3) Model 7 is the only 
model of the seven that assures first_age will always be at least as great as A10%, thus 
preventing year-classes that have not been observed significantly by the survey from being 
included in the time series. 

Con: 1) Would require some substantial changes to current practice for those assessments that 
include recruitments corresponding to ages in the current year with survey selectivity < 10%. 

B7: Preferred measure of central tendency in recruitment 

(Text under both alternatives has changed since the Phase III report.  Appendix F contains two analyses 
upon which some of the “pro” and “con” arguments below were based.) 

 



Alternative B7.1: To estimate Tier 3 reference points, scale spawning per recruit by the median of the 
recruitment time series for the current regime. 

Pro:   1) Compared to use of mean recruitment, use of the median results in less variability in long-
term (but not short-term) fishing effort and catch.  2) Compared to use of mean recruitment, use 
of the median results in higher long-term (but not short-term) average catch.  3) Compared to 
use of mean recruitment, use of the median results in shorter and less variable rebuilding times. 

Con:   1) Compared to use of mean recruitment, use of the median results in lower average biomass 
(and thus CPUE) in both the short and long term.  2) Compared to use of mean recruitment, use 
of the median is less likely to account appropriately for curvature in the stock-recruitment 
relationship.  3) Projection software (e.g., Proj, Stock Synthesis) would need to be rewritten.  4) 
The FMPs would have to be amended. 

Alternative B7.2 (recommendation): To estimate Tier 3 reference points, continue to scale spawning per 
recruit by the mean of the recruitment time series for the current regime. 

Pro:   1) Compared to use of median recruitment, use of the mean results in higher average biomass 
(and thus CPUE) in both the short and long term.  2) Compared to use of median recruitment, 
use of the mean is more likely to account appropriately for curvature in the stock-recruitment 
relationship.  3) Projection software (e.g., Proj, Stock Synthesis) would not have to be 
rewritten.  4) The FMPs would not have to be amended.  5) Estimates of Tier 3 reference points 
have been based on mean recruitment for well over a decade, with few instances in which this 
appeared to have been problematic.    

Con:   1) Compared to use of median recruitment, use of the mean results in greater variability in 
long-term fishing effort and catch.  2) Compared to use of median recruitment, use of the mean 
results in lower long-term average catch.  3) Compared to use of median recruitment, use of the 
mean results in longer and more variable rebuilding times. 

 
  

 



Appendix D: A simple analysis of the B1 alternatives 
 
Assumptions common to all examples discussed here: 
 

A. The observational data consist of a survey time series (of length n) of numbers at age, which, 
when log-transformed, are distributed normally about the true log numbers at age. 

B. The time series of Q, selectivity at age, and Z at age are known. 

Given the above assumptions, after n observations, the CV of a cohort’s estimated initial 
abundance (i.e., the abundance at some age prior to the age at the first observation) is equal to 
sqrt(h(n)/n), where h(n) is the harmonic mean of the time series of the log-scale observation error 
variances.  To make things even simpler, an additional assumption will be used: 
 

C. The log-scale observation error variance is equal to the following constant function of age (t):  
sigma^2 = exp(a + b*t + c*t^2). 

a. In the special case where b=c=0, the CV of the estimated initial abundance after n years 
is CV(n)=sqrt(exp(a)/n).  Note that this value equals zero in the limit as n approaches 
infinity. 

b. In the special case where b≠0 and c=0, the CV of the estimated initial abundance after n 
years is CV(n)=sqrt(exp(a)*(exp(b)-1)/(1-exp(-b*n))).  Note that this value equals zero in 
the limit as n approaches infinity, as in the b=c=0 case. 

c. In the general case where b≠0 and c≠0, there is no short-hand formula for the CV of the 
estimated initial abundance after n years .  In contrast to the two previous cases, CV(n) 
reaches a positive asymptote (the “asymptotic CV”) in the limit as n approaches infinity. 

Alternatives for criteria pertaining to exclusion of the most recent within-regime year classes: 
 

1. Exclude no year classes. 
2. Exclude all year classes within the last X years.   

a. In the special case where b=c=0, the proportional reduction in CV relative to CV(1) will 
depend only on X, but the absolute CV will also depend on a. 

b. In the special case where b≠0 and c=0, the proportional reduction in CV relative to 
CV(1) will depend only on X and b, but the absolute CV will also depend on a. 

c. In the case where b≠0 and c≠0, both the proportional reduction in CV relative to CV(1) 
will depend only on X, b, and c; but the absolute CV will also depend on a. 

3. Exclude all year classes with model-estimated CVs greater than X.   
a. In the special case where b=c=0, the number of years needed to achieve CV(n)=X and the 

proportional reduction in CV relative to CV(1) will both depend on X and a. 
b. In the special case where b≠0 and c=0, the number of years needed to achieve CV(n)=X 

and the proportional reduction in CV relative to CV(1) will both depend on X, a, and b. 
c. In the case where b≠0 and c≠0, it will be impossible to achieve CV(n)=X if X is set too 

low.  If X is set sufficiently high, the number of years needed to achieve CV(n)=X and the 
proportional reduction in CV relative to CV(1) will both depend on X, a, b, and c. 

4. Exclude all year classes with model-estimated CVs greater than a fraction X (<1) of the CV at the 
first age included in the model. 

 



a. In the special case where b=c=0, the number of years needed to achieve CV(n)=X*CV(1) 
will depend only on X, but the absolute CV will also depend on a. 

b. In the special case where b≠0 and c=0, the number of years needed to achieve 
CV(n)=X*CV(1) will depend only on X and b, but the absolute CV will also depend on a. 

c. In the case where b≠0 and c≠0, it will be impossible to achieve CV(n)=X*CV(1) if X is 
set too low.  If X is set sufficiently high, the number of years needed to achieve 
CV(n)=X*CV(1) will depend only on X, b, and c; but the absolute CV will also depend 
on a. 

5. Exclude all year classes with model-estimated CVs greater than a fraction X (>1) of the 
asymptotic CV. 

a. In the special case where b=c=0, the asymptotic CV is zero, so the number of years 
needed to achieve CV(n)=X*CV(∞) will always be infinite. 

b. In the special case where b≠0 and c=0, the asymptotic CV is zero, so the number of years 
needed to achieve CV(n)=X*CV(∞) will always be infinite. 

c. In the case where b≠0 and c≠0, the number of years needed to achieve CV(n)=X*CV(∞) 
will depend only on X, b, and c; but the absolute CV will also depend on a. 
 

Note that Alternative #1 is the only one that works regardless of the values of the parameters.  However, 
this begs the question of what to count as the “first observation.”  Here are some alternatives: 
 

I. The first observation is the first age in the model.  This definition could be problematic, because 
some models start at an age prior to the first age with data (e.g., SS always starts at age zero); 
conversely, an author might start the model well past the first age with data. 

II. The first observation is the first age with relative abundance data for the cohort in question.  This 
definition could be problematic if only a trivial amount of abundance data exist at the first age 
thus defined. 

III. The first observation is the first age with significant relative abundance data for the cohort in 
question.  This begs the question of what constitutes “significant.”  Some sub-alternatives: 

i. “Significant” means an observation error CV of less than X.  This definition could be 
problematic if X is set so low that the definition cannot be satisfied at any reasonably low 
age (or, worse, not at all). 

ii. “Significant” means estimated survey selectivity greater than X in the respective age and 
year. 

  

 



Appendix F: Two simple analyses of the B7 alternatives  
Analysis #1 

To compare and contrast the performance of using median and mean recruitment to compute the biomass 
reference points in the Tier 3 control rules, a simple simulation was conducted. 
 
To capture the idea of occasional recruitments that are much larger or more common than would be 
expected from a single lognormal distribution, recruitments were drawn randomly from a weighted sum 
of two lognormal distributions, one of which represents “typical” recruitments and the other of which 
represents “extreme” recruitments.   
 
The values of the parameters governing the recruitment distribution were as follow: 

• For the “typical” distribution, µ = 0, σ = 0.6 
• For the “extreme” distribution, µ = 2, σ = 0.05 
• Proportion of time that recruitment is “typical” = 0.95 

The ratio of the median “extreme” recruitment to the median “typical” recruitment is about 7.4, and the 
ratio of the means is about 6.2.  The ratio of the lower end of the 95% confidence interval for the 
“extreme” distribution to the upper end of the 95% confidence interval for the “typical” distribution is 
about 2.1 (Figure F.1). 
 
All fishing mortality was assumed to occur instantaneously at the start of the year, and was expressed in 
terms of a discrete annual exploitation rate U.  Natural mortality was expressed in terms of a discrete 
annual rate A.  A range of values (0.05, 0.10, 0.20, and 0.30) was considered for A.  Selectivity and 
maturity were assumed to be knife-edged, with the first age of full selectivity equal to the first age of full 
maturity.  Growth parameters were scaled so that U35%=A and B100% =1.   Values of all parameters and 
variables except the median and mean of the recruitment distribution were assumed to be known without 
error.  The median and mean of the recruitment distribution were re-estimated in each year of the 
simulation, after a “burn-in” time of 30 years (i.e., no assessment was conducted during the first 30 years, 
so the first assessment has 30 years of recruitment data from which to estimate the median and mean).   
 
For each value of A and each estimator, 10,000 simulations were conducted.  Each simulation was 
initialized by assuming that the population was in equilibrium at 50% of the BMSY proxy of B35%, where 
B35% was scaled in terms of the respective estimator (i.e., B35% = 0.35×Rmed×SPRF=0 or B35% = 
0.35×Rave×SPRF=0).  The maximum age in the population was defined as the age at which only 0.1% of a 
cohort would remain in an equilibrium unfished population (where cohort size is measured at the age of 
recruitment), and so was different for each value of A.  In each simulation, the population was projected 
forward for a number of years at least twice as great as the maximum age.  Alternative values for the Tier 
3 reference points were computed for each of the two estimators (median and mean recruitment).  Catch 
was assumed to equal maxABC under the Tier 3 control rule in all years. 
 
The following performance metrics were tabulated for each value of A and each of the two candidate 
estimators:  

• Short-term (first 10 years) and long-term (last 10% of the time series) means and standard 
deviations of relative biomass (= biomass/B40%), relative exploitation (= exploitation/U40%), and 
relative catch (=catch/C40%); shown in Table F.1 

• Five statistics pertaining to rebuilding time (to the BMSY proxy, again scaled in terms of the 
respective estimator):  upper and lower bounds of the 95% confidence interval, median, mean, 
and standard deviation; shown in Table F.2. 

 



Analysis #2 

Examination of some even simpler, “worst-case” scenarios may help to illustrate some differences 
between using the median and using the mean.  Suppose, instead of the model described in Analysis #1, 
that recruitment can take only two values, one low and one high.  If recruitment is normalized relative to 
the low value, the distribution is defined by two parameters: the ratio of the high recruitment to the low 
recruitment (ratio_of_values), and the probability that the high value will occur (proportion_high).  The 
overall mean recruitment is then given as overall_mean = (1−proportion_high) + (proportion_high × 
ratio_of_values). 
 
In this situation, the worst-case scenario in terms of bias in the estimated mean is for the stock to 
experience only low recruitments during the burn-in period of nbur years, followed by a high recruitment 
in the first year after the burn-in period.  This bias can be derived as follows: 

1. Given that recruitments are normalized to the low value, the sum of recruitments for the first nbur 
years is simply nbur. 

2. Again, given that recruitments are normalized to the low value, the recruitment for year nbur+1 is 
simply ratio_of_values. 

3. The sum of recruitments for years 1 through nbur+1 is thus nbur+ratio_of_values. 
4. The mean recruitment for years 1 through nbur+1 is thus (nbur+ratio_of_values)/(nbur+1). 
5. The bias is computed as the ratio of the mean recruitment for years 1 through nbur+1 divided by 

the overall_mean, minus 1: 
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The worst of the worst-case scenarios occurs when there is no burn-in period at all, in which case the bias 
is positive and potentially large.  The bias then decreases continuously with nbur until it equals 0 at nbur 
= proportion_high−1−1, after which it becomes negative and reaches an asymptote at overall_mean−1−1.   
 
The bias in the median is independent of nbur, being equal simply to the lower asymptote of biasmean. 
 
For comparison, the eastern Bering Sea shelf bottom trawl survey now has a length of 32 years (1982-
2013).  In this very simple, worst-case model, the estimated bias in the mean for any assessment that 
includes recruitment estimates for all years in the survey time series will be negative for any value of 
proportion_high greater than about 0.03, but less negative than the estimated median. 
 
Some examples are shown in Figure F.2. 
 
 
 
 
 
 
 
  

 



Table F.1. Short-term and long-term (last 10% of the time series) means and standard 
deviations of relative biomass (= biomass/B40%), relative exploitation (= 
exploitation/U40%), and relative catch (=catch/C40%) under the two alternative estimators 
and a range of discrete annual mortality rates; from Analysis #1.   
 

 
 
Table F.2. Statistics related to rebuilding time under the two alternative estimators and a 
range of discrete annual mortality rates, from Analysis #1. 
 

 
  

Quantity Estimator Mean SD Mean SD Mean SD Mean SD
Biomass Mean 0.57 0.13 1.03 0.17 0.68 0.23 1.04 0.24
Biomass Median 0.46 0.14 1.00 0.18 0.58 0.23 1.00 0.25
Exploitation Mean 0.56 0.14 0.95 0.07 0.66 0.20 0.93 0.09
Exploitation Median 0.64 0.19 1.00 0.01 0.74 0.22 1.00 0.02
Catch Mean 0.34 0.16 0.99 0.21 0.48 0.30 0.98 0.29
Catch Median 0.31 0.18 1.00 0.18 0.47 0.30 1.00 0.25

Quantity Estimator Mean SD Mean SD Mean SD Mean SD
Biomass Mean 0.81 0.34 1.05 0.33 0.88 0.42 1.06 0.41
Biomass Median 0.72 0.36 1.01 0.35 0.81 0.44 1.01 0.42
Exploitation Mean 0.74 0.22 0.90 0.11 0.77 0.22 0.88 0.13
Exploitation Median 0.82 0.22 0.99 0.04 0.85 0.21 0.97 0.06
Catch Mean 0.66 0.43 0.97 0.40 0.75 0.51 0.97 0.48
Catch Median 0.65 0.42 1.00 0.36 0.75 0.49 1.00 0.44

Discrete mortality rate = 0.20 Discrete mortality rate = 0.30
Short-term Long-term Short-term Long-term

Discrete mortality rate = 0.05 Discrete mortality rate = 0.10
Short-term Long-term Short-term Long-term

Statistic Mean Median Mean Median Mean Median Mean Median
U95%CI 35 21 24 14 18 9 15 8
Mean 19 12 11 7 7 5 6 4
Median 18 11 10 7 7 5 5 4
L95%CI 7 4 3 2 2 2 2 2
St. Dev. 7.0 4.6 5.4 3.1 4.0 2.0 3.3 1.6

Mortality rate = 0.05 Mortality rate = 0.10 Mortality rate = 0.20 Mortality rate = 0.30

 



 
Figure F.1. Probability density function of recruitment used in Analysis #1. 
 

 
Figure F.2.  Some examples of “worst-case” bias in the estimated mean from Analysis #2.  Blue: 
ratio_of_values=10, proportion_high=0.05; red: ratio_of_values=5, proportion_high=0.05; green: 
ratio_of_values=10, proportion_high=0.1; purple: ratio_of_values=5, proportion_high=0.1.  Vertical 
dashed lines indicate the value of nbur for which bias is zero (specific to proportion_high). 
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Appendix G: Estimating the number of recent year-classes 
to exclude from the time series, based on current practices  
 
The 2013 (“Phase III”) report of the Recruitment Working Group responded to an SSC request for 
inclusion of the natural mortality rate (M) in the algorithm for determining the number of recent year-
classes to exclude from the recruitment time series.  This response consisted of an equation (withdrawn 
from this year’s revised draft) that used M and the first age at which survey selectivity was at least 10% 
(A10%) to determine the number of recent year-classes to exclude, with the idea that year classes with 
current age < A10% should be excluded from the time series.  The parameters of that equation were loosely 
based on a few example stock assessments.  At their September 2013 meeting, the Joint BSAI and GOA 
Groundfish Plan Teams “recommended that the working group conduct some further analysis and that the 
working group consider another alternative which uses A50% (age at 50% selectivity).”  In other Team 
discussion not explicitly reflected in the minutes, interest was also expressed in basing the algorithm on a 
wider range of stock assessment examples. 
 
In August 2014, assessment authors were asked to provide the following items of information for each of 
their age-structured assessments: 

• The natural mortality rate (M) 
• The first age at which survey selectivity reaches 10% (A10%) 
• The first age at which survey selectivity reaches 50% (A50%) 
• The first age for which the recruitment corresponding to the model's estimated abundance in the 

current year is included in the recruitment time series (first_age—for example, if the assessment 
model begins with age 1, but the estimated recruitments corresponding to ages 1 and 2 in the 
current year are not included in the recruitment time series, then first_age=3) 

Authors responded by providing data for 26 assessments (15 BSAI, 10 GOA, and 1 BSAI/GOA).  In 
cases where separate values were provided for males and females, the values were averaged.  In cases 
where survey selectivity at the first age in the assessment model was greater than 10% (or 50%), A10% (or 
A50%) was set equal to the first age in the model. 
 
In the overall data set, three factors emerged as being potentially important for individual consideration 
when analyzing the data: 

1. In the 2013 assessment of GOA Pacific cod, the author changed the first age for inclusion in the 
time series from the traditional value of 2 to 4, because she thought that she was required to do so 
by the Phase III report.  This change produced a notable outlier in the data set, so the data were 
analyzed two ways: using age 2 and age 4 for this stock. 

2. The Phase III report used 10% as the minimum survey selectivity that should be accepted for 
estimation of incoming year classes, but the Plan Teams recommended adding a survey 
selectivity of 50% to the analysis, so the data were analyzed both ways. 

3. Many of the assessments represented in the data use model estimates of abundance at ages lower 
than either of the suggested selectivity cutoffs: 35% use model estimates of abundance at ages 
less than A10%, and 77% use model estimates of abundance at ages less than A50%.  The data were 
analyzed two ways: including, or excluding, those assessments that use model estimates of 
abundance at ages lower than the suggested selectivity cutoff.  For the case of A10%, excluding 
such data reduced the sample size from 26 to 17, and for the case of A50%, excluding such data 
reduced the sample size from 26 to 6. 

This resulted in a factorial design of 23=8 different ways of looking at the data. 
 

 



The following models were fit to the data (A% represents either A10% or A50%, depending on which value is 
used in any given combination of the three factors listed above): 
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All models were fit by the method of maximum likelihood, assuming a lognormal error structure.  It 
should be noted that first_age is necessarily an integer, but the terms on the right-hand sides of the above 
equations are not restricted to integer values.  Thus the analysis is necessarily only approximate, as 
restricting the right-hand sides to integer values would render the log-likelihood non-differentiable with 
respect to the parameters. 
 
Three statistics relating to goodness of fit for each model within each combination of the three factors are 
shown in Table G.1:  Akaike’s Information Criterion (AIC); the coefficient of determination (R2); and 
“Error,” which describes the proportion of the data where the predicted value of first_age is less than A%.  
Within each combination of factors, results are sorted in decreasing order of preference for each 
goodness-of-fit measure: 

• Focusing on AIC, Model 7 ranked as the best model whenever data with first_age<A% were 
excluded, Model 2 ranked as the best model when such data were not excluded and A% was set 
equal to A10%, and Model 4 ranked as the best Model when such data were not excluded and A% 
was set equal to A50%.  

• Focusing on R2, Model 6 ranked as the best model for all combinations of factors except when 
A% was set equal to A50% and data were excluded whenever first_age was less than A%, in which 
cases Model 5 ranked as the best model.  Model 7 ranked no lower than third whenever data with 
first_age<A% were excluded. 

• Focusing on “Error,” Model 7 ranked as the best model (with Error=0) whenever data with 
first_age<A% were excluded (just as it did when the focus was on AIC).  When data with 
first_age<A% were not excluded, a variety of models ranked near the top, but it should be noted 
that the Error values for the top-ranked models in all such cases were very high (0.692-0.923). 

 
By all three criteria, then, Model 7 does very well.  The fit of Model 7 to the data with GOA Pcod 
first_age=2, A%=A10%, and data with first_age<A% excluded is shown in Figure G.1.  With only one 
parameter, Model 7 is also easy to extend to the more realistic case where the right-hand side is 
constrained to take integer values.  Rounding the values on the right-hand side to the nearest integer and 
profiling over a7 (for the same combination of factors listed for Figure G.1) indicates that a7=0.05 does as 
well as any other value of a7. 

 



Table G.1—Results, sorted in order of descending rank within each factor combination and measure. 
 

 

 Pcod age Select. Exclude? Model Value Model Value Model Value
2 0.1 0 2 48.414 6 0.431 1 0.731
2 0.1 0 1 48.653 4 0.405 2 0.731
2 0.1 0 7 48.958 3 0.352 4 0.731
2 0.1 0 4 49.063 1 0.346 6 0.769
2 0.1 0 6 50.355 5 0.299 3 0.769
2 0.1 0 5 50.921 2 0.155 5 0.808
2 0.1 0 3 51.415 7 -0.525 7 1.000
2 0.1 1 7 25.023 6 0.772 2 0.000
2 0.1 1 2 26.779 5 0.751 7 0.000
2 0.1 1 4 28.685 7 0.734 3 0.118
2 0.1 1 5 29.023 4 0.725 4 0.118
2 0.1 1 6 29.320 3 0.700 6 0.118
2 0.1 1 3 30.467 2 0.653 5 0.176
2 0.1 1 1 32.558 1 0.477 1 0.471
2 0.5 0 4 47.550 6 0.418 3 0.923
2 0.5 0 1 48.653 4 0.413 1 0.923
2 0.5 0 2 49.300 1 0.346 2 0.923
2 0.5 0 6 50.292 3 0.333 5 0.923
2 0.5 0 5 51.678 5 0.207 6 0.923
2 0.5 0 3 51.847 2 0.126 4 0.962
2 0.5 0 7 59.728 7 -7.543 7 1.000
2 0.5 1 7 -3.431 5 0.998 7 0.000
2 0.5 1 5 0.110 6 0.998 6 0.000
2 0.5 1 6 0.797 7 0.996 5 0.167
2 0.5 1 4 7.425 4 0.988 3 0.500
2 0.5 1 2 9.177 2 0.825 2 0.500
2 0.5 1 3 13.716 3 0.823 4 0.667
2 0.5 1 1 16.903 1 0.458 1 0.667
4 0.1 0 2 49.834 6 0.382 4 0.692
4 0.1 0 7 50.494 4 0.299 1 0.731
4 0.1 0 1 50.945 5 0.232 2 0.731
4 0.1 0 4 51.190 3 0.231 5 0.731
4 0.1 0 6 52.435 1 0.215 6 0.731
4 0.1 0 5 52.895 2 0.151 3 0.769
4 0.1 0 3 53.552 7 -0.615 7 1.000
4 0.1 1 7 27.664 6 0.672 2 0.000
4 0.1 1 2 29.152 7 0.630 3 0.000
4 0.1 1 4 31.335 5 0.629 4 0.000
4 0.1 1 6 31.757 4 0.603 5 0.000
4 0.1 1 5 31.987 3 0.592 6 0.000
4 0.1 1 3 33.448 2 0.572 7 0.000
4 0.1 1 1 34.831 1 0.306 1 0.529
4 0.5 0 4 49.980 6 0.322 2 0.923
4 0.5 0 2 50.648 4 0.294 1 0.923
4 0.5 0 1 50.945 3 0.235 4 0.923
4 0.5 0 6 52.671 1 0.215 5 0.923
4 0.5 0 5 53.744 5 0.130 6 0.923
4 0.5 0 3 54.081 2 0.103 3 0.923
4 0.5 0 7 60.417 7 -7.576 7 1.000
4 0.5 1 7 5.556 5 0.976 7 0.000
4 0.5 1 5 8.607 6 0.963 6 0.143
4 0.5 1 6 9.884 7 0.947 5 0.143
4 0.5 1 4 11.859 4 0.929 4 0.286
4 0.5 1 2 12.497 2 0.668 3 0.571
4 0.5 1 3 17.144 3 0.628 2 0.571
4 0.5 1 1 19.766 1 0.123 1 0.714

AIC R2 ErrorFactors

 



 
Figure G.1.  Fit of Model 7 to the data (diamonds) with GOA Pcod first_age=2, A%=A10%, and data with 
first_age<A% excluded.  Diagonal line indicates what a perfect fit would look like. 
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