Bayesian estimation with a two parameters and integration by direct search.

Purpose. Perform the Bayesian parameter estimation in a two-parameter model:  a population with constant recruitment and known survival. Unlike laboratory 2, we now have only an index of abundance, and must estimate the scaling factor between the index of abundance and the real biomass.  “States of nature” are recruitment levels, R and values of q.  Calculate likelihood and posterior by direct search. Evaluate the effects of prior information and information in data on the posterior distribution. 

Themes:
Bayesian estimation with two variables

Information content in data

Information content in prior distribution

Data

Population size (index of abundance) for some years and catch (in numbers) every year.

The model

Variables and parameters 
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Observed index of abundance in time t
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Predicted population biomass in time t

Ct   
Observed harvest in time t

S 
Finite survival rate (annual)

R 
Average annual recruitment
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Variance of the observation error

n
Number of observations

q
the scaling factor between index of abundance and abundance

It
the index of abundance at time t

Dynamic model
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Initial Conditions
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Observations
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Observation error (variability due to mismeasurement of true state of nature)
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Estimation

Likelihood for observation error

The individual observation errors are
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The likelihood of the observation error is
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and the likelihood of all observation errors is therefore the product of the likelihoods for all years.
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Finally we note that we since the v’s are the traditional sum of squares, we can convert the sum of squares to the likelihood as follows
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The key to this simplification is that the first term of the likelihood is constant and therefore does not affect the likelihood.  Assuming observation error, we can now refer to the likelihood with reference to the observed data.
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Priors

We assume that the prior on R is normally distributed
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We consider two possible priors for q, either it is uniformly distributed, or it is log uniform, that is 

if uniform        :       
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if Log-uniform :      
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Further we assume that the priors of R and q are independent.

Posterior

Let us define Hk as hypothesis combining a specific Ri and qj.
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Laboratory
This spreadsheet is very similar to the one we built in laboratory 2, except that we are initially adding the complexity that q must be estimated. Again we will assume that: 

a) survival is known (S=0.7)

b) only observation error is present (
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c) population in 1971 is at equilibrium (Eq. 2)

Use the template “twogrid part I template” as a starting point. This sheet already has the calculations to obtain the likelihood for a specific value of R and q completed.  Your task is going to be to calculate the joint likelihood of R and q values using a TABLE function, then compute the Bayes posterior joint and marginal distributions.

Do the following steps.

1.  Enter the formula for the total likelihood in cell B45. 

2.  Next build a 2 dimensional table in cells B45:U77, specifying that the row input cell is qpar and the column input cell is rbar.  This assures that the q values shown in row 45 and the R values used in column B will be properly used, and the entries in this table will be the likelihood for each combination of R and q.

3.  Now note that if you go to the sheet “Data” and change column E from a value of 1 to 0, then the simulated index of abundance for that year will be omitted.  If you set column E equal to 1 for each year, you will give the program data every year and a highly informative data sequence.  If you set most of the entries in column E to 0 then you provide less information.  If you don’t give the estimation any data points after the large catches begin, then you are providing very poor information to the estimation.

4.  You have constructed a very large two dimensional table, that should take 5-15 seconds to recalculate.  For this reason we have set the “Tools Options Calculations” option to manual recalculation for Tables, so that you must press F9 to recalculate the table. Otherwise there would be a many second delay every time you changed any cells.  EXCEL will warn you with a “calculate” warning at the bottom of the spreadsheet when you have changed a value and need to press F9 to see the correct answer.  

5.  Now load the spreadsheet “twogrid part II template”.  This spreadsheet looks very much like “twogrid part I template” but instead of having the big TABLE function to calculate the likelihoods, it has a “LINK” to the values in “twogrid part I template”.  In this spreadsheet we are going to add the priors to produce the Bayesian posteriors.

6.  You should still have “twogrid part I template” loaded.  In your part II sheet, in cells A83:A114 add the prior distribution for R using equation 10, and note that the mean of the prior is at $B$10 and the standard deviation is at $B$11.  You can use the EXCEL function NORMDIST to calculate the normal probability density if you wish.

7.  Calculate the likelihood profile on R in cells V46:V77 by finding the maximum value of the likelihood for each row of the likelihood table.  Then calculate the normalized likelihood by dividing by the SUM(V$46:V$77) and put this in W46:W77.  This will be used later to graph the likelihood profile against the Bayes posterior.

8.  At cell C81 insert the prior for q as follows“=IF(qprior=1,1,LN(D82/C82))”.  This will put in a non-normalized uniform prior (1 for all cells) if qprior=1, and a non-normalized  log uniform if qprior is not 1.  Replicate this formula to the right  as far as U81 for all columns.

9.  Now at C83 we want the numerator of the Bayes posterior, that is the likelihood (from C46) times the prior for R and the prior for q.  Now replicate this formula down and right to U114.

10.  Next we want to normalize each element of the Bayes posterior.  So at C118 divide the numerator of the Bayes posterior (C83) by the sum over all hypotheses (SUM($C$83:$u$114)) and replicate this formula down and right to fill in the matrix.

11.  Now calculate the marginal posterior distribution for q in cells c150:U150.  This is simply the sum over all values of R for a particular value of q. 

12.  Finally, calculate the marginal posterior distribution for R in cells V118:v149, again by summing across the rows of the posterior for all values of q.  

13.  STOP and read carefully the next two items.  We are dealing with PRIORS!! In C151:U151 calculate the normalized prior for q by dividing the prior for q by the total of all priors for q.  This is used for plotting –  this is not the normalized posterior but refers back to the prior on q..  

14.  In W118:W149 calculate the normalized prior for R.

15.  This spreadsheet should be working at this point and in the sheet called “posteriors” you should see a graph of the marginal posterior distribution for each parameter (vertical bars) and the prior for the parameter (thin line).

16.  When you loaded the two worksheets the index data were available for all years.  Now explore two different priors on R, first a non-informative one with mean 300 and standard deviation 100 (Part II – A).  Look at the graphs in “posteriors” and see that the prior has almost no influence on the posterior for R.  Next try a prior of 350 with a standard deviation of 50 (Part II – B).  If for some reason you had a strong prior such as this, it would shift the posterior away from what the data are saying.

17.  Now we want to explore what happens with a less informative data series.  This will involve recalculation of the large likelihood table, and you will need to close the part II worksheet, so that it doesn’t recalculate for every step of the part I. Worksheet.  So just say “file close” for part II.

18.  Now go into the “data” sheet for part I and set the “to use” index for 1985 and all years after equal to 0, so that no indices are available after 1985.  Then go back to the “main” sheet and press F9.   This will cause a recalculation.  This data series provides no information about what happened after the increase in catches.

19.   Reopen part II and set the prior for totally uniformative mean=300 standard deviation 300, and the prior for q equal to uniform “qprior=1”.  Note that while the likelihood is almost totally flat beyond 210 (the minimum R required to generate the known catches),  the posterior on R declines considerably, suggesting a smaller R than the data. This is because a uniform prior on q is informative on R.  Set qprior=1 to provide a log-uniform prior on q.  Then look at the posterior on R—it is now the same as the likelihood profile (Part II – C).
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