BEARDED SEAL (*Erignathus barbatus*): Alaska Stock

STOCK DEFINITION AND GEOGRAPHIC RANGE

Bearded seals are circumpolar in their distribution, extending from the Arctic Ocean (85°N) south to Hokkaido (45°N) in the western Pacific. They generally inhabit areas of shallow water (less than 200 m) that are at least seasonally ice covered. During winter they are most common in broken pack ice (Burns 1967) and in some areas also inhabit shorefast ice (Smith and Hammill 1981). In Alaska waters, bearded seals are distributed over the continental shelf of the Bering, Chukchi, and Beaufort Seas (Ognev 1935, Johnson et al. 1966, Burns 1981, Fig. 12). Bearded seals are evidently most concentrated from January to April over the northern part of the Bering Sea shelf (Burns 1981, Braham et al. 1984). Spring surveys conducted in 1999 and 2000 along the Alaskan coast indicate that bearded seals tend to prefer areas of between 70% and 90% sea ice coverage, and are typically more abundant 20-100 nmi from shore than within 20 nmi of shore, with the exception of high concentrations nearshore to the south of Kivalina (Bengtson et al. 2000; Bengtson et al. 2005; Simpkins et al. 2003). Many of the seals that winter in the Bering Sea move north through the Bering Strait from late April through June, and spend the summer along the ice edge in the Chukchi Sea (Burns 1967, Burns 1981). The overall summer distribution is quite broad, with seals rarely hauled out on land, and some seals may not follow the ice northward but remain in open-water areas of the Bering and Chukchi Seas (Burns 1981, Nelson 1981, Smith and Hammill 1981). An unknown proportion of the population moves southward from the Chukchi Sea in late fall and winter, and Burns (1967) noted a movement of bearded seals away from shore during that season as well.

The following information was considered in classifying stock structure based on the Dizon et al. (1992) phylogeographic approach: 1) distributional data: geographic distribution continuous, 2) population response data: unknown; 3) phenotypic data: unknown; 4) genotypic data: unknown. Based on this limited information, and the absence of any significant fishery interactions, there is currently no strong evidence to suggest splitting bearded seals into more than one stock. A study by Davis et al. (2008) found no significant differences between microsatellite allele frequencies in bearded seals sampled in Anadyr Bay and at St. Lawrence Island, but strong differences between seals from those Bering Sea locations and samples collected in the eastern Beaufort Sea. This study also found limited gene flow between bearded seals sampled in Labrador, Greenland, and Svalbard. Bearded seals range throughout the Arctic into Russian and Canadian waters, however, only the Alaska stock is recognized in U.S. waters.

POPULATION SIZE

Early estimates of the Bering-Chukchi Sea population range from 250,000 to 300,000 (Popov 1976, Burns 1981). Surveys flown from Shishmaref to Barrow during May-June 1999 and 2000 resulted in an average density of 0.07 seals/km² and 0.14 seals/km², respectively, with consistently high densities along the coast to the south of Kivalina (Bengtson et al. 2005). These densities cannot be used to develop an abundance estimate because no correction factor is available. There is no reliable population abundance estimate for the Alaska stock of bearded seals.
Minimum Population Estimate
A reliable minimum population estimate (N_{MIN}) for this stock can not presently be determined because current reliable estimates of abundance are not available.

Current Population Trend
At present, reliable data on trends in population abundance for the Alaska stock of bearded seals are unavailable.

CURRENT AND MAXIMUM NET PRODUCTIVITY RATES
A reliable estimate of the maximum net productivity rate is currently unavailable for the Alaska stock of bearded seals. Hence, until additional data become available, it is recommended that the pinniped maximum theoretical net productivity rate (R_{MAX}) of 12% be employed for this stock (Wade and Angliss 1997).

POTENTIAL BIOLOGICAL REMOVAL
Under the 1994 reauthorized Marine Mammal Protection Act (MMPA), the potential biological removal (PBR) is defined as the product of the minimum population estimate, one-half the maximum theoretical net productivity rate, and a recovery factor: $PBR = N_{MIN} \times 0.5R_{MAX} \times F_R$. The recovery factor ($F_R$) for this stock is 0.5, the value for pinniped stocks with unknown population status (Wade and Angliss 1997). However, because a reliable estimate of minimum abundance N_{MIN} is currently not available, the PBR for this stock is unknown.

ANNUAL HUMAN-CAUSED MORTALITY AND SERIOUS INJURY

Fisheries Information
Until 2003, there were three different federally-regulated commercial fisheries in Alaska that could have interacted with bearded seals and were monitored for incidental mortality by fishery observers. As of 2003, changes in fishery definitions in the List of Fisheries have resulted in separating these 3 fisheries into 12 fisheries (69 FR 70094, 2 December 2004). This change does not represent a change in fishing effort, but provides managers with better information on the component of each fishery that is responsible for the incidental serious injury or mortality of marine mammal stocks in Alaska. Between 2002 and 2006, there were incidental serious injuries and mortalities of bearded seals in the Bering Sea/Aleutian Islands pollock trawl (Table 16a). Estimates of marine mammal serious injury/mortality in each of these observed fisheries are provided in Perez (2006) and Perez (unpubl. ms. a, b). The estimated minimum mortality rate incidental to commercial fisheries is 1.0 bearded seals per year, based exclusively on observer data. More current data on estimated fishery-related serious injury and mortality are being analyzed and will be available for inclusion in the 2010 SARs.

Table 16a. Summary of incidental mortality of bearded seals (Alaska stock) due to commercial fisheries from 2002 to 2006 and calculation of the mean annual mortality rate. Details of how percent observer coverage is measured is included in Appendix 6.

<table>
<thead>
<tr>
<th>Fishery name</th>
<th>Years</th>
<th>Data type</th>
<th>Observer coverage</th>
<th>Observed mortality (in given yrs.)</th>
<th>Estimated mortality (in given yrs.)</th>
<th>Mean annual mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bering Sea/Aleutian Is. pollock trawl</td>
<td>2002</td>
<td>obs data</td>
<td>80.0</td>
<td>0</td>
<td>0</td>
<td>1.00 (CV = 0.66)</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td></td>
<td>82.2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td></td>
<td>81.2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td></td>
<td>77.3</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td></td>
<td>73.0</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total estimated annual mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.00 (CV = 0.66)</td>
</tr>
</tbody>
</table>

Subsistence/Native Harvest Information
Bearded seals are an important species for Alaska subsistence hunters, with estimated annual harvests of 1,784 (SD = 941) from 1966 to 1977 (Burns 1981). Between August 1985 and June 1986, 791 bearded seals were harvested in five villages in the Bering Strait region based on reports from the Alaska Eskimo Walrus Commission (Kelly 1988).
The Division of Subsistence, Alaska Department of Fish and Game maintains a database that provides additional information on the subsistence harvest of ice seals in different regions of Alaska (ADFG 2000a, b). Information on subsistence harvest of bearded seals has been compiled for 129 villages from reports from the Division of Subsistence (Coffing et al. 1998, Georgette et al. 1998, Wolfe and Hutchinson-Scarbrough 1999) and a report from the Eskimo Walrus Commission (Sherrod 1982). Data were lacking for 22 villages; their harvests were estimated using the annual per capita rates of subsistence harvest from a nearby village. Harvest levels were estimated from data gathered in the 1980s for 16 villages; otherwise, data gathered from 1990 to 1998 were used. As of August 2000; the subsistence harvest database indicated that the estimated number of bearded seals harvested for subsistence use per year is 6,788.

At this time, there are no efforts to quantify the current level of harvest of bearded seals by all Alaska communities. However, the U.S. Fish and Wildlife Service collects information on the level of bearded seal harvest in five villages during their Walrus Harvest Monitoring Program. Results from this program indicated that an average of 239 bearded seals were harvested annually in Little Diomede, Gambell, Savoonga, Shishmaref, and Wales from 2000 to 2004 (U.S. Fish and Wildlife Service, Marine Mammals Management, Walrus Harvest Monitoring Project). Because this represents only 5 of the over 100 villages that may harvest bearded seals, this level of harvest is known to underestimate the actual harvest level for these years. Since 2005, harvest data are only available from St. Lawrence Island (Gambell and Savoonga) due to lack of walrus harvest monitoring in areas previously monitored. There were 21 bearded seals harvested during the walrus harvest monitoring period on St. Lawrence Island in 2005, 41 in 2006, and 82 in 2007.

Table 16b. Summary of the 2000-2004 subsistence harvest data for bearded seals from Little Diomede, Gambell, Savoonga, Shishmaref, and Wales. Data were collected by the U.S. Fish and Wildlife Service during the Walrus Harvest Monitoring Project. Bearded seal harvest numbers reflect only those that were taken during the spring walrus harvest monitoring and are not an annual total for these locations.

<table>
<thead>
<tr>
<th>Year</th>
<th>Estimated total number harvested</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>267</td>
</tr>
<tr>
<td>2001</td>
<td>178</td>
</tr>
<tr>
<td>2002</td>
<td>166</td>
</tr>
<tr>
<td>2003</td>
<td>302</td>
</tr>
<tr>
<td>2004</td>
<td>280</td>
</tr>
<tr>
<td>Mean annual harvest (2000-2004)</td>
<td>239</td>
</tr>
</tbody>
</table>

A report on ice seal subsistence harvest in three Alaskan communities indicated that the number and species of ice seals harvested in a particular village may vary considerably between years (Coffing et al. 1999). These interannual differences are likely due to differences in ice and wind conditions that change the hunters’ access to different ice habitats frequented by different types of seals. Regardless of the extent to which the harvest may vary interannually, it is clear that the harvest level of 6,788 bearded seals estimated by the ADFG Division of Subsistence is considerably higher than the previous minimum estimate of 791 per year from five villages in the Bering Strait. Although some of the more recent entries in the ADFG database have associated measures of uncertainty (Coffing et al. 1999, Georgette et al. 1998), the overall total does not. The estimate of 6,788 bearded seals is the best estimate of harvest level currently available.

Other Mortality

Mortalities may occasionally occur incidental to marine mammal research activities authorized under MMPA permits issued to a variety of government, academic, and other research organizations. Between 2003-2007, there was 1 mortality resulting from research on the Alaska stock of bearded seals, which results in an average of 0.2 mortalities per year from this stock (Tammy Adams, Permits, Conservation, and Education Division, Office of Protected Resources, NMFS, 1315 East-West Highway, Silver Spring, MD 20910).

STATUS OF STOCK

Bearded seals are not listed as “depleted” under the MMPA or listed as “threatened” or “endangered” under the Endangered Species Act. Reliable estimates of the minimum population, PBR, and human-caused mortality and serious injury are currently not available. Because the PBR for bearded seals is unknown, the level of annual U.S.
commercial fishery-related mortality that can be considered insignificant and approaching zero mortality and serious injury rate is unknown. No information is available on the status of bearded seals. Due to a very low level of interactions between U.S. commercial fisheries and bearded seals, the Alaska stock of bearded seals is not considered a strategic stock.

NMFS received a petition to list bearded seals under the ESA on 28 May 2008 due to loss of sea ice habitat caused by climate change in the Arctic. NMFS published a Federal Register notice (73 FR 51615, 4 September 2008) indicating that there were sufficient data to warrant a status review of the species.

Habitat Concerns
Evidence indicates that the Arctic climate is changing significantly and that one result of the change is a reduction in the extent of sea ice in at least some regions of the Arctic (ACIA 2004, Johannessen et al. 2004). Bearded seals, along with other seals that are dependent on sea ice for at least part of their life history, will be vulnerable to reductions in sea ice. There are insufficient data to make reliable predictions of the effects of Arctic climate change on the Alaska bearded seal stock.

CITATIONS

57

Alaska Marine Mammal Stock Assessments, 2009

Perez, M. A. Unpubl. ms. a Bycatch of marine mammals by the groundfish fisheries in the U.S. EEZ of Alaska, 2005. 7 pp. Available NMML-AFSC.

Perez, M. A. Unpubl. ms. b Bycatch of marine mammals by the groundfish fisheries in the U.S. EEZ of Alaska, 2006. 67 pp. Available NMML-AFSC.

