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Abstract

Monte Carlo simulation is used to assess the performance of a size-structured stock assessment method of the type com-
monly employed to assess rock lobster populations in Australia and New Zealand. The simulations consider the impact of
measurement error and process error in catchability and the length at 50% selectivity, as well as the implications of pooling
data across populations that differ in terms of growth rate. The ability to estimate the virgin biomass depends critically on
having catch-rate or size-composition data for earliest years of exploitation; in the absence of such data the estimates can be
highly biased and imprecise. Several of the reference points commonly reported for assessment purposes (e.g. the biomass
at which maximum sustainable yield is achieved) are, however, based on the estimate of the virgin biomass. Estimation
performance (bias and precision of estimated quantities) deteriorates with increasing process error. For most of the scenarios
examined, the expected benefits of increased precision arising from pooling data across spatial zones are not realized and
better performance can be achieved by conducting assessments at the level of population and subsequently aggregating results
spatially.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Fisheries for southern rock lobster (Jasus edward-
sii) occur off New Zealand and the Australian States
of South Australia, Victoria and Tasmania. Manage-
ment advice for these fisheries is based on stock
assessments, which involve fitting size-structured
population dynamic models to catch, catch-rate and
length–frequency data (e.g.Punt and Kennedy, 1997;
Hobday and Punt, 2001; Breen et al., 2001; Bentley
et al., 2001). All of these assessments are spatially
structured to some extent. For example, the assess-
ments in Tasmania are based on eight zones (Punt and
Kennedy, 1997; Gardner et al., 2001; Fig. 1), those
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in Victoria on two zones (Hobday and Ryan, 1997)
and those in New Zealand on five zones (Annala and
Sullivan, 2000). The frameworks used for the evalua-
tion of fisheries policies for southern rock lobster off
South Australia and western rock lobster off Western
Australia are based on models that involve many spa-
tial cells (Walters et al., 1993, 1998; McGarvey and
Gaertner, 1999).

The evidence for spatial heterogeneity in rock lob-
ster populations is strong, although this is perhaps
not surprising given the very limited extent of move-
ment of adult southern rock lobster inferred from tag-
ging studies (e.g.Pearn, 1994). For this reason, the
New Zealand, Victorian and Tasmanian assessments of
southern rock lobster treat the populations within each
zone as being independent of all the others. Never-
theless, given the long-lived and consequently highly
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Fig. 1. Tasmania, showing the eight statistical zones (modified
from Punt et al. (1997)).

mobile pelagic larval stage (Booth, 1994; Booth and
Phillips, 1994), it is unsurprising that no significant
differences in allozyme frequencies have been found
among southern rock lobsters sampled from Australia
and New Zealand (Smith et al., 1980; Booth et al.,
1990).

The boundaries among putative stocks when con-
ducting assessments of southern rock lobsters have
been selected, to the extent possible, on biological
grounds. For example, the eight zones around Tasma-
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Fig. 2. Length–frequency sample sizes (1970–1987) for zones 1–4 (seeFig. 1).

nia were selected to account for spatial heterogeneity
in growth rates, size at maturity, and fishing mortal-
ity, (Punt and Kennedy, 1997) as well as the spatial
resolution of the data supplied in the past by fish-
ers (S. Frusher, TAFI, pers. commun.). Nevertheless,
the lack of sufficient data spatially (seeFig. 2 for
the time-series of the number of animals sampled for
length–frequency in the four zones to the east of Tas-
mania) means that the ability to correctly identify the
boundaries (if indeed there is such a thing as a bound-
ary) is problematic. One consequence of this is the
tendency for ‘stock’ boundaries to be placed on lines
of latitude and longitude.

Uncertainty regarding stock boundaries can lead
to the data for several populations being combined
for assessment purposes or those for one population
being assessed as two (separate) populations. The
first type of error can lead to serial depletion of some
of the populations if fishing is not homogenous with
respect to the populations in the group being assessed
(International Whaling Commission, 1992; Fahrig,
1993). Nevertheless, given small sample sizes, the
results of assessments based on data pooled spatially,
although biased, may be usably precise. In con-
trast, unnecessarily sub-dividing a population reduces
sample sizes and consequently decreases estimation
precision. If management regulations are more con-
servative when uncertainty is greater, this can lead to
resource under-utilization (e.g.International Whaling
Commission, 1992). Furthermore,Butterworth and
Geromont (2000) show that, under certain cir-
cumstances, unnecessarily sub-dividing a single
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homogenous population can also lead to biased esti-
mates of key management related quantities.

Although size-based stock assessment methods are
commonly applied to data for commercially valu-
able rock lobster and other populations, there are no
published studies on the performance of such stock
assessment methods. It should, of course, be recalled
that only limited testing of age-based stock assessment
methods based on the ‘Integrated Analysis’ paradigm
has been conducted (Bence et al., 1993; National
Research Council, 1998; Sampson and Yin, 1998;
Punt et al., 2001), even though this paradigm forms
the basis for the bulk of the quantitative stock as-
sessments in Australia, South Africa and off the west
coast of North America.

This paper therefore uses Monte Carlo simulation
to evaluate the ability of a size-structured stock as-
sessment method to estimate quantities of interest to
management. This evaluation considers both deter-
ministic (i.e. no error when sampling the population
and no inter-annual fluctuations in catchability) sce-
narios as well as scenarios in which the data available
for assessment purposes are subject to error. The
errors considered include those related to making in-
correct assumptions regarding spatial structure when
conducting assessments using a size-structured stock
assessment framework. The scenarios underlying the
simulations are similar (but by no means identical) to
that of assessing the rock lobster populations to the
east of Tasmania (zones 1–4,Fig. 1). The study is
based on a simple size-structured assessment frame-
work consistent with the assessments for most rock
lobster populations (at least in the southern Hemi-
sphere) (e.g.Punt and Kennedy, 1997; Johnston,
1998; Hobday and Punt, 2001).

2. Methods

The steps in evaluating stock assessment meth-
ods using Monte Carlo simulation are summarized
in Fig. 3 and are fully documented elsewhere (e.g.
Kirkwood, 1981; de la Mare, 1986; Punt, 1988;
Patterson and Kirkwood, 1995). In essence, Monte
Carlo simulation involves the selection of a model
(the operating model) to represent the truth for the
simulations and the use of this model to generate
pseudo data sets that could have arisen if the oper-

Create operating model 

Generate artificial data sets 

Apply stock assessment method 

Compare true with estimated values 

Fig. 3. Flowchart of the method used to evaluate the performance
of stock assessment methods.

ating model was indeed real. The stock assessment
method is then applied to each pseudo data set to pro-
duce estimates of the key stock assessment outputs
and these are compared with the values for outputs
from the operating model. Performance, in terms of
estimating a quantity of interest to management (e.g.
the egg production in a pre-specified year), is defined
by the magnitude of the relative error:

E
i,j
t = 100× Q̂

i,j
t −Q

i,j
t

Q
i,j
t

whereEi,jt is the relative error for quantityi during
year t for simulation j, Qi,j

t the true (i.e. operating
model) value for quantityi during yeart for simula-
tion j, and Q̂i,j

t is the estimate of quantityi during
yeart for simulationj.

The relative errors for a given quantity could be
summarized by a variety of statistics. These include
the mean value (to quantify possible bias), the square
root of the mean of the squared relative errors (i.e. the
RMSE), the median and appropriate intervals of the
relative errors, and the median of the absolute values
for the relative errors. In this study, emphasis is placed
on the median and 90% intervals for the relative errors
and on the median of the absolute values of the relative
errors (the MARE). The MARE rather than the RMSE
is the focus of this study because it is less sensitive
to outlying estimates. Such estimates (e.g. biomass
estimates in the millions of tonnes) were observed
to arise occasionally during the analyses. However,
such estimates would be discounted during an actual
assessment as being unrealistic.
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2.1. The operating model

2.1.1. Overview
The operating model (seeAppendix A for details)

is size-, sex- and zone-structured. Natural mortality
is assumed to occur throughout the year and fishing
is assumed to occur during a pulse in the middle
of the year. Growth occurs after fishing and natural
mortality, but before settlement. There is no move-
ment of animals among zones. Settlement occurs to
the lowest size-class considered in the model (10 mm
carapace width) and the model includes forty 6 mm
size-classes. The annual settlement in a zone is related
to the egg production generated from that zone by
means of a Beverton–Holt stock–recruitment relation-
ship, although for the bulk of the analyses settlement
is assumed to be independent of egg production for
consistency with the assumptions underlying most,
but not all (e.g.Johnston (1998)), rock lobster stock
assessments. The approach used to model annual set-
tlement allows (ifτr > 0, seeEq. (A.3)) settlement to
be correlated spatially. Table 4 ofPunt et al. (1997)
shows that the settlement of rock lobster for the zones
to the west of Tasmania is positively correlated, as
might be expected if settlement to these zones was
governed by common environmental factors.

The operating model includes legal minimum
lengths (LMLs) by sex, gear-selectivity (assumed to
be of the logistic form) and discard mortality related
to sub-legal animals. The catch by zone is calculated
from the total catch across zones under the assump-
tion that fishers distribute their catch in proportion
to catch-rate. This assumption will definitely be vio-
lated for the rock lobster resource off Tasmania (M.
Haddon, TAFI, pers. commun.), but is sufficient for
the purposes of the analyses of this paper. Clearly, a
far more sophisticated effort allocation model will be
required if models are to be developed to predict the
economic consequences of management actions.

Catchability is assumed to differ among zones in
expectation and the annual differences in catchability
from expectation are assumed to be correlated spa-
tially. The annual selectivity pattern changes gradually
over time through changes to the size at 50% selectiv-
ity and also due to inter-annual random variation in the
size at 50% selectivity. Gradual changes in selectivity
can be expected due to changes over time in fishing
locations and market demand, whereas inter-annual

variation in selectivity can be attributed to the impact
of environmental fluctuations.

The matrix that determines the fraction of animals
(of a given sex and in a given zone) that grows from
one size-class to another is based on the assumption
that the expected growth increment is a linear func-
tion of size (negative expected growth increments are
permitted). This is equivalent to assuming an under-
lying von Bertalanffy growth equation. The variance
in growth increment is also a linear function of size,
although a minimum value is placed on this variation
to prevent unrealistically small (or negative) variation
for large animals.

The initial conditions correspond to a population
at pre-exploitation equilibrium (year 1), and the ra-
tio of the egg production in the final (50th) year
to the pre-exploitation equilibrium egg production
(the current depletion) is pre-specified. This ratio is
pre-specified for each set of simulations, because it
was expected from previous studies (e.g.Punt, 1988;
Punt et al., 2001) that the performance of the as-
sessment method would be sensitive to the current
depletion of the resource.

It should be noted that, although the operating
model is relatively complicated, several potentially
important factors from the viewpoint of fisheries
management (regulations on the landing of berried
females, within-season dynamics, multiple fishing
sectors, changes over time in LMLs and escape gap
regulations, etc.) are ignored. Incorporating such fac-
tors should not, however, impact upon the qualitative
conclusions of this paper.

2.1.2. Parameterization
The values for the bulk of the parameters of the

operating model (e.g. those related to selectivity,
natural mortality and egg production) are based on
those chosen for previous assessments of Tasma-
nian rock lobster (Punt and Kennedy, 1997; Gardner
et al., 2001). The values for the parameters that de-
termine the size-transition matrix are selected so that
the size-distributions at pre-exploitation equilibrium
(Fig. 4) are very similar to those derived for Tasma-
nian rock lobster byPunt et al. (1997). The values for
the parameters that determine the extent of variability
in the various modeled processes cannot be deter-
mined from the results of past assessments and are
therefore set to ‘realistic’ values (Table 1). Sensitivity
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Fig. 4. Size–frequency distributions at pre-exploitation equilibrium for zones 1–4 (greatest to smallest asymptotic size).

tests consider varying the values for some of these
parameters.

The catch series on which the calculations are based
(Fig. 5) is hypothetical but captures the tendency of
catches of rock lobster populations to increase rapidly,
peak and then decline to lower levels. The base-case
choice for the current depletion of the resource is 0.3
(this value falls within the range of estimates of cur-
rent depletion for the stocks of rock lobster assessed

Table 1
The base-case values for the parameters related to sources of
variability and discard mortalitya

Quantity Value

Settlement
Overall variation,σr 0.6
Spatial correlation,τr 0.5

Catchability
Variation among zones,σφ 0.2 (0.4)
Inter-annual variation,σϕ 0.2 (0.4)
Correlation among zones,τϕ 0.71

Size at 50% selectivity
Variation in gradual changes,σδ 0 (2, 4)
Inter-annual variation,ση 0 (4, 8)

Pre-exploitation settlement
Variation among zones,σµ 0.4
Spatial correlation,τµ 0

Discard fraction,Ω 0.1

a The values for the sensitivity tests are given in parenthesis.

using size-structured models in Australia and New
Zealand). Sensitivity is explored by setting the current
depletion to 0.05 (highly depleted population) and 0.7
(under-utilized population).

2.1.3. Data generation
The data available for assessment purposes are

catches (assumed to be known exactly), catch-rates
and length–frequency data (commercial and scientific
sampling). Tagging data (1000 recaptures per sex) are
assumed to be available to estimate the size-transition
matrix. Appendix A.8 outlines the technical details
of how these data are generated. The sample sizes by
year for length–frequency data (Table 2) were chosen
to mimic roughly the actual pattern for rock lobster
off Tasmania. The base-case analyses assume equal
sample sizes in each zone, although sensitivity tests
consider more realistic alternatives.

It is necessary to pool data across zones when as-
sessments are conducted based on an area that consists
of more than one zone. This is straightforward for the
catches because they are simply added together. The
pooled catch-rates are obtained by catch-weighting the
catch-rates by zone and the pooled length–frequency
data are obtained by adding the length–frequency sam-
ples by zone. The latter assumption may be surprising
because a more ideal approach would seem to be to
catch-weight the length–frequency data (and this is ex-
amined in one of the tests of sensitivity). However, the
base-case assumption has been made because, if it was
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Fig. 5. The assumed catch history.

not known that the zones being pooled contained sep-
arate populations, the length–frequency sample col-
lected would be assumed to be random with respect
to the population.

Table 2
The length–frequency sample sizesa

Scenario (years) Zone

1 2 3 4

Base-case
21–38 600 600 600 600
39–50 1200 1200 1200 1200

Alt l/f sample 1
11–17 500 500 500 500
23–27 1500 1500 1500 1500
43–50 3500 3500 3500 3500

Alt l/f sample 2
11–17 300 300 300 300
23–27 200 200 200 200
43–50 600 600 600 600

Lower l/f sample sizes
21–38 1000 200 200 100
39–50 2000 400 400 2000

a Catch-rates are available for years 21–50.

2.2. The size-structured stock assessment method

The stock assessment involves two steps: es-
timating the size-transition matrix and fitting the
size-structured population dynamics model1. The for-
mer involves estimating the values for the parameters
of the growth model (̃a, b̃, the minimum standard de-
viation, and a length-independent growth increment
coefficient of variation) by minimizing the following
objective function:

−lnL =
∑
i

(
0.5 ln(σ̂2

i + σ2
obs)+ (Li − L̂i)

2

2(σ̂2
i + σ2

obs)
2

)

(1)

whereLi is the observed length at recapture for theith
animal,L̂i the growth model-predicted length at recap-
ture for theith animal,σ̂i the growth model-predicted
growth increment standard deviation for theith ani-
mal, andσobs the level of measurement error.

1 The AD Model Builder package (© Otter Software) was used
for both estimation steps.
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The model predictions are determined from
Eqs. (A.15) and (A.18), except that CV2 in Eq. (A.15)
is assumed to be zero, andσobs is assumed to be
known exactly (this would be estimated by com-
paring the recorded lengths at release and recapture
from within-season recaptures (P. Breen, NIWA, pers.
commun.)).

The parameters of the size-structured population
dynamics model (and hence the values for the quan-
tities of management interest) are computed by max-
imizing a likelihood function involving the catch-rate
and the length–frequency data. Ignoring constants
independent of the model parameters, the quantity
minimized is

−lnL = nc ln(σ̂q + 0.01)

+W
∑
s

∑
l

∑
y

(ρst,l − ρ̂st,l)
2

ρst,l(1 − ρst,l)+ 1/40
(2)

wherenc is the number of years for which catch-rates
are available (years 21–50),σ̂q the maximum likeli-
hood estimate for the variation in catchability:

σ̂2
q = 1

nc

∑
t

{lnUt − ln Ût}2 (3)

Ut is the observed catch-rate for yeart, Ût the
model-predicted catch-rate for yeart, ρst,l the ob-
served fraction that animals in size-classl constitute
the catch (in number) of animals of sexs during year
t, ρ̂st,l the model-predicted fraction that animals in
size-classl constitute the catch (in number) of ani-
mals of sexs during yeart, and,W the weight (the
effective sample size assumed to be 100) assigned to
length–frequency data.

The 0.01 is added tôσq to increase robustness
(to prevent the model from choosing recruitments to
mimic the catch-rate data exactly). The form of the
likelihood function for the length–frequency data is
a variant of the robust likelihood formulation devel-
oped byFournier et al. (1998), in which the variance
is based on the observed rather than the predicted
fractions (Starr et al., 1999; Bentley et al., 2001).

The size-structured model is identical to the operat-
ing model except that only a single zone is considered
and all sources of variation except recruitment vari-
ability are ignored. The only parameters (other than

the nuisance parameters) estimated are the annual set-
tlements, which are parameterized as follows:

Rt = R̄eεt (4)

whereRt is the settlement during yeart, R̄ the mean
settlement, andεt the settlement residual for yeart.

A penalty (1/(2(0.4)2))
∑
t ε

2
t is added to the ob-

jective function minimized to further stabilize the
estimator. This penalty is equivalent to assuming that
settlement is log-normally distributed with a coeffi-
cient of variation of 40%.

2.3. The quantities of management interest
considered

The quantities for which results are presented:

(1) the time-series of egg production (Eq. (A.4));
(2) the time-series of legal fishable biomass in the

middle of the year (Appendix A.6);
(3) the time-series of annual settlement;
(4) the time-series of annual recruitment to the fishery

(Eq. (A.16)).

3. Results and discussion

3.1. Deterministic results

Fig. 6 shows the time-trajectories of the medians
and 90% intervals for the relative errors for the four
time-series for zone 1 (fastest growth) for the case
in which the estimator is provided with deterministic
data (no measurement error) and catchability does not
exhibit inter-annual fluctuations (i.e.σϕ = 0). The
estimates of fishable biomass, egg production and
surplus production provided by the stock assessment
method are, as expected, essentially identical (relative
errors ∼ 0.1%) to the true values for the years for
which data are available (years 21–50). This is, how-
ever, not the case for the time-series of settlements and
for estimates of all four quantities for the years prior
to year 21. This may seem surprising, given that the
assessment model is identical to the operating model.
It arises because, in the absence of data for years
1–20 and the constraint being placed on the recruit-
ment residuals, the stock assessment model sets most
of the settlements for the years before year 21 to the
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Fig. 6. Medians and 90% intervals for relative errors for zone 1 for the base-case scenario in the absence of measurement error and
inter-annual variability in catchability.

average settlement for years 21–50. However, settle-
ment in the operating model is not constant over years
1–20. The result that it is not possible to estimate the
initial biomass even with deterministic data suggests
that basing management advice on the ratio of the
current biomass (or egg production) to that in a vir-
gin (or pre-exploitation) state, although common (e.g.
Bentley et al., 2001; Hobday and Punt, 2001), is ques-
tionable.Punt et al. (2001)reached a similar conclu-
sion for fish species in Australia’s South East Fishery.
As expected, uncertainty in settlement is greatest for
the year classes that settled before the start of the data
series and for those that have just entered the fishery.

The results inFig. 6 pertain to the application of
the stock assessment method to a single zone (the
results for the other zones are qualitatively identical
to those inFig. 6). Fig. 7 shows results for two of the
time-series (fishable biomass and surplus production)
for zone 1 and for combinations of zones. The results
for assessments based on zones 1 and 2 combined
and 3 and 4 combined are close to unbiased for years

21+. However, this is not the case if data for all four
zones are pooled, which results in a negative bias
of approximately 5% (fishable biomass) and 15%
(surplus production).

Fig. 8 shows results of assessments, in which the
width of each size-class is increased from 6 to 12 mm.
The data are again deterministic. However, now there
is negative bias for the years after year 20, even when
the estimator is applied to data for zone 1 under the
assumption that the boundary between zones 1 and 2
is correctly placed. The assessments of rock lobster
populations off southern Australia have been based
on a range of size-class widths, e.g. 2 mm (Punt and
Kennedy, 1997) and 5 and 10 mm (Hobday and Punt,
2001), with the width generally being based on com-
putational convenience. The results inFig. 8 suggest
a need to consider sensitivity to the width assumed
for the size-classes when conducting assessments us-
ing size-based models. Such sensitivity has not been
examined to date in assessments of southern rock
lobster.
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Fig. 7. Medians and 90% intervals for relative errors for zone 1 and combinations of zones for the base-case scenario in the absence of
measurement error and inter-annual variability in catchability.

3.2. Stochastic results

Figs. 9 and 10show time-trajectories of the distri-
butions of relative error for the case in which there
are inter-annual fluctuations in catchability and the
data supplied to the stock assessment method are sub-
ject to measurement error. The results inFig. 9 are
based on assessments that are provided with the true
size-transition matrix and those inFig. 10 are based
on assessments that estimate the size-transition matrix
using the tagging data (seeSection 2.2).
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Fig. 8. As for Fig. 7, except that the size-classes assumed when conducting assessments are assumed to be 12 mm rather than 6 mm.

The results inFigs. 9 and 10are qualitatively iden-
tical to those inFig. 7, except that the widths of the
intervals are broader (particularly for the years prior to
year 21) and performance for the most recent year is
less than perfect. As expected, the distributions of rel-
ative error are wider when the assessment is based on
data with measurement error and these distributions
are still wider when the size-transition matrix is also
uncertain.

Table 3 lists the bias (average relative error) and
MARE (median of the absolute values of the relative
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Fig. 9. As for Fig. 7, except that the catch-rate and length–frequency data are subject to observation error.

errors) for the fishable biomass in the first year (essen-
tially the virgin biomass)B1, the fishable biomass in
the last yearB50, and the ratio of the fishable biomass
in the last year to that in the first year for which
catch-rate data are availableB50/B20. The results in
Table 3pertain mainly to zone 2 (chosen because it
is bordered by two zones unlike zone 1). The default
specifications for the scenarios inTable 3correspond
to those underlyingFig. 10(i.e. process error in catcha-
bility, measurement error in the length–frequency data
and the values for the size-transition matrix estimated
from the tagging data; henceforth referred to as the
base-case scenario). This scenario should, however, be
considered close-to-ideal as there is no process error
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Fig. 10. As forFig. 9, except that the growth transition matrix is estimated rather being known exactly.

in the size at 50% selectivity and the length–frequency
sample sizes are very large.

As expected fromFig. 10, the bias forB1 is neg-
ative and there is large uncertainty associated with
this estimate. The bias and MARE for the other two
quantities are much smaller. The bias inB1 becomes
increasingly negative as the growth rate is reduced
(compare the results for zones 1–4 inTable 3a). The
estimates ofB1 become increasingly negatively bi-
ased as allowance is made for process error in the size
at 50% selectivity (see the rows inTable 3a for which
σδ > 0) and the MAREs for all quantities increase (as
expected) when this additional source of uncertainty
is introduced. Increasing the extent of variation in
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Table 3
Bias and median absolute relative errors (MARE) for fishable biomass for zone 2 for the base-case analyses and various sensitivity tests

Analysis B1 B50 B50/B20

Bias MARE Bias MARE Bias MARE

(a) Modifications to the structure of the operating model
Base-case −20.4 37.4 3.4 8.6 4.4 8.5
Zone 1 −5.5 59.0 −3.5 11.2 1.3 8.2
Zone 3 −35.4 54.7 −1.5 12.3 2.2 11.5
Zone 4 −44.9 58.1 −3.3 10.8 −0.7 8.8
ση = 4 −20.1 47.0 3.5 10.1 4.0 9.6
ση = 4; σδ = 2 −22.9 47.6 −0.4 12.0 −0.8 12.1
ση = 8; σδ = 4 −35.6 48.4 −4.6 17.7 −9.1 15.8
σφ = 0.4 −18.1 40.4 3.3 8.5 3.7 8.7
σϕ = 0.4 −18.8 37.8 4.0 16.7 4.5 16.9
Initial depletion= 0.05 −21.2 37.8 25.0 8.7 44.9 17.4
Initial depletion= 0.7 −17.0 53.1 6.4 11.3 1.3 6.8
Steepness= 0.75 −19.5 39.0 3.1 9.2 3.3 9.3
Overlap between zones 1, 2 and 3 −42.8 52.8 17.5 16.1 1.4 9.8
ση = 8; σδ = 4; σϕ = 0.4 −35.4 54.9 −9.1 22.4 −13.2 21.5

(b) Alternative data collection/analysis strategies
Base-case −20.4 37.4 3.4 8.6 4.4 8.5
Alt l/f sample 1 −3.3 7.6 2.6 10.4 3.4 9.6
Alt l/f sample 2 −6.0 8.3 −0.6 10.1 2.7 9.4
Lower l/f sample sizes −39.8 41.3 −0.8 9.5 1.6 8.7
Lower tag numbers −17.3 70.2 2.6 10.2 4.0 8.8
With scientific l/f data −20.5 39.6 −2.5 6.7 −2.0 7.4

average catchability,σφ, among zones has very little
impact on estimation performance. In contrast, the
MAREs for B50 andB50/B20 almost double when the
extent of process error in catchability is increased
from σϕ = 0.2 to σϕ = 0.4, which further highlights
the well-known importance of having a reliable index
of abundance when conducting stock assessments.

The MARE forB50/B20 when the depletion in year
50 is 0.05, is higher than for the base-case scenario
for which this depletion is 0.3 (the biases for this
scenario should be ignored as there were a few outly-
ing estimates). The ability to estimateB1 and B50 is
poorer when the depletion in year 50 is 0.7, although
this is not unexpected given the lesser contrast in
the catch-rate series in this case. The estimation of
biomass is not very sensitive to steepness, being 0.75
rather than 1, although this would not necessarily be
the case for projections into the future. There is little
impact on the MARE forB50/B20 if an assessment is
conducted in which 10% of the data for zone 1 and
10% of the data for zone 3 are included in the assess-
ment of zone 2 (row ‘overlap between zones 1, 2 and

3’ in Table 3a), whereas the bias associated withB50
increases (which is not surprising given that the assess-
ment contains data for more than just zone 2). What
is unexpected is that the negative bias forB1 becomes
larger when the assessment includes data from zones
1 and 3 as well as from zone 2. This must be a conse-
quence of model mis-specification arising from com-
bining data from populations with different dynamics.

The largest impact on performance inTable 3a
appears to be related to process error in the size at
50% selectivity and additional process error in catch-
ability. Fig. 11 shows distributions of relative error
for B1, B50 and B50/B1 for the base-case scenario
and for the scenario in whichσϕ = 0.4, ση = 8 and
σδ = 4. The sizeable number of large negative rela-
tive errors forB1 warrants further attention.Fig. 12,
therefore, shows the fit to the catch-rate data and the
estimated time-series of settlements for one of the
simulations for the base-case scenario. At face value,
the fit to the catch-rate data appears adequate and the
time-sequence of annual settlements appears a priori
plausible. The high settlements between years 1 and
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Fig. 11. Distributions of relative error (expressed as a percentage) for three quantities for the base-case scenario (upper panels) and the
‘σϕ = 0.4, ση = 8 andσδ = 4’ sensitivity test (lower panels).

10 arise presumably to fit some aspect of the early
length–frequency data. However, the consequence of
these high settlements for the fishable biomass is that
there was a marked increase in fishable biomass from
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Fig. 12. Observed (solid dots) and model-predicted (solid lines) catch-rates (left panel), and model-predicted settlement (right panel). The
results are for a single simulation for the base-case scenario.

years 10–20. The behavior of the estimator in this
case is clearly unacceptable, given the known truth.
It is not entirely clear, however, that the trajectory of
fishable biomass inFig. 12 would automatically be
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considered implausible in an actual assessment. For
example, given the catches inFig. 5, it might be ar-
gued that the fishery be built up along with the fishable
biomass.

Table 3b examines performance when the data avail-
able for assessment purposes are modified from the
base-case assumptions (seeTable 2for details related
to the sample sizes for length–frequency). Conducting
assessments when there are length–frequency (but not
catch-rate) data for years 11–17 improves the ability
to estimateB1 markedly (a reduction from a MARE of
37.4 to only 7.6%). This result highlights the consider-
able value of attempting to identify length–frequency
data for the early years of the fishery as this con-
strains the estimates of biomass. As expected, lower
length–frequency sample sizes (200 rather than 600 for
zone 2) lead to slightly higher MAREs. The increases
in MARE are, however, not particularly substantial be-
cause a sample size of 200 is relatively large anyway.
At this level of sample size, estimation performance is
still dominated by process error in catchability rather
than measurement error in the length–frequency data.

Reducing the number of animals from which the
size-transition matrix is estimated from 1000 to 200
leads to increased MAREs, particularly for B1 (row
‘lower tag numbers’ inTable 3b). The latter probably
occurs because, with a lower sample size, it becomes

Table 4
Difference in median absolute relative errors (MARE) for fishable biomass between analyses which combine zones and those which add
results for the component zones for three combinations of zones for the base-case analyses and various sensitivity tests

Zones 1+ 2 Zones 3+ 4 Zones 1+ 2 + 3 + 4

B1 B50 B40 B50/B1 B50/B20 B1 B50 B40 B50/B1 B50/B20 B1 B50 B40 B50/B1 B50/B20

Base-case 27 6 6 77 0 −10 3 3 −60 0 −20 10 11 −11 0
ση = 4 40 5 6 233 3 15 1 4 −1 2 −30 12 13 −30 1
ση = 4; σδ = 2 50 2 3 290 −2 16 −1 5 −6 −1 −31 11 12 −40 0
ση = 8; σδ = 4 33 3 5 201 −1 28 0 3 −5 −5 −34 8 9 −62 −2
σφ = 0.4 16 8 9 23 2 −3 5 4 −47 1 −18 9 13 −5 1
σϕ = 0.4 27 6 7 85 1 −8 3 3 −58 1 −20 9 12 −13 0
Initial depletion= 0.05 2 1 4 10 4 6 4 2 −11 7 −1 −2 11 −4 16
Initial depletion= 0.7 44 14 14 749 1 −38 5 8 −56 0 −39 17 19 −72 0
Alt l/f sample 1 32 6 8 40 3 0 3 4 −2 0 11 10 12 3 0
Alt l/f sample 2 36 7 7 48 2 −2 4 4 −5 −1 9 10 12 2 1
Lower l/f sample sizes 11 5 7 2 2 33 4 5 679 1 4 8 11 8 3
Lower tag numbers 39 2 4 109 1 1 3 3 −10 −1 −29 9 10 −26 2
ση = 8; σδ = 4;
σϕ = 0.4

30 6 6 134 −1 22 −2 3 1 −6 −33 6 9 −38 3

With survey l/f data 30 8 4 119 2 −9 5 2 −55 1 −20 11 7 −10 1

very difficult to obtain sufficient animals to quantify
the growth of large animals adequately. Basing the
length–frequency data, on scientific rather than com-
mercial sampling for years 39–50 (as is the case in
reality for southern rock lobster off Tasmania) leads
to slightly lower MAREs forB50 andB50/B20.

3.3. Comparing pooled and non-pooled assessments

Table 4compares estimates of biomass (in years 1,
40 and 50) and year 50 depletion (relative to years
1 and 20) for populations aggregated across zones.
The results are reported as the difference between the
MARE for assessments in which the data are pooled
across zones and those in which the results from
zone-specific assessments are combined. A positive
number inTable 4 indicates that conducting assess-
ments by zones prior to combining leads to lower
MAREs.

The most notable feature ofTable 4 is the large
number of positive numbers. For assessments of the
populations in zones 1 and 2 combined, there is a very
strong preference for separate assessments. This pref-
erence is not nearly as strong for zones 3 and 4 and all
zones combined when the assessment based on pooled
data leads to better estimates forB1 andB50/B1. How-
ever, the results inTable 3andFig. 10indicate that the
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MAREs for these quantities are generally very high
so the improvements due to pooling still do not re-
sult in particularly usable estimates. Therefore, the re-
sults in this paper suggest that conducting assessments
at small spatial scales (with the consequent smaller
sample sizes) is preferable to conducting assessments
pooling data across putative stocks, at least when the
amount of data for assessment purposes is similar to
that considered in this study.

3.4. General discussion

The results of this study highlight the value of esti-
mating the performance of stock assessment methods
when the data are deterministic, because it allows the
impact of structural error to be distinguished from
that of measurement error. If a stock assessment
method cannot estimate a quantity of management
interest reliably when the data are deterministic, there
is no reason to anticipate that it will perform well at
estimating that quantity when the data are subject to
measurement error.

The inability to estimate the initial biomass (which
in this case is also the average pre-exploitation
biomass,Bvirg) questions the common practice of
defining management reference points in terms of the
ratio of the most recent biomass to the biomass in
some early year (orBMSY, which is just a multiple of
Bvirg). In principle, it might have been possible to esti-
mateBvirg directly from the time-series of settlements.
In fact, for the example inFig. 12, the estimated aver-
age settlement is roughly 25% greater than the actual
average settlement. Therefore, in this case, the ratio
B50/Bvirg would have been substantially closer to the
true value ofB50/B1 than the actual estimate of the
ratio B50/B1 hadBvirg been based on multiplying the
fishable biomass-per-settlement by the average settle-
ment. The use of average settlement to define the vir-
gin biomass, however, ignores any stock-recruitment
relationship. Although this assumption is correct for
the bulk of the analyses of this paper (and may even
be correct in general for rock lobster populations), it
is not necessarily true; use of average settlement over
a period during which the spawner biomass declines
may lead to positively biased estimates of current
depletion.

Although, the stock assessment method examined
this paper forms the basis for actual assessments of

rock lobster populations, it is by no means the only
way to conduct size-based modeling. In particular,
future studies along the lines of this paper need to
examine the performance of estimators that include
some of the features in the most recent assessment
of southern rock lobster off New Zealand (Bentley
et al., 2001), namely estimation of the selectivity pat-
tern, the maturity ogive and the size-transition matrix
simultaneously with the other model parameters.

Although this paper has focused on the ability to
estimate quantities of interest to management, there
is an increasing trend to manage rock lobster popula-
tions using decision rules (or management procedures)
(Starr et al., 1997; De Oliveira et al., 1998; Geromont
et al., 1999). Future simulation studies will need to
consider the performance of decision rules in terms of
how well they satisfy the objectives for management.
Such an evaluation is, however, beyond the scope of
this paper because, for instance, it depends on having
a model of how fishers distribute their effort spatially
in response to changes in fisheries regulations. Work
along these lines is, however, currently being un-
dertaken (M. Haddon, TAFI, pers. commun.) for the
southern rock lobster resource off Tasmania.

Finally, it should be noted that although the errors
evident in Figs. 6–12are large, they nevertheless
under-estimate the true extent of uncertainty. This
is because the analyses of this paper are based on
the assumptions that the average selectivity pattern,
the rate of discard mortality and the rate of natural
mortality are known. The analyses are also based on
the assumption that form of the growth curve and the
relationship between catch-rate and abundance are
known. In contrast, there is likely to be considerable
uncertainty about the form of the growth curve, the
relationship between catch-rate and abundance, and
the values for selectivity, natural mortality and discard
mortality in any real case.
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Appendix A. The operating model

A.1. Basic dynamics

The equation which specifies the number of animals
of sexs in size-classl at the start of yeart+1 in zone
k, takes account of natural mortality, fishing mortality,
growth and recruitment:

N
l,s,k
t+1 =

∑
l′
X
s,k
l,l′N

l′,s,k
t e−M(1 − Fkt S

s
l′,t(V

l′,s

+Ω(1 − V l
′,s)))+ R

l,s,k
t (A.1)

whereNl,s,kt is the number of animals in zonek of sex
s in size-classl at the start of yeart, Xs,k

l,l′ is, for zone
k, the fraction of animals of sexs in size-classl′ which
grow into size-classl at the end of the year (i.e. after
mortality), M the annual instantaneous rate of natural
mortality (assumed to be independent of zone, sex and
size and equal to 0.1 per year seePunt and Kennedy
(1997) for details),Ss

l′,t the selectivity of the fishing
gear on animals of sexs in size-classl′ during yeart
(assumed to be independent of zone),Ω the fraction of
the catch of sub-legal animals that die (or are landed
illegally), V l,sis the fraction of the catch of animals in
size-classl and of sexs that can be landed legally:

Vs,l =




0 if Ll +)L ≤ LML s

Ll +)L− LML s

2)L
if Ll −)L < LML s

< Ll +)L

1 if Ll −)L ≥ LML s

(A.2)

Ll is the average of the upper and lower limits of
size-classl, )L the half the width of a size-class
(3 mm), LMLs the legal minimum length (104 mm for
females and 110 mm for males),Fkt the exploitation
rate in zonek during yeart on fully selected (i.e.Ssl,t =
1) animals, andRl,s,kt the settlement in zonek of ani-
mals of sexs into size-classl at the end of yeart (see
Appendix A.2).

The fraction of animals in size-classl and of sexs
that can be landed legally is zero if the upper bound
of the size-class is below the minimum legal size and
unity if the lower bound of the size-class is above the
minimum legal size; otherwise it is the fraction of the
size-class above the minimum legal size.

A.2. Settlement

The settlement in zonek during yeart is defined
as the number of animals that reach the smallest size
considered in the model,l1 (taken in this model to be
10 mm) that year:

R
l,s,k
t =




Rk0(SBkt /SBk0)

α+ β(SBkt /SBk0)
eε
k
t −σ2

r /2 if l = l1

0 otherwise

(A.3)

where SBkt is the egg production during yeart:

SBkt =
∑
l

QlPlN
l,f,k
t (A.4)

Ql is the fraction of females in size-classl which are
mature:

Ql =
{

1 + exp(17.18− 0.1668Ll) if Ll > 64 mm

0 otherwise

(A.5)

Pl is the number of eggs produced by a mature female
in size-classl:

Pl = 0.181L2.969
l (A.6)

f denotes the female sex,α, β are the parameters of
the stock–recruitment relationship,εkt thekth element
of a vector generated from a multivariate normal dis-
tribution,N(0,Wr), whereWr a variance–covariance
matrix with i− j elements given byσ2

r τ
|i−j|
r (referred

to as the ‘settlement residual’),σr the standard devia-
tion of the logarithms of the multiplicative fluctuations
in settlement,τr the extent of correlation between the
settlement residuals for adjacent zones, andRk0 the
pre-exploitation settlement in zonek.

The values for the parameters of the stock-recruit-
ment relationship are determined from the steepness
of the stock–recruitment relationship (the fraction of
virgin recruitment expected when the egg production
is reduced to 20% of the pre-exploitation level;Francis
(1992)). The assumption that steepness equals one (or
equivalently thatα = 0 andβ = 1) implies that the ex-
pected recruitment is independent of the egg produc-
tion. The formulation ofEq. (A.3)is such thatα andβ
are independent of egg production and depend only on
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steepness. The values for the parameters ofEqs. (A.5)
and (A.6)are based on unpublished data from the Tas-
manian Aquaculture and Fisheries Institute (TAFI).

A.3. Catches

The legal catch in mass in zonek during yeart,
Ckt , is assumed to be taken in a pulse in the middle
of the year (i.e. after half of natural mortality), so the
exploitation rate on fully selected animals in zonek
due to legal fishing during yeart,Fkt , is found by using
the equation:

Fkt = Ckt

Bkt
(A.7)

whereBkt is the legal fishable biomass in zonek in the
middle of the yeart but before fishing:

Bkt =
∑
s

∑
l

V l,sSsl,tW
s
l N

l,s,k
t e−M/2 (A.8)

Ws
l is the mass of an animal of sexs and in size-classl:

Ws
l = asLb

s

l (A.9)

as, bs are the parameters of the mass–length relation-
ship (Table 5).

The legal catch in zonek during yeart is calculated
from the catch from all zones,Ct :

Ckt = Ctq
k
t B

k
t∑

k′ q
k′
t B

k′
t

(A.10)

whereqkt is the catchability coefficient for zonek and
yeart:

qkt = eφ
k

eϕ
k
t , φk ∼ N(0; σ2

φ) (A.11)

σφ is the standard deviation of the variation in the log-
arithm of the average catchability among zones,ϕkt
the kth element of a vector generated from a multi-
variate normal distribution,N(0,Wϕ), whereWϕ is a

Table 5
The values for the parameters of the mass-length relationship
(TAFI, unpublished data)

Quantity Females Males

as 0.000271 0.000285
bs 3.135 3.114

variance–covariance matrix withi− j elements given
by σ2

ϕτ
|i−j|
ϕ , σϕ the standard deviation of the logarithm

of the multiplicative fluctuations in catchability, and
τϕ is the extent of correlation in catchability among
zones.

Eq. (A.10) is based on the assumption that fishers
remove catches in proportion to catch-rate (catcha-
bility multiplied by exploitable biomass). Catchabil-
ity is assumed to differ among zones and to vary
inter-annually. The inter-annual variation in catcha-
bility is correlated spatially to reflect possible cor-
relation in the environmental factors that determine
catchability.

A.4. Selectivity

Gear-selectivity is assumed to be of the logistic
form. This assumption has been made in some re-
cent assessments of Australian rock lobster popula-
tions (Punt and Kennedy, 1997; Hobday and Punt,
2001) and is supported by data collected byTreble
et al. (1998). Inter-annual variability in selectivity is
modeled by assuming that it impacts the size at 50%
selectivity:

Ssl,t =
(

1 + exp

[−ln(19)(Ll − Ls50,t − ηt)

Ds

])−1

,

ηt ∼ N(0; σ2
η) (A.12)

whereLs50,t is the size at 50% selectivity for animals
of sexs during yeart:

Ls50,t = Ls50,t−1 + δt, δt ∼ N(0; σ2
δ ) (A.13)

ση is the standard deviation of the random fluctuations
in the size at 50% selectivity,σδ the standard deviation
of the gradual changes in the size at 50% selectivity,
andDs the width of the selectivity pattern (the differ-
ence between the size at 50% and at 95% selectivity)
for sexs.

The average value for the size at 50% selectivity
(taken to be that for the first year included in the
model) is 90 mm, and the width of selectivity pattern
is 60 mm (Fig. 8 ofPunt et al. (1997)).

A.5. The size-transition matrix

The entries of the size-transition matrix are deter-
mined using the equation:
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X
s,k
l,l′ =

∫ Ll+)L

Ll−)L
1√

2πσs,k
l′

× e−((L−(ãs,k+(b̃s,k+1)L̄l′ ))2)/(2(σ
s,k

l′ )
2) dL

(A.14)

where ãs,k, b̃s,k are the parameters that determine
growth for sexs and zonek, andσs,kl is the standard
deviation of the growth increment for animals of sex
s in zonek in size-classl:

(σ
s,k
l )2 = max[(σs,kmin)

2, {(CVs,k1 )2

+ (CVs,k2 )2(L̄l)
2}{ãs,k + b̃s,kL̄l}2] (A.15)

σ
s,k
min is the minimum growth increment standard de-

viation for animals of sexs in zone k, and CVs,k1 ,

CVs,k2 are parameters that determine the coefficient of
variation of the growth increment for sexs and zonek.

A.6. Other estimated quantities

The fishable biomass in zonek in the middle of year
t is defined asBkt (1−Fkt /2), whereas the recruitment
to the fishery at the start of yeart + 1 is:∑
s

∑
l

Ws
l S
s
l,tV

l,s{Nl,s,kt+1 −N
l,s,k
t e−M

× (1 − Fkt S
s
l,t(V

l,s +Ω(1 − V l,s)))} (A.16)

A.7. Initial conditions

The initial conditions correspond to the size-structure
of the population in the absence of exploitation. The
pre-exploitation settlement in each zone is determined
using an equation that allows pre-exploitation settle-
ment to differ in a spatially-correlated manner, i.e.

Rk0 = R̄0 eµ
k

(A.17)

whereR̄0 is the average (across zones) pre-exploitation
settlement,µk the kth element of a vector generated
from a multivariate normal distribution,N(0,Wµ),
where Wµ is a variance–covariance matrix with

i − j elements given byσ2
µτ

|i−j|
µ , σµ is the stan-

dard deviation of the logarithms of the multiplicative
fluctuations in the spatial distribution of the aver-
age pre-exploitation settlement, andτµ is the extent

of correlation in average pre-exploitation settlement
between adjacent zones.

The algorithm used to determine the historical time
sequence of population size for each of the 250 simu-
lations, given a specification regarding the initial de-
pletion of the egg production, involves first gener-
ating the values for theεkt , φ

k, ϕkt , ηt , φt and µk

(Eqs. (A.3), (A.11)–(A.13) and (A.17)) and then se-
lecting the value forR̄0 so that

∑
k SBkinit/

∑
k′ SBk

′
0

equals the pre-specified value.

A.8. Data generation

The data available for stock assessment pur-
poses include catches, catch-rates, length–frequency
and tag-recapture data. The length–frequency and
tag-recapture data are available by year, zone and sex,
and the catches and catch-rate data are available by
year and zone. The catches by year and zone used by
the assessment model are the legal catches (i.e.Ckt ),
and the catch-rate for yeart and zonek is given by
qkt B

k
t . For assessments of rock lobster populations,

there are often two sources of length–frequency data:
samples from the landed catches and samples collected
through scientific monitoring. The length–frequency
of the landed catch for sexs, year t and zonek is
obtained by sampling multinomially from the landed
catch, i.e. size-classl is selected with probability pro-
portional to V l,sSsl,tN

l,s,k
t . The length–frequency of

the scientific samples for sexs, year t and zonek is
obtained by sampling multinomially with probability
of selecting an animal in size-classl proportional to
Ssl N

l,s,k
t , where Ssl is selectivity at pre-exploitation

equilibrium.
The tagging data are taken to be the sizes at release

and recapture of animals tagged in 1 year and recap-
tured the following year. These data are used when es-
timating the size-transition matrix. The tag-recapture
data for sexs, zone k and yeart are generated by
first selecting the animals which were tagged and
subsequently recaptured by sampling multinomially
with probability of selecting an animal in size-class
l proportional toSsl N

l,s,k
t . The observed size of a re-

captured animal that was in size-classl when it was
tagged is given by

ãs,k+(1 + b̃s,k)Ll+λ, λ ∼ N(0, (σs,kl )2 + σ2
obs)

(A.18)
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whereσobs is the standard deviation of the measure-
ment error associated with measuring a recaptured an-
imal (assumed to be 2 mm).
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