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Now, the rate of change for the i-th group can be 

expressed by:

dNi /dt =  riNi − diNi − aiNi −biNi + ai+1
Ni+1

 
+ bi−1

Ni−1

For purposes of illustration, species characteris-

tics in this chapter were divided into 40 categories, 

each with its own rates of replication, extinction, and 

anagenic exchange. With computers these equations 

can be dealt with using numerical methods. But 

another approach is satisfactory for finding equilib-

rium frequency distributions, especially in cases of 

very small changes (e.g., 3% changes per unit time, 

or less). This approach consists of a transition matrix 

that can be implemented on spreadsheet software.

The categories of species can be considered as 

members of a vector of n numbers:

N
1

N
2

.

.

.
Ni−1

Ni

Ni+1
.

Nn−1

Nn

The matrix that represents the dynamics of the col-

lection of species in these n categories can then be 

represented as functions of the rates specified as 

above. The elements of the diagonal of the matrix 

are multiplicative crude rates such that hidden in 

them is the survival of species to be carried for-

ward from one unit of time to the next in the 

same category (i.e., those species that experience 

 insufficient anagenic change to move to a different 

category and that do not go extinct). This matrix is 

The following material is Appendix 3.5 
for Chapter 3 of: Fowler, C.W. 2009. 
Systemic Management: Sustainable 
Human Interactions with Ecosystems 
and the Biosphere. Oxford University 
Press

1 Selective extinction and speciation in 
numerous categories

The case of numerous categories of species along 

a single dimension can be represented by divid-

ing up the range of values for a species level char-

acteristic in a number of adjoining categories. We 

can then let the number of species in the i-th cat-

egory be Ni (and, of course, the portion of species 

in the i-th category is Ni/ΣNj). The index i (or j for 

the sum) extends from 1 at the lowest end of the 

spectrum over which the categories of species are 

spread, up to n at the highest end. As in the cases 

represented in Appendix 3.4, changes in number 

in the i-th category result from: (1) pseudo-extinc-

tion of its own numbers, (2) evolution of species 

originating in other categories to contribute spe-

cies to the i-th category, along with (3) replication 

and (4) extinction within the category. Two rates of 

pseudo-extinction must be distinguished in this 

example because species will be evolving in both 

directions. Those from above can be represented 

by ai+1
Ni+1

 and those from below by bi − 1Ni − 1 

from the i – 1 and i + 1 categories, respectively. It 

is assumed that the time unit chosen for applica-

tion of these equations is small enough to avoid 

anagenic change that carries a species across a 

category into a second (from category i to 1 + j, 
where j > 1, although this can happen in nature 

and models to account for it can be constructed).

This helps keep the model being developed as 

 simple as possible.

Appendix 3.5
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species-level characteristics that exhibit such 

dynamics can be used to hypothesize which eco-

system level characteristics are likely to be most 

robust and which most sensitive to stress.

In the application of the above matrix for illustra-

tions in this chapter (especially those of Appendix 

3.2), species numbers were assumed to have expe-

rienced some form of limitation to their numbers.

Thus, one form of equilibrium was assumed. It 

was a form of diversity dependence to establish 

a means of avoiding the result of no species, and 

the result of an infinite number of species. This 

was done through adjusting all extinction rates by 

a constant (i.e., leaving the selectivity unaltered).

Rates used to produce illustrations for this chapter 

were therefore chosen so as to represent equilibria 

as explained below.

A “brute force” method of finding the domin-

ant eigenvalue and corresponding eigenvector of 

a “species dynamics matrix” is to simply apply the 

matrix to a vector of species numbers repeatedly.

Through this iterative approach, both the eigen-

value and eigenvector emerge simultaneously.

To prevent species numbers from increasing to 

unmanageably large or small levels during such 

iterative procedures, the total is readjusted after 

each iteration without disturbing the distribution 

(i.e., the same fraction of the total remains in each 

category). After having determined the eigenvalue 

of an original matrix, the values of this matrix can 

then be adjusted so that a new matrix is formed 

Under most circumstances, each time the vector 

of species numbers is multiplied by the matrix the 

species numbers change. Over time (i.e., repeated 

application of the matrix, assuming its param-

eters do not change—an unrealistic simplifying 

assumption) the frequency distribution of species 

begins to approach a constant form. Such distri-

butions are exemplified in the bottom panels of 

Appendix Figures 3.2.2–3.2.4 and 3.2.7–3.2.9. But as 

changes in frequency distribution occur, changes 

also occur in the total number of species; species 

numbers within each category change as does the 

total among them. Eventually, both the frequency 

distribution of species and the rate of change in 

species numbers become constant. In the termin-

ology of matrix algebra, the frequency distribu-

tion takes on values determined by the principal 

eigenvector and the rate of change is determined 

by the principal eigenvalue. The latter is a scalar (λ) 

that can be multiplied by the number of species in 

each element (Ni) determined by the eigenvector to 

obtain the number at the next time interval.

The value of such a matrix model is the abil-

ity to explore the effects of a variety of different 

selective extinction and speciation regimes. The 

nature of dynamics in both species numbers and in 

achieving characteristic distributions is important. 

Questions regarding the speed with which equi-

libria are established and which forms of selective 

dynamics are most efficient in rapidly approaching 

equilibria can be addressed. Knowledge  regarding 

er d a b1 1 1 1− − −
1 2− −e b 0 0 · · · 0 0 0 0

1 1− −e a er d a b2 2 2 2− − −
1 3− −e b 0 · · · 0 0 0 0

0 1 2− −e a er d a b3 3 3 3− − −
1 4− −e b · · · 0 0 0 0

· · · · · · · · ·
· · · · · · · · ·

0 · · · 1 2− − −e ai er d a bi i i i− − − −− − −1 1 1 1 1 − −e bi 0 0 · · · 0

0 · · · 0 1 1− −eai er d a bi i i i− − −
1 1− − +e bi 0 · · · 0

0 · · · 0 0 1 − −e ai er d a bi i i i+ + + +− − −1 1 1 1 1 2− − +e bi · · · 0

· · · · · · · · ·
· · · · · · · · ·

0 0 0 0 0 · · · 0 1 1− − −e an er d a bn n n n− − −
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in the top panels of the figures. This process pre-

serves the distribution in extinction and speciation 

rates over the range of the chosen species level 

properties. In other words, the selectivity of select-

ive extinction and speciation are unchanged in this 

process. Thus, in all cases, the rates shown in the 

top panels of the graphs of Appendix 3.2 represent 

those that resulted in the distribution shown in 

the lower panels after making the adjustments 

described above.

In choosing rates for the matrix above, and the 

time unit over which the matrix applies, care must 

be taken to avoid evolution that, in reality, car-

ries species across more than one category. The 

matrix, as described above, is based on an import-

ant assumption. As mentioned above, it is assumed 

that the species-level characteristic is not one that 

exhibits “jumping” from one character category 

to another by skipping a number of intermediate 

 categories.

Species characteristics such as geographic range, 

or population variation, violate this assumption. 

These situations can be dealt with by probabilities 

or rates in the matrix that are off the diagonal by 

more than one element (such as in stage matrices as 

applied in the study of insect population dynam-

ics). This would not be necessary for many char-

acteristics. Such elements would contain values 

corresponding to the probability that a species 

would, for example, undergo cladogenesis of an 

independent character and split to divide its range 

so as to form two species. These would have ranges 

that would both be smaller than that of the ori-

ginal. This would be an example of relatively dra-

matic “mutation” at the species level compared to 

the more nearly continuous evolutionary changes 

as traditionally understood. Any character that 

experiences the more sudden changes would be 

represented by off-diagonal elements.

Other similar models may be constructed (e.g., 

see Slatkin 1981). Their construction and use in 

exploring the dynamics described in this and the 

last chapter is encouraged as learning exercises 

and research tools. It is mandatory, however, that 

the models never be perceived as anything other 

than tools for enhanced understanding (they are 

not the systems they represent).

with an eigenvalue of 1 (condition of no net change 

in species numbers).

In adjusting a matrix to make its eigenvalue be 

equal to 1, all elements of the matrix are divided 

by the eigenvalue of the original matrix. This pre-

serves the values of each element in relationship 

to the others as each one is changed by the same 

factor. The elements above and below the diag-

onal contain only the rates of anagenesis (pseudo-

 extinction) that are always changed from the 

original values in making this adjustment. Thus,

1
1− = −−

−

e
ea

a
i

i
�

�
,

where a
i
’ is the new value of ai and similar equa-

tions apply to the values above the diagonal. The 

diagonal elements, however, are functions of all 

four types of dynamics (replication, extinction, and 

anagenesis both downward and upward: ri –di –ai 
–b

1
). But the rates of anagenesis (–ai –bi) are deter-

mined by the changes in the off-diagonal elem-

ents.This means that changes in replication and 

extinction are necessary to achieve an eigenvalue 

of 1—the situation needed to achieve the condition 

of no change in species numbers. The difference 

between these two rates (ri –di) must be adjusted 

to accomplish this end because the rates of ana-

genesis are already determined by the off diagonal 

elements. This leaves freedom of choice for which 

rate (speciation or extinction) to change and by 

how much. For the examples shown in the graphs 

of this chapter, the rates of extinction were adjusted 

to achieve these conditions; the rates of speciation 

were left as originally chosen.

To explore the effects of various regimes of 

selective extinction and speciation as shown in 

Appendix 3.2, hypothetical relationships between 

each rate and measures of the species level charac-

teristic were chosen. These have the same shapes 

but different values from those presented in the 

top panels of the figures. Iterative solutions for the 

principal eigenvalues and vectors were determined. 

The eigenvalue was used to adjust the original 

matrix, as described above, thus determining final 

values for the four processes of selective extinction 

and speciation. These are the numbers presented 

noam.indb   68noam.indb   68 3/9/2009   12:45:07 PM3/9/2009   12:45:07 PM




