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by ε/ N
o
. The total background extinction rate, ε, 

would be the sum of the individual contributions 

by each species none of which would necessarily be 

equivalent to the mean (ε/N
o
). If the current excess 

of extinctions is due to human activities (Diamond 

1989, Ehrlich and Ehrlich 1981, Ehrlich and Wilson 

1991, Hern 1993, Kerr and Currie 1995, Raup 1984, 

Simberloff 1986a, Stanley 1985), then the human 

contribution can be estimated by (ε′–ε) or ε(m–1). 

From this we can calculate a ratio of human caused 

extinction to that which is the mean contribution of 

other individual species:

(ε(m−1))/(ε/N
o
) = N

o
(m−1)

If every species showed such effects on their 

environment (i.e., if the total effect of all species 

were N
o
 times as large as the effect of humans), 

life as we know it would disappear quite rapidly. 

We can estimate how rapidly by multiplying the 

human contribution by N
o
 then using

t = −(ln(1/N
o
))/(N

o
(ε′−ε))

to find an estimate of the time to achieve a reduc-

tion of species numbers to one final species.

The average duration of existence for an individ-

ual species under background conditions would be 

approximated by 1/ε.

From May et al. (1995), the extinction rate among 

mammals and birds is two to four orders of mag-

nitude higher than “background” rates (normal or 

average extinction rates, see also Wilson 1985a). The 

current (or soon to be realized) rates of extinction 

are estimated at levels from 1000 to 100,000 spe-

cies per year (Ehrlich 1988, Janzen 1986, Myers 1989, 

Pimentel, Stachow et al. 1992, Simberloff 1986b). 

Ehrlich and Wilson (1991) estimate that in excess of 

4000 species per year are going extinct.

Based on this information, Appendix Table 6.6.1 

shows: (1) estimated time to achieve extinction to 

The following material is Appendix 6.6 
for Chapter 6 of: Fowler, C.W. 2009. 
Systemic Management: Sustainable 
Human Interactions with Ecosystems 
and the Biosphere. Oxford University 
Press

1 Human contribution to extinction

The influence of a species in contributing to extinc-

tion is another aspect of species-level involvement 

in ecosystems that may be measured. We are far 

from developing information on the limits to nat-

ural variation for extinction rates caused by indi-

vidual species to see any pattern(s) among species. 

Nevertheless, an initial assessment of human con-

tribution to worldwide extinction can be achieved 

through comparison with average rates of extinc-

tion caused by other species—rates that can be esti-

mated in very rough approximations. An analogous 

exercise at the population level would be the mor-

tality (e.g., murder, or cannibalism, for humans) 

caused by a specific individual compared to that 

caused by other members of the same  species.

Mathematically, we can represent the current 

crude extinction rate (extinctions per year) by E, 

the current instantaneous extinction rate by ε′, the 

background extinction rate (normal overall extinc-

tion rate) by ε, and the current number of species 

(total for the earth) by N
o
. The ratio of ε′ to ε (a 

measure of departure from normal) can be repre-

sented by m. Thus, an estimate of ε′ is

ε′ = ln((N
o
−E)/N

o
)

and ε′/m is an estimate for ε in situations where we 

have information on the value of m.
If extinctions were caused exclusively by biotic 

causes (which they are not), the mean contribu-

tion by each individual species to the total back-

ground extinction rate ε, would then be estimated 

Appendix 6.6
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The subsection of Appendix Table 6.6.1 devoted 

to species durations is closely approximated by 

N
o
m/E, and is shown because any information on 

average species duration helps narrow down the 

options being considered. For example, in combin-

ation with species numbers estimated at about 45 

million, the average durations of 1–10 million years 

(based on marine invertebrates, Lawton and May 

1995, Pimm et al. 1995, Stanley 1985), helps restrict 

realistic possibilities in this table to the lower right 

lose all but one species if other species were hav-

ing the same impact as humans, (2) human-caused 

extinction as a multiple of extinction caused by the 

mean of other species under typical circumstances, 

and (3) the implied average duration of individual 

species under typical conditions. Within the range 

of rates represented in the literature as covered in 

this table, life would disappear in less than two 

years if other species, on the average, were having 

the impact that humans have.

Appendix Table 6.6.1 Implications of the current rates of extinction (species per year), estimates 
of total numbers of species on earth, and the current extinction rate expressed as a multiple of the 
background rate (implied temporal average for long geological time scales)

Current extinction rate 
(species per year)

Ratio1 Total number of species (millions)

10 30 50

Days until one species remains2

10 594.25 634.76 653.59
100 59.43 63.48 65.36
1000 5.94 6.35 6.54
10,000 0.59 0.63 0.65
Human influence expressed as billion-fold that for the mean of other individual species3

100 0.99 2.97 4.95
1000 9.99 29.97 49.95

10,000 99.99 299.97 499.95
Mean duration of individual species (million years) at implied background rate4

10 100 100.00 300.00 500.00
1000 1000.00 3000.00 5000.00

10,000 10,000.00 29,999.99 50,000.00
100 100 10.00 30.00 50.00

1000 100.00 300.00 500.00
10,000 1000.00 3000.00 5000.00

1000 100 1.00 3.00 5.00
1000 10.00 30.00 50.00

10,000 100.00 300.00 500.00
10000 100 0.10 0.30 0.50

1000 1.00 3.00 5.00
10,000 9.99 30.00 50.00

The three panels of this table show the time expected until the demise of all except the last species (in 
days) if all species had effects comparable to humans (top panel), human influence expressed as a multiple 
of the mean effect of other species (billion-fold, middle panel), and the average duration of a species 
expected from the implied background extinction rate (expressed in millions of years, bottom panel).
1The ratio of total current rate of extinction to normal background rates of extinction.
2Time (days) to the obliteration of life (last species) if all species exhibited the same effects in causing 
extinction as do humans. It is independent of the ratio in the second column.
3Ratio of human caused extinction to mean species-by-species contribution to background rate of 
extinction (billion-fold). It is independent of the absolute current extinction rate.
4Average duration of species at implied normal background rates of extinction (million years) as dependent 
on current extinction rates, ratio of current to mean rates, and species numbers.
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function of population multiplied by energy use, 

probably a power function of both. It undoubt-

edly involves synergism among the various factors 

associated with both population and energy use. 

This emphasizes the need to know if it is popu-

lation (P) or amplification (AT) that is most non-

linear to prioritize management action (see Kerr 

and Currie 1995).

Furthermore, if extinction rates caused by 

humans are 5–10 billion times those of the mean 

rates caused by other species, this implies that 

the energy use and technological amplification 

of today’s human society makes each individual 

human, on the average, roughly equivalent, in 

“toxic effects” at the ecosystem level, to that of the 

mean among other species as entire species! In other 

words, each human, on the average, would have 

an ecological influence (or extinction producing 

“footprint”) roughly equivalent to an entire spe-

cies among the nonhuman.
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