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Abstract

This report documents the equations needed to implement a generic size-based crab stock
assessment model that can be used to assess Alaskan crab stocks. The model has
flexibility similar to other general stock assessment models in terms of data used and
processes modeled. There are several different individual characteristics (size, gender,
maturity status, location, and shell condition), called partitions, that are modeled to
represent the population dynamics or available data. Not all partitions need to be present
in an application. Population and fishing processes can differ or be shared among or
within partitions. A seasonal time structure is described to allow flexibility in how many
times a process occurs a year and the order and timing of the processes. Emphasis is
given to the reuse of size-based functions for different population dynamics and fishery
processes. The model should be implemented using AD Model Builder and components
should be implemented as general functions that can be reused by different parts of the
model and by other ADMB modelers.

Overview

The following are the equations needed to implement a generic size-based crab stock
assessment model that can be used to assess Alaskan crab stocks. The model has
flexibility similar to other general stock assessment models. Many of the features of this
model are taken from the Stock Synthesis general stock assessment program (Methot
2009; Methot and Wetzel in press). The major difference between the generic crab model
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and Stock Synthesis is that the crab generic model does not keep track of age and
therefore all processes are based on the size of the individuals. A main advantage of the
size-based model is that size-based processes such as selectivity can change the
(unmodeled) size-at-age composition of the population. In Stock Synthesis, like most
other age-structured models, the distribution of size at age is not impacted by these size-
based processes (except for specific modeling of growth) unless approximated using the
Stock Synthesis “platoon” option. Despite these differences, many components of Stock
Synthesis can be used in a size-based model (e.g. length-based selectivity curves, general
control setup for parameter estimation options). An effort has been made to follow
formats of Stock Synthesis to retain some familiarity for the user.

This description is only a guideline for the development of the general crab model.
Development of the code and application of the model will identify modifications and
additions that are not described here. It will therefore be necessary to apply the generic
model to several case studies to beta test the code. Steve Martell has set up a repository
for the crab models that he and Jim Ianelli have been developing and they have kindly
offered the use of the code that they have developed.

One of the major tasks in creating a generic model is to allow for the many different
modeling options that users need to implement in their stock assessments. There are
several different individual characteristics (e.g. gender, maturity status, location) that may
need to be modeled to represent the population dynamics or available data (see Figure 1).
These characteristics are called partitions (e.g. gender) in the terminology of this
description and the states within these partitions are called partition categories (e.g.
female or male). Not all assessments will have the same data components or adequate
information to model all these characteristics. Therefore, each application will include
different characteristics depending on the data available and therefore may not use all the
partition types. Stocks with different characteristics might have different population
dynamics requiring different parameter values. To implement a flexible general
framework, a model that partitions the population into individuals of different
characteristics, using size-based functions for the population dynamics and fishery
processes, is required. A general implementation should allow the same size based
functions to be used for any process. A general approach also allows modeling
differences in the processes among partition categories (e.g. between females and males
or immature and mature). Some of the main components of this approach are
a) Processes for all categories in a partition are automatically given a value of one
for each size bin. This facilitates defining the processes as a product of multiple
quantities.
b) The size-based effect is the product of the effect for all appropriate partition
categories from the different partitions.
c) Multiple size-based functions can be applied to the same partition (e.g. to model
selectivity and availability)
d) Each size-based function can be applied to multiple partition categories
e) Several transformations are applied to the size-based functions depending on the
processes being modeled
a. An additional estimated scaling parameter
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b. A logistic transformation to ensure the value is between zero and one
c. Scaling so the maximum is one
d. Scaling so that the sum across all size bins is one
f) Both functions (e.g. logistic) and probability distributions (e.g. gamma) are
treated the same and can be used for all processes (i.e. for both functions (e.g.
selectivity) and distributions (e.g. proportioning recruitment to size categories)).

One approach to implement the size-based processes is based on the following inputs:

1) Number of size functions for the process

i1) Number of partitions (and/or fisheries) that use each size function

1) The partitions and partition categories that use each size function (a special
value e.g. 0 or -1 can be used to specify that all partitions or categories within
a partition use this selectivity curve)

v) Parameter controls for each of the parameters of each size function

Implementation

The model should be implemented using AD Model Builder (Fournier et al. 2012). As
much as possible, components should be implemented as general functions that can be
reused by different parts of the model and by other ADMB modelers. The functions and
their documentation should follow the format outlined by the ADMB project
(http://www.admb-project.org/developers/using-doxygen). The size structured model is
accommodated well by matrix algebra and in many cases matrix algebra will be efficient
in either the memory used or the number of calculations performed, or both. Therefore,
matrix algebra should be used where possible. When implementing the matrix algebra
care needs to be taken when setting up the transition matrices, the order that the
calculations are conducted in, and the use of multi-dimensional matrices for representing
the different population characteristic partitions. A basic population dynamics model
can be represented in matrix notation

Ny = (G@i_1)Ni_1 + R, (Eq. 1)

Where

N, is a column vector of numbers at size at the start of time ¢

G is the growth transition matrix where the columns represent the proportion of
individuals transitioning to the different size classes from a single size class (i.e. they sum
to one)

¢ is the survival matrix with the diagonals equal to survival for each size class

R; is a column vector of recruitment for each size class in time ¢

The implementation of the general sized based model will be more complicated due to
the various population characteristic partitions that are used. The program may have to
loop over partitions implementing the population dynamics model for each partition and
model transition among partitions.
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Model structure

The individuals represented in the model can be differentiated by several characteristics,
which are called partitions (or structures) (Figures 1 and 2; Table 1). The model allows
the processes acting on these partitions to differ among categories (e.g. male-female;
mature-immature) within partitions (e.g. gender, maturity status) (i.e. the parameters used
to define the processes can be shared or be different among categories within partitions).
Size is a required partition, while the other partitions are all optional. This partition
flexibility avoids representing unused elements in the model. The partitions will need to
be treated such that different combinations of partitions may have different characteristics
(similar to an interaction term in a GLM). This could be implemented by having different
size- specific functions for each partition category and multiplying them together to form
the overall effect for the individuals represented by the combination of partition
categories. Some combinations of partitions may not be permissible in some applications
(e.g. old-shell and immature). A large programming task will be developing indexing to
link the parameters and transition matrices with the modeled partitions. The indexing will
have to include a time component to allow for time-varying parameters. A terminal molt
option needs to be implemented and could be implemented as part of the shell condition
or maturity partitions. Maturity can be explicitly modeled as a partition by modeling the
proportion maturing by size or as simply a maturity schedule (the proportion mature-at-
size). In the notation below f(L) refers to a general function of size.

Table 1. The model partitions and associated partition categories.

Partition Categories

Size (length) User defined

Sex Male, Female

Maturity Immature, Mature

Shell condition New Shell, Old Shell I, Old
Shell 11, ...

Area (zone) User defined
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Figure 1. Hierarchical diagram of the different model partitions (structures). In the model
implementation, each model partition described in a box will be repeated for each model
partition to its immediate left. The model partitions described in a single box should not
differ for each category in the partition to it’s immediate left (this constraint may need to
be relaxed, but will complicate the programming). Not all partitions need to be modeled
in a single application.
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Figure 2. Illustration of the nesting of partitions (structures) for a model with two areas,
sex, maturity, and size (two size classes) partions, but no shell condition partition.
Possible transitions are indicated by the arrows. The diagram assumes that individuals
can not shrink in size and mature individuals cannot become immature. Possible shell
condition transitions include transitions from newshell and oldshell I (perhaps to other
oldshell conditions as well), transition from one oldshell condition to the next older
oldshell condition (perhaps also to older shell conditions), and from any oldshell
condition to newshell.

Seasons

The model should have two types of time-steps (see Figure 3). The first time step relates
to aging, which will most likely be year (referred to by year and indexed by y in the
equations), and the second time step will model intermediate processes between aging
events (e.g. seasons or months; referred to by season and indicated by f). The year time
step allows intermediate processes to be repeated. Not all processes have to occur in each
season time step, so the season time-step has a flexible number and order of processes.
The input data used to control the season time step includes (based on the example in
Figure 3)
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#Number of seasons

3

#Number of processes per season

232

#Processes per season (input data correspond to events listed below in the order they
occur)

51

341

12

The program will essentially loop through a vector of index values that identify the
processes to be modeled in that season. The duration of each season time-step does not
have to be equal (the main point is to get the magnitude of the processes within a time
step correct). In general, the proportion of natural mortality assigned to the time-step will
determine the length of the time-step.

Possible events within a season
1) Survival (fishing and natural mortality)
2) Movement
3) Growth (including transition among old-shell and new-shell stages as well as size
classes)
4) Maturity
5) Recruitment
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Figure Z. Illustration of the different temporal components in the model. A year can be
comprised of one or more seasons. The seasons can be of different lengths. Each season
can have one or more processes. Process can be different among seasons and can be
repeated in multiple seasons. The order of the processes does not have to be the same in
each season. Survival includes both fishing and natural mortality because they can be
modeled as occurring simultaneously. The proportion of the annual natural mortality
occurring in a season generally represents the length of the season. Natural or fishing
mortality can be set to zero for a particular season to eliminate that mortality component
even though it is still modeled.

Notation

Population partition (structure) indexing

The notation will include time (y and ¢) and size (/) indices as subscripts and other indices
as superscripts (g = gender, m = maturity, o = shell condition, z = area). The notation for
the number of individuals will simply be before and after the processes independent of

QRA — Generic crab model - 8/15/2012 8



the process being modeled (the number of individuals after the process being notated
with a “~”).

g.m,0,z
N y,t,l

Table 2. Definition of variables used in the model equations

States

N numbers at the start of a process
N numbers at the end of a process
R recruitment

Transition among partitions (population dynamics processes)
1) movement

P probability of molting

G growth given molting

@ survival

Q maturity

Other quantities

M natural mortality

F fishing mortality

E fishing effort

S selectivity

V retention

T number of time periods

I index of abundance

C catch

p proportion in catch

W average weight by size

L average size (length)

B biomass

g catchability

d is the survival rate of discarded crab

n is the nonlinear relationship parameter for the index of abundance

A is the proportion of the lognormal bias correction factor used for the recruitment
deviate

7 1s the variance weighting factor for the Fournier et al. (1998) composition likelihood
function.

s the fraction of natural mortality for that time period (season)

Index

[ size class

y year

t season (within year time periods)
g gender (male/female)

QRA — Generic crab model - 8/15/2012 9



m maturity (mature/immature)

o shell condition (old shell/new shell or shell conditions I, I1, II1, ...)
z zone (area)

f fishery (or survey where relevant)

General model transition

The following equations describe the main population dynamics processes. To improve
readability the equations ignore subscripts and superscripts for the partitions, unless
needed for clarification, and therefore require some additional interpretation. A period “.”
is used to indicate that all categories of that partition are included in the array. In cases
where multiple partitions are modeled, the equations would need to be repeated for each
partition. In most cases N is a vector of numbers-at-size unless noted by an / subscript in
which it is scalar. There are two types of transition matrices: 1) Partitions that do not
allow transitions among categories within a partition for which all non-diagonal terms are
set to zero. The diagonal terms are set equal to the appropriate values (e.g. survival). 2)
Partitions that allow transition among categories within a partition for which the non-
diagonal terms can be non-zero (e.g. growth). Differentiation between these two types of
partitions may allow for more efficient programming. The tilde notation indicates the
abundance after the process, but does not follow through to the equation for the next
process.

Survival
ATgm,0,z agm,o,z gm0,z
Ny,t,. - (py,t,. Ny,t,. (Eq. 2)

Where @ is a diagonal matrix with the diagonal terms equal to the proportion surviving
at size, off diagonal terms equal to zero, and dimensions equal to the number of size bins.

Movement

A7gmo, __ 4.9,mo0,rg,mo,.

Ny =¥y Ny (Eq. 3)
Where N is a vector of numbers in each zone, and Y is a square matrix with values equal
to the proportion of individuals moving among areas and dimensions equal to the number
of zones. Y may vary by size, sex, year, or other characteristic.

Growth

ATgm,0,z gm,0,Z n,g,m,0,Z nyg,m,0,z gm0,z gm0,z

N7 = GIT PRI AN 4 (1 =PI )NGT (Eq. 4)
Where P is a square matrix were the diagonal terms are equal to the probability of
molting (growing) and the off diagonal terms are equal to zero. G is a square matrix
where the terms are equal to the growth transition among size classes. P and G may differ

by gender, year, or other characteristic. For example, P might be equal to zero for all
sizes for mature individuals (i.e. terminal molt to maturity).
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Maturity
An individual is assumed to only have the possibility of maturing if it has molted/grown
and is therefore modeled at the same time as growth if a maturity partition is included.

~gmatoz _ 9,0z ~9,immo,z pg,imm,0,z ; g,imm,0,z
Ny t - 'Qy t,. Gy,t,t Py,t,.t Ny,t,t,
gmat,0,z pg,mat,0,z ; g,mat,o,z
+ Gy,t.- Py,t,. Ny,t,. (Eq. 5)
__ pgmatoz gmat,0,z
+ (1 P)’.t,- )NY.t,-
ajimm _ 902\ ~9,imm,o,z ,g,imm,0,z 5; g,imm,0,z
N =(1 2y )Gy,t,. ' Pyt Ny:. (EQ. 6)
+ (1 - P)N'™™

Where () is a square matrix where the diagonal terms are equal to the probability of
maturing at size and the off diagonal terms are zero. imm = immature and mat = mature.

Recruitment

Fgimmnew,z _ n;g,immnew,z g
Nyt =N, ; + Ry, (Eq. 7)

Where R is a vector with size equal to the number of size bins and new = new shell

Time transition

gm0,z __ agm,o0,z .
Ny,t+1,. - Ny,t,. ift<T (Eq. 8)

gm0,z __ gm,o,z
Nyiih =Nyr (Eq.9)

Where T is the number of seasons.

F method

The fishing mortality is implemented using two approaches, where the first approach has
two options. The choice between the two approaches should be based on the
characteristics of the fisheries and the computational demands of the application. Method
la is appropriate when the fisheries operate over the whole time period, while Method 1b
is appropriate if the fishery operates in a short period during the time period. Method 2 is
useful when the application is large and the computational demands are outside the
computational capacity available or a large number of model runs are required. Note that
seasons can be used to further refine the temporal distribution of the fisheries. Also note
that selectivity curves are scaled to have a maximum of one, which improves
interpretation of parameters and may reduce confounding among some parameters.

1) Treat annual fishing mortality (F) as parameters with an optional lognormal penalty
and fitting the model to catch data. This method can be used to allow for uncertainty in
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the catch data. The timing of fishing within the season is implemented when calculating
the predicted catch.
a) Continuous with M:

(py,t,l = exp(_My,t,l - Fy,t,l) (Eq- 10)

_ f(cf f f f f
Fyer= Z Fy,t(sy,t,lvy,t,l + Sy,t,l(l - Vy,t,l)dy,t,l) (Eg. 12)
f

b) Occurring during a short period. The first equation treats F as an exploitation
rate. The two equations differ in how selectivity interacts with natural mortality. The two
equations also differ in how catch is calculated.

)

(py,t,l = exp(_My,t,l)(l - Fy,t,l) (Eq- 12)
Or

i1)

(py,t,l = exp(_My,t,l - Fy,t,l) (Eq- 13)
— f(cf f f f f
Fyer = Z Fy,t(Sy,t,lV;/,t,l + Sy,t,z(1 - Vy,t,l)dy,t,l) (Eqg. 14)
f

Where the constraint F,, ;; < 1 might be needed for the first equation

The fishing mortality could be modeled as a function of covariates (e.g. effort), which
would be beneficial in the case where catch data is not available for all time priors (e.g.
for bycatch fisheries). In this case

Fy{t = qf E;,texp(ejzt) (Eq. 15)

Where the temporal deviates are optional and the lognormal distributional penalty is
applied.

2) Assume that catch is known and occurs during a short period (F is treated as an
exploitation rate). The timing of the fishery is implemented through the fraction of

natural mortality occurring before the fishery (o ) when calculating the exploitation rate
from the catch and biomass, which assumes all fisheries occur at the same time.

(py,t,l = exp(_My,t,l)(l - Fy,t,l) (Eq. 16)

_ f(cf f f f f
Fyer = Z Fy,t(Sy,t,lVy,t,l + Sy,t,l(l - V;/,t,l)dy,t,l) (Eg. 17)
f

QRA — Generic crab model - 8/15/2012 12



Where the constraint F,,;; < 1 might be needed

retained catch in weight

f Cyre
F/ = Y. (Eq. 18)
'yt
Zl Ny,t,lS;:,t,lV;Zt,lwy,t,lexp(_(SMy,t,l)
retained catch in numbers
f
C
F/ vt (Eq. 19)

vt~ F uf
LiNyeiSy Yy exP(_‘SMy,t.l)

Catch may not be known for some fleets (e.g. bycatch fisheries) and a different option
will be needed or catch assumed.

The hybrid method (uses Pope’s approximation to find initials values for F' and then
solves the catch equation iteratively) used in Stock Synthesis (Methot and Wetzel in
press.) could be used as an alternative if estimating the fishing mortalities as parameters
becomes unstable or computationally inefficient and Pope’s approximation is not a
sufficient approximation. A user supplied fixed number of iterations should be applied to
ensure the derivatives remain valid.

Parameter setup

How parameter estimation is set up is based on the approach used in Stock Synthesis to
retain familiarity with users of Stock Synthesis (Table 3). The main difference is that
multiple covariates can be used for each parameter rather than single covariates, as
implemented in Stock Synthesis, because population processes are typically controlled by
multiple factors. There are several components that allow the parameters to change over
time (deviates, time blocks, and covariates), requiring that internal data structures for
parameter values and their derived quantities will need to have a time component (both
year and season). Parameter values can also be shared or different among categories with
a partition or between partitions. A system similar to Stock Synthesis should be
developed to allow the sharing of parameter values.

If the “covariate” entry is greater than one, then after all the standard parameter control
vectors are entered, the corresponding number of covariate control vectors are entered
(Table 4).

Covariates are implemented as multiplicative exponents 8 = 6, ,..exp(X; B;1;). Time
blocks are implemented as additive or multiplicative and on the natural scale or
exponentiated depending on the parameter.
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Table 3. Control setup for parameter estimation. A vector of numbers corresponding to
the entries described below will be defined for each parameter and control aspects of the

parameter estimation. The setup is very similar to that used for Stock Synthesis.

Control Description
Lower bound Lower bound on the parameter value
Upper bound Upper bound on the parameter value
Initial value Initial value
Phase The phase in which the parameter is estimated
Prior Type Normal, lognormal, zero means no prior
Prior par 1 Parameter of the prior distribution e.g. mean
Prior par 2 Parameter of the prior distribution e.g. sd
The number of covariates used for this parameter. The pointers to
Covariate covariates are provided in another control variable
Deviate type Random, random walk, zero is none
Deviate sd sd deviate distribution
Deviate minimum Year to start deviate
year
Deviate maximum Year to stop deviate
year
Time Block The block definition

Table 4. Control setup for covariates. A vector of numbers corresponding to the entries
described below will be defined for each covariate identified in the standard “parameter
control vector” and control aspects of the parameter estimation.

Description
Lower bound on the parameter value
Upper bound on the parameter value

Control
Lower bound
Upper bound

Initial value Initial value

Phase The phase in which the parameter is estimated
Prior Type Normal, lognormal, zero means no prior

Prior par 1 Parameter of the prior distribution e.g. mean
Prior par 2 Parameter of the prior distribution e.g. sd

The number corresponding to the covariate time series entered
Covariate time series | in the data file

Parameterization of size specific processes (e.g. selectivity, retention, natural
mortality, molting probability, movement, initial conditions, maturity, recruitment
distribution)

These are a set of functions that are useful for representing processes that change with
size. The same function might be useful for modeling several different processes. Both
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functions and probability distributions are used interchangeably with appropriate scaling.
For selectivity, the functions are rescaled so the maximum is one. These functions can be
used to model the mean growth and standard deviation of growth, but modeling the
growth distribution will require integration over the appropriate size range.

Logistic

1
HL:

L-6 (Eq. 20)
1+ exp(—In(19) 7—2%
05, 1s the size at 50%
095 is the size at 95%

It might be useful to have 845 to be an offset of 65 so that the logistic curve can be
constrained to be increasing or decreasing.

Inverse logistic
The same as the logistic with —In(19) replaced with In(19)

Broken stick/piecewise linear

This function will need input on the number of breaks and may need to be implemented
with smooth joiners to ensure differentiability.

Size-specific parameters with smoothness penalties

A parameter is estimated for each size bin and penalties are applied to control how much
the curve changes from one size bin to the next (Maunder and Harley 2011; see Table 5).
The method may only be practical for applications with a small number of size bins. This
method scales the selectivity to average one, it might be better to also make the maximum
equal one.
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Table 5. Equations defining the penalties applied to the non-parametric selectivity curves.

Description Equation
F. I=N-1
irst 2! [_1n(sl)+ln(s,+l)12
difference . (Eq. 21)
I=N-2
Second 22 [ln(s,)—21n (sl+1)+1n (sl+2):|2
difference . (Eq. 22)
Th [=N-3
ird A’ [—ln(sl)+31n(sl+1)—31n(s,+2)+111(51+3):|2
difference - (Eq. 23)
' 2
Scaling 1= h
N (Eq. 24)
Monotonic ifS/ > S). ) mon I:ln (S[) “In (Sl+] ):IZ
increasing e

where ', A%, and A’ are the weighting factors for the first, second, and third
difference, respectively, s, is the selectivity for an individual of size class I, and N is the
number of size classes in the model.

Restricted size range
This curve is equal to one for all sizes within the given size range. This parameterization
has no estimated parameters.

Stock Synthesis double normal

This is the recommended Stock Synthesis selectivity curve (Methot and Wetzel in press).
It is constructed by combining the peaks of two half normal curves with a plateau. It also
allows control of the selectivity at the minimum and maximum size bins. By fixing some
of the parameters the double normal can be used to implement an asymptotic selectivity
curve similar to a logistic.
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[z :asc,(l—ju)+j1,,(l(l—j2’1)+j2’ldesl) (Eq. 26)

Where the smooth joiner functions are defined as

-1
L -0
=11 -20———— Eq. 27
Ju { +exp( 1+|L1_91|jJ (Eq. 27)
-1
L-0
i, =| 1+exp| 20— L2 Eqg. 28
Ja [ GXP[ 1+‘Lz _Hpeakz }J (Eq )
2
ex [_(Ll E;l)) J_tmin] (E 29)

. _ ex :

asc, = (1+exp(-6,)) 1+(1—(1+exp(—6’5)) 1) 1p_t3 |

minl

- (Ll - epeakZ )2

exp -1

dsc,=1+((1+exp(-6,)) - 1) i) (e 30
i — 1

— em{—%] (Eq. 31)

t =exp| - (L‘“;*X ;(9;:")“)2 (Eq. 32)

0,2 =0, + Ly + (0‘991Lf;;)?__gjwfd’h I (Eq. 33)

Where

L, 1s the midpoint of size bin |

L. 1is the midpoint of smallest size bin 1

L . 1s the midpoint of largest size bin 1

6, is the size at which 8 =1 begins

0, is the width for which =1 (6,,,, is the size at which § =1 ends)

0, determines the slope of the ascending limb
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6, determines the slope of the descending limb
6, is value of @ at Ly,

0, 1s value of @ at L

Luidwh 1s the width of the population size bins

Cubic splines
See Stock Synthesis implementation (Methot and Wetzel in press).
Gamma
a-1 _
f(L) = L ﬂez%a;/ﬁ) (Eq. 34)
Where
u=ap (Eq. 35)
o =ap? (Eq. 36)

To formulate the gamma in terms of the mean and variance use the following equations

o
= — Eq. 37
B p (Eq. 37)
2
q = “_2 (Eq. 38)
o
Lognormal
~ (In(L) — (In(u) + 0.502))°
Normal
1 (L — p)?
flL) = a\/ﬁexp <_T> (Eq. 40)

Selectivity /catchability
Selectivity is modeled using one of the size-based functions described above (e.g. the
Stock Synthesis double normal). An additional “availability” parameter is used so that the
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maximum selectivity can differ among categories within partitions. (the selectivities
should be scaled, to the extent possible, so the selectivity of the category with the highest
selectivity is equal to one). In addition to sharing selectivity among categories within
partitions, selectivities can be shared among fisheries (i.e. mirroring). The possibility of
multiple selectivities for each fishery or survey should be modeled to allow for the
availability to be shared among fisheries or surveys, or to allow the modeling of escape
gaps and minimum legal size (MLS) that changes over time.

The use of multiple and shared selectivity curves can be used to implement the
relationship between the BSFRF survey and the NMFS survey. The NMFS covers the
whole stock, but the BSFRF survey only covers a component of the stock. The size of the
individuals in the area covered by the BSFRF survey may differ from that of the whole
stock; think of this as size specific availability. The selectivity of the BSFRF survey gear
may differ from the selectivity of the NMFS survey gear. This can be modeled using two
selectivity curves and one size based availability curve. The whole area NMFS survey
can be modeled with the NMFS survey gear selectivity curve, the NMFS survey in the
BSFRF survey area can be modeled as a combination of the NMFS survey gear
selectivity curve and the availability curve. The BSFRF survey can be modeled using the
BSFREF survey gear selectivity curve and the availability curve. This method uses some
of the NMFS survey data twice and if this is considered a problem, then the NMFS
survey data outside the BSFRF survey area could be modeled as the NMFS survey gear
selectivity curve adjusted by some function of the availability curve.

One approach is to input the following control variables:

Number of selectivity curves

Number of fisheries/partition assignments

The fisheries, partitions, and partition categories that use each selectivity curve (a special
value e.g. 0 can be used to specify that all fisheries, partitions, or categories within a
partition use this selectivity curve) a negative number means all except that
fishery/partition/category has that selectivity

#Nselect

4

#Nselect assignments

3

#Select assigments

#Selectivity Fishery Partition category

1111 #categroy 1 of partition 1 has selectivity 1 for fishery 1

211-1 #all categories except category 1 of partition 1 has selectivity 1 for fishery
1

3200 #Fishery 2 has selectivity 2 for all partitions

4000 #All fisheries and partitions have this curve, e.g. restricted size range

The selectivity curves and other population processes can be time varying.
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Discards

The discards are modeled using a retention curve that is applied to the selectivity curve,
where the discard proportion is the difference between the selectivity and retained curves.
The retention curve is modeled using one of the size-based functions described above. As
with the selectivity curves, the retention curves can be the same or differ among
categories within partitions. An additional parameter is used to model the maximum
retention. The discard mortality rate is modeled using one of the size-based functions
described above with an additional parameter for the maximum discard mortality rate.
The selectivity curves and the maximum discard rate can be time varying.

Growth

Growth can be modeled either using growth increments (the increment is added to the
original size to define the growth transition matrix) or growth transition, both of which
are modeled in terms of probability distributions or equivalently relative frequency
distributions. Either way the model converts these into a growth transition matrix. Several
options are available for the mean (i), standard deviation (o), and probability distribution
(f(L)). A separate option to pre-specify (input) the complete growth transition matrix
should be implemented. The growth parameters can be shared or differ among partition
categories. Reliable methods for banding transition matrices (to avoid issues related to
computer underflow) should be considered (Jim Ianelli pers. com.).

for growth increment

L=L+0.5AL . _ . ) )
G i = j f”‘c(u”’c, o L L— L)d(L — L) (Eq. 41)
L—-L—0.5AL

for growth transition

L+0.5AL

GL—)L = .]- ftrans(utrans, O.trans, L, L)dL (Eq. 42)
L—0.5AL

Note that in general u*¢ = ut™* — [, and ¢'"¢ # gtrons

The same functions for the mean, standard deviation, and distribution can generally be
used for both the growth increment and the transition formulations.

Mean size

linear function of size
u=a+ bL (Eqg. 43)

Von Bertalanffy
This can be modeled using the Francis model with b=1 (see below).

Richards/Schnute/Francis
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We use Francis (1995) general model, which is based on Baker et al.'s (1991) size-based
analog of Schnute's (1981) size-at-age model. The mean size after growth is defined by

u = [Lbe_‘m’ + c(l —e N )];’ a#0,b#0 (Eq. 44)

Where L is the initial size, Az =1 (for the population dynamics model, but might differ
from 1 for interpreting growth increment data from tags if this data is used in the
likelihood function), and a, ¢, A; and A, are variables to make the calculations more
convenient.

b b
Yo =N
=In Eq. 45
v (Fa- 49

e

c:ﬂ‘lb_yb*_yb_ﬂb (Eq. 46)
1 TV A
A=n+g (Eq. 47)
hH=y,*+g, (Eq. 48)

The model includes five parameters; y; and y, are arbitrary fish sizes, small and large
respectively, g; and g, are the mean growth increments for fish of sizes y; and y»,
respectively, over a given time period (usually year); and b, which has no biological
meaning but describes the curvature in the model. The general growth model reduces to
the von Bertalanffy growth model when b is set equal to one.

Polynomial
U= a+2biLi (Eq. 49)
i

This formulation might need to be modified or constrained to ensure that 4 > 0 or
Hit1 = Uy

Variance of growth distribution

Constant
Can be modeled using the linear function with b =0

Linear function of size
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o2=a+bL (Eq. 50)
Can also be modeled using the polynomial with i = 1.

Polynomial
0% = a+2biLi (Eq. 51)
i

The polynomial might need a constraint to keep it positive or alternatively the
exponentiated polynomial used.

g2 =exp <a + Z biLi> (Eq. 52)
i

Distribution
Gamma
a-1 _
f(L) = L ;ﬁga;/ﬁ) (Eq. 53)
Where
u=ap
0? = af?

To formulate the gamma in terms of the mean and variance use the following equations

=L
2
“=3
Lognormal
- <_ (In(L) — (lnz(:z + 0.502))2> (€6, 50
Normal
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fw = !

1 _(L—u)2>
Gmexp< _— (Eqg. 55)

Recruitment

Recruitment is modeled as mean recruitment for each area with annual (or time period if
more than one recruitment event occurs during a year) penalized deviates. When there is
spatial partition, an overall annual deviate is computed that is shared by all areas and then
area specific annual deviates. This allows some correlation of recruitment among areas.
Multiple covariates (I) are also available for either the variation common to all areas or
the area specific variation. Inclusion of a stock-recruitment curve requires a definition of
age, specifically the age-at-recruitment so that the recruitment can be linked to the
spawning biomass. The stock-recruitment curve might be kept separate from the
modeling of recruitment so that it can be applied to a flexible range of years. In area-
specific models the spawning biomass can be pooled across areas. Therefore, for a
specific area, the proportion of the spawning biomass from each area used to create the
spawning biomass of the area of interest is input (this can be equal to zero for all areas
other than the area of interest to implement area-specific stock-recruitment relationships).
In the initial implementation the stock-recruitment relationship is ignored. Recruitment is
only to immature new-shell partitions and either the sex ratio fixed or estimated, or the
recruitment strength and size composition estimated separately for males and females,
with an optional penalty on the sex ratio.

Z _— pz 2 z z z
vt =Riexp| &,0—A,,050° + &5 ,0% — A7 ,0.5

£ biliye+ ) bl
i j

Bias correction of the recruitment deviates (A) is implemented with tapering following
Stock Synthesis (Methot and Taylor 2011). The equation below is defined for y, but
could also differ by t and z.

(Eqg. 56)

0 y <

0= 0 0,< y <0, (Eq. 57)
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[, the first year of the bias ramp up adjustment period

[, the last year of the bias ramp up adjustment period

[, the first year of the bias ramp down adjustment period
[, the last year of the bias ramp down adjustment period
[ .. the maximum bias adjustment

A choice of distributions is available to distribute recruitment into the size classes. An
option for estimating size specific parameters within a given size range should also be
implemented.

Rgz/,t,l = R)Z/,tf(L) (Eq. 58)
Gamma
L*texp(=L/B)
L) = Eqg. 59
f(L) 3o (a) (Eq. 59)
Where
u=ap
o? = af?

To formulate the gamma in terms of the mean and variance use the following equations

Lognormal

flL) = exp <— (in(0) = UnGw) +0.50%)) ) (Eq. 60)

202

LoV2r

Truncated or accumulated at the minimum size bin and at the upper size bin.

Normal
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fi) = 552

(L —p)?
o exp (——) (Eg. 61)

Truncated or accumulated at the minimum size bin and at the upper size bin.

Natural mortality

Several options can be used for natural mortality. Any of the size-based functions listed
above can be used with the addition of a parameter to scale the absolute level of natural
mortality. In addition, a special natural mortality function that is a size-based version of
the Maunder-Lorenzen model (see Brodziak et al. 2011) that assumes M is inversely
proportional to size up until the size at maturity and follows the logistic curve as
individuals mature. The rate of natural mortality may be shared among partitions for
juveniles. It also might be desirable to estimate the size at maturity (or first maturity)
independent of the real size at maturity (in this case the size at maturity is simply where
the natural mortality changes and not related to maturity). Maturity can be sex specific.
Two versions of the model are implemented:

A
ML=M/W(%j T (Eq. 62)
: L 1+exp[,b’(L—L50):|
I A
M/'uv [Lﬂfj L<Lmat
‘ L

M Eqg. 63
! Mmat_Mjuv ( q )

M, + L>L
s 1+exp[ﬂ(L—L50)] e

Where Mj,,, and M, are the main parameters to estimate. A controls the shape of the
relationship between size and natural mortality and can be fixed at a standard value from
Lorenzen (1996) or estimated. Ls is the size at 50% maturity (or alternatively a
parameter defining the change in M relationship) and can be fixed or estimated. L, is
the size at first maturity (or alternatively when the relationship deviates from A£;,,,).

Molting

The probability of molting (growing) can be modeled using any of the size-based
functions described above and can be shared or differ among partition categories. Shell
condition and maturity state are likely to influence the molting probability. A terminal
molt will need to be an option such that any individual that reaches this stage does not
molt. This may be linked to the shell condition or maturity state.

Movement
Movement parameters can be modeled using any of the size-based functions. In some
cases an additional parameter will be used to model the magnitude of the movement.

QRA — Generic crab model - 8/15/2012 25



Movement could be modeled in logit space to ensure that it is between zero and one.
Movement in one of the directions (e.g. remaining in the current area) will be calculated
analytically rather than as a parameter so that movement sums to one. A penalty may
need to be applied to ensure that the movements sum to one. Movement may need to be
implemented so it changes over time and among partition categories.

Yzoz = f(L) (Eq. 64)

z l/)z—>z' =1 (Eq 65)

wz—>z'N =1- Z Yzoz (Eq. 66)
z=1toN—-1

Where N is number of areas.

Initial conditions (Initial numbers by partition categories)
Several methods are implemented to estimate the initial conditions.

Y

2)

Any of the size-based functions can be used to model the numbers-at-size with the
addition of a scaling parameter. The initial conditions can be shared (equal size
distribution and/or numbers) or different among partition categories.
Alternatively, the size component can be the same and the scaling component
different.

Equilibrium assumptions with parameters such as fishing mortality, average
recruitment, and penalized lognormal recruitment deviates (see recruitment
section for similar details) following the Stock Synthesis approach. i.e. the
average recruitment is modeled over age using growth and survival. A recruitment
deviate is added to each age, but not propagated to older ages. The average
recruitment used could be the average used in the dynamics or a separate (or
offset) parameter. Fishing mortality could be estimated for certain fisheries, or
depending on the F method, equal to F in the first few time periods (re:
MULTIFAN-CL, Fournier et al. 1998).

3) Similar to (2) except the average F is the same as over the first few years of
modeling time frame. This is similar to the MULTIFAN-CL approach (Fournier
et al. 1998) and does not work for Pope’s approximation method.

4) Recruitment for years [Startyear — x] to [startYear — 1] estimated. Fishing
mortalities for each of the fisheries can also be estimated. Recruitment before
[Startyear — x] is set to zero.

Maturity

Maturity can either be modeled as the probability of maturing if a maturity partition is
specifically modeled (where a transition matrix is needed to model transition from
immature to mature) or as the proportion mature-at-size (where the maturity at size is
applied to the number at size to determine the number mature at size). Both of these can
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be modeled using the size-specific functions presented above. A parameter restricted
between zero and one can be used to scale the maximum probability of maturity.

Data
The setup for fitting to data needs to be flexible so that data can either be separate for
each partition category or grouped across partition categories.

Catch

The model needs to fit to catch data when using the Fishing mortality approach that treats
each fishing mortality as a parameter. The catch for each fishery is fit with either a
normal or lognormal distribution and either in biomass or numbers. The catch can be fit
as total, retained, and/or discarded. The catch estimates described below are for retained
catch in weight, appropriate modifications can be made for catch-in-numbers or total or
discarded catch.

a) Continuous with M

~f
Ly
C;,t = —Zy’t’ N (1 — exp(—Zy’t,l)) w; (Eqg. 67)
7 y,t,l
Zytl_ ytl+z y.t,l (Eq.68)
7 _rf of f
Fyt,l E Sy Ve (Eq. 69)

b) Occurring during a short period (£ is exploitation rate in this formulation)

= Z N,exp(—AM) (1 — exp(—Fy,t,l)) w, (Eq. 70)
7
Bl =Fls) v, (Eq. 71)
Negative log-likelihoods
A 2
c . -C
~InL(0|C)=>105In[c (yz—zy) (Eq. 72)
o

.t
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(m[c,] ~In[ €, + 0.502])2

207

~InL(0]C)=>.10.5In[c]+ (Eq. 73)
vt

Composition

Several options are available for fitting to composition data. There should be flexibility in
the definition of the size bins for the observations and the possibility of multiple
definitions within an application. This allows for the inclusion of standard size
composition data from scientific sampling (e.g. Imm) as well as commercial size
category data (e.g. small, medium, and large), which may be irregular bin sizes. There
may be a need to model alternative size transition functions to allow for different
measurements (e.g. a transition matrix would be needed to covert from the population
size categories to weight categories to fit to weight composition data). The composition
data can be treated independently for each partition category or sum to one over the
partition categories and/or over partitions (e.g. to provide sex ratio information the size
composition data proportions should sum to one over both males and females).

Normal with binomial variance (based on Fournier et al. 1998)

A~ 2
_lnL(G\data)zz O'SIH[Ptz(l—pt,)rz]+ (P;,/‘Pt,/)

I ’ ’ 2p,, (1 — Py )Tz (Fa. 74)

Where 7 is a parameter that scales the variance.

Where p and p are the observed and predicted proportions at size and will sum to one

across some specified set of partitions and partition categories. 7 scales the variance and
is related to the effective sample size. The option to estimate 7 should be available.

The variance could be calculated using the observed or predicted proportions. A constant
can be added to the variance to insure it does not get too small or alternatively some sizes
could be pooled.

Multinomial

~InL(8|data) = SS,p,,n[ p,,] (Eq. 75)
t,l

Where SS is the sample size.
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This method is problematic if the predicted proportion is zero, a small additive constant
may be added if appropriate or alternatively some sizes could be pooled. The multinomial
offset might be needed to avoid over/underflow errors.

Lognormal with variance inversely proportional to the proportion

The size frequency data is fit using the method of Punt and Kennedy (1997) that uses a
lognormal likelihood function for the proportions at size and assumes that the variance is
proportional to the inverse of the predicted proportion.

2
A 1 _1 A
1,1 t,l

The variance parameter can be estimated analytically:

b= [ (lp,]-n 5] o7

t,l

This method is problematic if the observed data is zero, a small additive constant may be
added if appropriate or alternatively some sizess could be pooled. The log normal bias
correction factor should also be considered.

Multivariate logistic

Other composition likelihoods should also be considered. Schnute and Haigh (2007) use
the logistic-normal (or multivariate logistic; Schnute and Richards, 1995) distribution,
which they show can be converted into a multivariate normal with appropriate
transformations.

Indices of abundance

Indices of abundance (e.g. surveys or CPUE) are fit using a lognormal distribution (other
likelihood functions such as the normal and t-distribution should also be considered).
Flexibility should be implemented so that the abundance indices can be separated or
combined by size groups, partition categories or partitions. There should be an option for
multiple catchabilities so that availability or the proportion of the area covered can be
modeled and shared among surveys. For example, if the area of a survey changes over
time, there could be a catchability for the survey in general, and then a catchability for
each time period based on the area covered in that time period. This could be
implemented using a method similar to that described above for catchability/selectivity.
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(ln[lt] —ln[ft +O.50‘f})2
~InL(0[7)=>505In[c,]+ - (Eq. 78)

t

I,=qB; (Eq. 79)
Where 7 is the nonlinear relationship parameter.

The catchability coefficient and standard deviation can be calculated analytically (The
following equations assume that the variance is constant over time and need to modify for
year specific variance scaling or additive values and the associated lognormal bias
correction factor. Equations are also available for Bayesian analysis)

Zln(‘j
— B,
g=exp| ———= (Eq. 80)

Gz\/(ln(lf)ln(:))2 (Eq. 81)

Discards
The discard data can be modeled as explained in the section on catch data.

Tagging

The following is only an example of how tagging data might be integrated into the model.
The tag data could include tag growth increment, tag-recapture, and tag-recapture with
growth increment. The catch conditioned movement model of McGarvey and Feenstra
(2002) might also be useful.

We use Francis (1995) general method to estimate growth with mark-recapture data,
which is based on Baker et al.'s (1991) size-based analog of Schnute's (1981) size-at-age
model. Francis' model combines a general size-based growth function that predicts the
mean growth increment from the size at release and time at liberty, with an error structure
that includes both measurement error and individual variability in growth. This model
was used by Maunder (2001) to estimate growth for skipjack tuna in the EPO. The
observed growth increment is assumed to be normally distributed with the variance of the
growth increment a function of both time at liberty and size at release using Maunder’s
(2001) generalized growth variation model. To simplify the calculations, measurement
error is assumed to either be only in size at recapture or that this assumption is an
adequate approximation to measurement error in both the size at release and size at
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recapture. A robust version of the normal distribution based likelihood is used to reduce
the influence of outliers that may be due to incorrect recording of size or date

)exp[—(G;”Egz(i;'; ) J+0-01 (Eq. 82)

m 4

(0L, L At)=
(@] ) \/27r(a,i+ag2

Where
u, and o are the mean and variance of the measurement error, respectively.

Mortality

Total mortality or fishing mortality can be fit using the normal or lognormal likelihood
functions. For example, the lognormal likelihood for age and time specific total mortality
would be:

obs] 2 7\
~InL(0]Z2")=3" 0.51n[atja]+<ln[z””} LEALEA) (Eq. 83)

2
ta 20-

ta

Weighting and priors

Weighting factors should be included for all likelihood components. These should follow
the Stock Synthesis approach where the lambdas are all set to one unless explicitly
modified. One addition is to allow a change to influence all fisheries and/or surveys (see
the approach for assigning selectivity parameters above).

Priors should be implemented on all model parameters similar to the approach used in
Stock Synthesis. The priors should include the Normal, Lognormal, and beta
distributions. The beta distribution can be used for parameters that are between zero and
one or other bounds such as steepness of the stock-recruitment relationship, which is
between 0.2 and one.

Normal

—ln[p(é?l,ug,ag)]=0.5[ﬂj (Eq. 84)

Oy

Lognormal

QRA — Generic crab model - 8/15/2012 31



—ln[p(é’|,ulg,ay)]:().5{Mj2 (Eq. 85)

Oy

Bounded Beta (from Methot and Wetzel in press)
~In[ p(6|15.0,)|=(In(1-6")~In(1-1,))(6,~1) +(In (') ~In(x;))(F; 1) (Eq. 86)

Where

9': min
Hmax - emin (Eq 87)
! lu _gmin
Hy = (Eq. 88)
1- ’
0, :(:#_ﬂe (Eq. 89)
6
0
0,=—"-0 (Eq. 90)
A ,ng B

The standard deviation additive and multiplicative factors should be estimable for all
likelihood components. Algebraic (maximum likelihood) solutions should be
implemented where possible. Although, there should also be the ability to estimate them
as free parameters, particularly if Bayesian MCMC is being applied. The analytic
solution for Bayesian methods should also be considered.
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