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and Stock Synthesis is that the crab generic model does not keep track of age and 
therefore all processes are based on the size of the individuals. A main advantage of the 
size-based model is that size-based processes such as selectivity can change the 
(unmodeled) size-at-age composition of the population. In Stock Synthesis, like most 
other age-structured models, the distribution of size at age is not impacted by these size-
based processes (except for specific modeling of growth) unless approximated using the 
Stock Synthesis “platoon” option. Despite these differences, many components of Stock 
Synthesis can be used in a size-based model (e.g. length-based selectivity curves, general 
control setup for parameter estimation options). An effort has been made to follow 
formats of Stock Synthesis to retain some familiarity for the user.  
 
This description is only a guideline for the development of the general crab model. 
Development of the code and application of the model will identify modifications and 
additions that are not described here. It will therefore be necessary to apply the generic 
model to several case studies to beta test the code. Steve Martell has set up a repository 
for the crab models that he and Jim Ianelli have been developing and they have kindly 
offered the use of the code that they have developed.  
 
One of the major tasks in creating a generic model is to allow for the many different 
modeling options that users need to implement in their stock assessments. There are 
several different individual characteristics (e.g. gender, maturity status, location) that may 
need to be modeled to represent the population dynamics or available data (see Figure 1). 
These characteristics are called partitions (e.g. gender) in the terminology of this 
description and the states within these partitions are called partition categories (e.g. 
female or male). Not all assessments will have the same data components or adequate 
information to model all these characteristics. Therefore, each application will include 
different characteristics depending on the data available and therefore may not use all the 
partition types. Stocks with different characteristics might have different population 
dynamics requiring different parameter values. To implement a flexible general 
framework, a model that partitions the population into individuals of different 
characteristics, using size-based functions for the population dynamics and fishery 
processes, is required. A general implementation should allow the same size based 
functions to be used for any process. A general approach also allows modeling 
differences in the processes among partition categories (e.g. between females and males 
or immature and mature). Some of the main components of this approach are 

a) Processes for all categories in a partition are automatically given a value of one 
for each size bin. This facilitates defining the processes as a product of multiple 
quantities. 

b) The size-based effect is the product of the effect for all appropriate partition 
categories from the different partitions. 

c) Multiple size-based functions can be applied to the same partition (e.g. to model 
selectivity and availability) 

d) Each size-based function can be applied to multiple partition categories 
e) Several transformations are applied to the size-based functions depending on the 

processes being modeled 
a. An additional estimated scaling parameter 
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b. A logistic transformation to ensure the value is between zero and one 
c. Scaling so the maximum is one 
d. Scaling so that the sum across all size bins is one 

f) Both functions (e.g. logistic) and probability distributions (e.g. gamma) are 
treated the same and can be used for all processes (i.e. for both functions (e.g. 
selectivity) and distributions (e.g. proportioning recruitment to size categories)). 

 
One approach to implement the size-based processes is based on the following inputs: 
 

i) Number of size functions for the process 
ii) Number of partitions (and/or fisheries) that use each size function 
iii) The partitions and partition categories that use each size function (a special 

value e.g. 0 or -1 can be used to specify that all partitions or categories within 
a partition use this selectivity curve) 

iv) Parameter controls for each of the parameters of each size function 
 

Implementation	
The model should be implemented using AD Model Builder (Fournier et al. 2012). As 
much as possible, components should be implemented as general functions that can be 
reused by different parts of the model and by other ADMB modelers. The functions and 
their documentation should follow the format outlined by the ADMB project 
(http://www.admb-project.org/developers/using-doxygen). The size structured model is 
accommodated well by matrix algebra and in many cases matrix algebra will be efficient 
in either the memory used or the number of calculations performed, or both. Therefore, 
matrix algebra should be used where possible. When implementing the matrix algebra 
care needs to be taken when setting up the transition matrices, the order that the 
calculations are conducted in, and the use of multi-dimensional matrices for representing 
the different population characteristic partitions. A	basic	population	dynamics	model	
can	be	represented	in	matrix	notation	
	
  ௧ܰ ൌ ሺି࢚࣐ࡳ૚ሻ ௧ܰିଵ ൅ ܴ௧ (Eq. 1)  
 
Where  

௧ܰ  is a column vector of numbers at size at the start of time t 
 is the growth transition matrix where the columns represent the proportion of ܩ
individuals transitioning to the different size classes from a single size class (i.e. they sum 
to one)  
߮ is the survival matrix with the diagonals equal to survival for each size class 
ܴ௧ is a column vector of recruitment for each size class in time t 
 
The implementation of the general sized based model will be more complicated due to 
the various population characteristic partitions that are used. The program may have to 
loop over partitions implementing the population dynamics model for each partition and 
model transition among partitions.  
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Model	structure	
The individuals represented in the model can be differentiated by several characteristics, 
which are called partitions (or structures) (Figures 1 and 2; Table 1). The model allows 
the processes acting on these partitions to differ among categories (e.g. male-female; 
mature-immature) within partitions (e.g. gender, maturity status) (i.e. the parameters used 
to define the processes can be shared or be different among categories within partitions). 
Size is a required partition, while the other partitions are all optional. This partition 
flexibility avoids representing unused elements in the model. The partitions will need to 
be treated such that different combinations of partitions may have different characteristics 
(similar to an interaction term in a GLM). This could be implemented by having different 
size- specific functions for each partition category and multiplying them together to form 
the overall effect for the individuals represented by the combination of partition 
categories. Some combinations of partitions may not be permissible in some applications 
(e.g. old-shell and immature). A large programming task will be developing indexing to 
link the parameters and transition matrices with the modeled partitions. The indexing will 
have to include a time component to allow for time-varying parameters. A terminal molt 
option needs to be implemented and could be implemented as part of the shell condition 
or maturity partitions. Maturity can be explicitly modeled as a partition by modeling the 
proportion maturing by size or as simply a maturity schedule (the proportion mature-at-
size). In the notation below ݂ሺܮሻ refers to a general function of size. 
 
Table 1. The model partitions and associated partition categories. 
 
Partition Categories 
Size (length) User defined 
Sex Male, Female 
Maturity Immature, Mature 
Shell condition New Shell, Old Shell I, Old 

Shell II, … 
Area (zone) User defined 
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#Number of seasons 
3 
#Number of processes per season 
2 3 2 
#Processes per season (input data correspond to events listed below in the order they 
occur) 
5 1 
3 4 1 
1 2 
 
The program will essentially loop through a vector of index values that identify the 
processes to be modeled in that season. The duration of each season time-step does not 
have to be equal (the main point is to get the magnitude of the processes within a time 
step correct). In general, the proportion of natural mortality assigned to the time-step will 
determine the length of the time-step. 

Possible	events	within	a	season	
1) Survival (fishing and natural mortality) 
2) Movement 
3) Growth (including transition among old-shell and new-shell stages as well as size 

classes) 
4) Maturity 
5) Recruitment  
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the process being modeled (the number of individuals after the process being notated 
with a “~”). 
 

௬ܰ,௧,௟
௚,௠,௢,௭	

 
Table 2. Definition of variables used in the model equations  
 
States 
N numbers at the start of a process 
෩ܰ numbers at the end of a process 
ܴ recruitment 
 
Transition among partitions (population dynamics processes) 
߰ movement 
P probability of molting 
 growth given molting ܩ
 survival ߔ
Ω maturity 
 
Other quantities 
M natural mortality 
F fishing mortality 
E fishing effort 
S selectivity 
V retention 
T number of time periods 
I index of abundance 
C catch 
p proportion in catch 
W average weight by size 
L average size (length) 
B biomass 
q catchability 
݀ is the survival rate of discarded crab 
  is the nonlinear relationship parameter for the index of abundance 
∆ is the proportion of the lognormal bias correction factor used for the recruitment 
deviate 
  is the variance weighting factor for the Fournier et al. (1998) composition likelihood 
function. 
  is the fraction of natural mortality for that time period (season) 

 
Index 
l size class 
y year 
t season (within year time periods) 
g gender (male/female) 
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m maturity (mature/immature) 
o shell condition (old shell/new shell or shell conditions I, II, III, …) 
z zone (area) 
f fishery (or survey where relevant) 
 

General	model	transition	
The following equations describe the main population dynamics processes. To improve 
readability the equations ignore subscripts and superscripts for the partitions, unless 
needed for clarification, and therefore require some additional interpretation. A period “.” 
is used to indicate that all categories of that partition are included in the array. In cases 
where multiple partitions are modeled, the equations would need to be repeated for each 
partition. In most cases N is a vector of numbers-at-size unless noted by an l subscript in 
which it is scalar. There are two types of transition matrices: 1) Partitions that do not 
allow transitions among categories within a partition for which all non-diagonal terms are 
set to zero. The diagonal terms are set equal to the appropriate values (e.g. survival). 2) 
Partitions that allow transition among categories within a partition for which the non-
diagonal terms can be non-zero (e.g. growth). Differentiation between these two types of 
partitions may allow for more efficient programming. The tilde notation indicates the 
abundance after the process, but does not follow through to the equation for the next 
process. 
 
Survival 
 
  ෩ܰ

௬,௧,.
௚,௠,௢,௭ ൌ .,௬,௧ߔ

௚,௠,௢,௭
௬ܰ,௧,.
௚,௠,௢,௭

  (Eq. 2)  
 
Where  ߔ is a diagonal matrix with the diagonal terms equal to the proportion surviving 
at size, off diagonal terms equal to zero, and dimensions equal to the number of size bins. 
 
Movement 
 
  ෩ܰ

௬,௧,௟
௚,௠,௢,. ൌ ߰௬,௧,௟

௚,௠,௢,.
௬ܰ,௧,௟
௚,௠,௢,. (Eq. 3)  

 
Where N is a vector of numbers in each zone, and ߰ is a square matrix with values equal 
to the proportion of individuals moving among areas and dimensions equal to the number 
of zones. ߰ may vary by size, sex, year, or other characteristic. 
 
Growth 
 
  ෩ܰ

௬,௧,.
௚,௠,௢,௭ ൌ .,௬,௧ܩ

௚,௠,௢,௭
௬ܲ,௧,.
௚,௠,௢,௭

௬ܰ,௧,.
௚,௠,௢,௭ ൅ ൫1 െ ௬ܲ,௧,.

௚,௠,௢,௭൯ ௬ܰ,௧,.
௚,௠,௢,௭ (Eq. 4)  

 
Where P is a square matrix were the diagonal terms are equal to the probability of 
molting (growing) and the off diagonal terms are equal to zero. G is a square matrix 
where the terms are equal to the growth transition among size classes. P and G may differ 
by gender, year, or other characteristic. For example, P might be equal to zero for all 
sizes for mature individuals (i.e. terminal molt to maturity). 
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Maturity  
An individual is assumed to only have the possibility of maturing if it has molted/grown 
and is therefore modeled at the same time as growth if a maturity partition is included. 
 
  ෩ܰ

௬,௧,.
௚,௠௔௧,௢,௭ ൌ .,௬,௧ߗ

௚,௢,௭ܩ௬,௧,.
௚,௜௠௠,௢,௭

௬ܲ,௧,.
௚,௜௠௠,௢,௭

௬ܰ,௧,.
௚,௜௠௠,௢,௭

൅ .,௬,௧ܩ
௚,௠௔௧,௢,௭

௬ܲ,௧,.
௚,௠௔௧,௢,௭

௬ܰ,௧,.
௚,௠௔௧,௢,௭

൅ ൫1 െ ௬ܲ,௧,.
௚,௠௔௧,௢,௭൯ ௬ܰ,௧,.

௚,௠௔௧,௢,௭
 

(Eq. 5)  

 
  ෩ܰ௜௠௠ ൌ ൫1 െ .,௬,௧ߗ

௚,௢,௭൯ܩ௬,௧,.
௚,௜௠௠,௢,௭

௬ܲ,௧,.
௚,௜௠௠,௢,௭

௬ܰ,௧,.
௚,௜௠௠,௢,௭

൅ ሺ1 െ ܲሻܰ௜௠௠ 
(Eq. 6)  

 
Where ߗ is a square matrix where the diagonal terms are equal to the probability of 
maturing at size and the off diagonal terms are zero. imm = immature and mat = mature. 
 
Recruitment 
 
  ෩ܰ

௬,௧,.
௚,௜௠௠,௡௘௪,௭ ൌ ௬ܰ,௧,.

௚,௜௠௠,௡௘௪,௭ ൅ ܴ௬,௧,.
௚

  (Eq. 7)  
 
Where R is a vector with size equal to the number of size bins and new = new shell 
 
Time transition 
 
  ௬ܰ,௧ାଵ,.

௚,௠,௢,௭ ൌ ௬ܰ,௧,.
௚,௠,௢,௭ ݂݅ ݐ ൏ ܶ  (Eq. 8)  

 
  ௬ܰାଵ,ଵ,.

௚,௠,௢,௭ ൌ ௬ܰ,்,.
௚,௠,௢,௭

  (Eq. 9)  
 
Where T is the number of seasons. 

F	method	
The fishing mortality is implemented using two approaches, where the first approach has 
two options. The choice between the two approaches should be based on the 
characteristics of the fisheries and the computational demands of the application. Method 
1a is appropriate when the fisheries operate over the whole time period, while Method 1b 
is appropriate if the fishery operates in a short period during the time period. Method 2 is 
useful when the application is large and the computational demands are outside the 
computational capacity available or a large number of model runs are required. Note that 
seasons can be used to further refine the temporal distribution of the fisheries. Also note 
that selectivity curves are scaled to have a maximum of one, which improves 
interpretation of parameters and may reduce confounding among some parameters.  
 
1) Treat annual fishing mortality (F) as parameters with an optional lognormal penalty 
and fitting the model to catch data. This method can be used to allow for uncertainty in 
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the catch data. The timing of fishing within the season is implemented when calculating 
the predicted catch. 
 a) Continuous with M: 
 
  ௬,௧,௟ߔ ൌ ௬,௧,௟ܯ൫െ݌ݔ݁ െ  ௬,௧,௟൯ܨ (Eq. 10)

 
  ௬,௧,௟ܨ ൌ ෍ܨ௬,௧

௙ ൫ܵ௬,௧,௟
௙

௬ܸ,௧,௟
௙ ൅ ܵ௬,௧,௟

௙ ൫1 െ ௬ܸ,௧,௟
௙ ൯݀௬,௧,௟

௙ ൯
௙

  (Eq. 11)

 
 b) Occurring during a short period. The first equation treats F as an exploitation 
rate. The two equations differ in how selectivity interacts with natural mortality. The two 
equations also differ in how catch is calculated. 
 

i)  
  ௬,௧,௟ߔ ൌ ௬,௧,௟൯൫1ܯ൫െ݌ݔ݁ െ  ௬,௧,௟൯ܨ (Eq. 12)

 
Or 

ii)  
  ௬,௧,௟ߔ ൌ ௬,௧,௟ܯ൫െ݌ݔ݁ െ  ௬,௧,௟൯ܨ (Eq. 13)

 
  ௬,௧,௟ܨ ൌ ෍ܨ௬,௧

௙ ൫ܵ௬,௧,௟
௙

௬ܸ,௧,௟
௙ ൅ ܵ௬,௧,௟

௙ ൫1 െ ௬ܸ,௧,௟
௙ ൯݀௬,௧,௟

௙ ൯
௙

  (Eq. 14)

 
 Where the constraint ܨ௬,௧,௟ ൑ 1 might be needed for the first equation 
 
The fishing mortality could be modeled as a function of covariates (e.g. effort), which 
would be beneficial in the case where catch data is not available for all time priors (e.g. 
for bycatch fisheries). In this case  
 
  ௬,௧ܨ

௙ ൌ ௙ݍ ௬,௧ܧ
௙ ௬,௧ߝ൫݌ݔ݁

௙ ൯  (Eq. 15)

 
Where the temporal deviates are optional and the lognormal distributional penalty is 
applied. 
 
2) Assume that catch is known and occurs during a short period (F is treated as an 
exploitation rate). The timing of the fishery is implemented through the fraction of 
natural mortality occurring before the fishery ( ) when calculating the exploitation rate 
from the catch and biomass, which assumes all fisheries occur at the same time.  
 
  ௬,௧,௟ߔ ൌ ௬,௧,௟൯൫1ܯ൫െ݌ݔ݁ െ  ௬,௧,௟൯ܨ (Eq. 16)

 
  ௬,௧,௟ܨ ൌ ෍ܨ௬,௧

௙ ൫ܵ௬,௧,௟
௙

௬ܸ,௧,௟
௙ ൅ ܵ௬,௧,௟

௙ ൫1 െ ௬ܸ,௧,௟
௙ ൯݀௬,௧,௟

௙ ൯
௙

  (Eq. 17)
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 Where the constraint ܨ௬,௧,௟ ൑ 1 might be needed 
 
  retained catch in weight 
 

௬,௧ܨ
௙ ൌ

௬,௧ܥ
௙

∑ ௬ܰ,௧,௟ܵ௬,௧,௟
௙

௬ܸ,௧,௟
௙

௬ܹ,௧,௟݁݌ݔ൫െܯߜ௬,௧,௟൯௟

  (Eq. 18)

 
  retained catch in numbers 
 
 

௬,௧ܨ
௙ ൌ

௬,௧ܥ
௙

∑ ௬ܰ,௧,௟ܵ௬,௧,௟
௙

௬ܸ,௧,௟
௙

௟ ௬,௧,௟൯ܯߜ൫െ݌ݔ݁
  (Eq. 19)

 
Catch may not be known for some fleets (e.g. bycatch fisheries) and a different option 
will be needed or catch assumed. 
 
The hybrid method (uses Pope’s approximation to find initials values for F and then 
solves the catch equation iteratively) used in Stock Synthesis (Methot and Wetzel in 
press.) could be used as an alternative if estimating the fishing mortalities as parameters 
becomes unstable or computationally inefficient and Pope’s approximation is not a 
sufficient approximation. A user supplied fixed number of iterations should be applied to 
ensure the derivatives remain valid.  

Parameter	setup	
How parameter estimation is set up is based on the approach used in Stock Synthesis to 
retain familiarity with users of Stock Synthesis (Table 3). The main difference is that 
multiple covariates can be used for each parameter rather than single covariates, as 
implemented in Stock Synthesis, because population processes are typically controlled by 
multiple factors. There are several components that allow the parameters to change over 
time (deviates, time blocks, and covariates), requiring that internal data structures for 
parameter values and their derived quantities will need to have a time component (both 
year and season). Parameter values can also be shared or different among categories with 
a partition or between partitions. A system similar to Stock Synthesis should be 
developed to allow the sharing of parameter values.  
 
If the “covariate” entry is greater than one, then after all the standard parameter control 
vectors are entered, the corresponding number of covariate control vectors are entered 
(Table 4).  
 
Covariates are implemented as multiplicative exponents ߠ ൌ ∑ሺ݌ݔ௕௔௦௘݁ߠ ௜௜ܫ௜ߚ ሻ. Time 
blocks are implemented as additive or multiplicative and on the natural scale or 
exponentiated depending on the parameter. 
 



QRA – Generic crab model - 8/15/2012  14

Table 3. Control setup for parameter estimation. A vector of numbers corresponding to 
the entries described below will be defined for each parameter and control aspects of the 
parameter estimation. The setup is very similar to that used for Stock Synthesis.  
 
Control  Description 

Lower bound  Lower bound on the parameter value 

Upper bound  Upper bound on the parameter value 

Initial value  Initial value 

Phase  The phase in which the parameter is estimated 

Prior Type  Normal, lognormal, zero means no prior 

Prior par 1  Parameter of the prior distribution e.g. mean 

Prior par 2  Parameter of the prior distribution e.g. sd 

Covariate 
The number of covariates used for this parameter. The pointers to 
covariates are provided in another control variable 

Deviate type  Random, random walk, zero is none 

Deviate sd  sd deviate distribution 

Deviate minimum 
year 

Year to start deviate 

Deviate maximum 
year 

Year to stop deviate 

Time Block  The block definition 

 
 
Table 4. Control setup for covariates. A vector of numbers corresponding to the entries 
described below will be defined for each covariate identified in the standard “parameter 
control vector” and control aspects of the parameter estimation.  
 
Control  Description 

Lower bound  Lower bound on the parameter value 

Upper bound  Upper bound on the parameter value 

Initial value  Initial value 

Phase  The phase in which the parameter is estimated 

Prior Type  Normal, lognormal, zero means no prior 

Prior par 1  Parameter of the prior distribution e.g. mean 

Prior par 2  Parameter of the prior distribution e.g. sd 

Covariate time series 
The number corresponding to the covariate time series entered 
in the data file 

 
 

Parameterization	 of	 size	 specific	 processes	 (e.g.	 selectivity,	 retention,	 natural	
mortality,	molting	 probability,	movement,	 initial	 conditions,	maturity,	 recruitment	
distribution)	
These are a set of functions that are useful for representing processes that change with 
size. The same function might be useful for modeling several different processes. Both 
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functions and probability distributions are used interchangeably with appropriate scaling. 
For selectivity, the functions are rescaled so the maximum is one. These functions can be 
used to model the mean growth and standard deviation of growth, but modeling the 
growth distribution will require integration over the appropriate size range.  
 
Logistic 
 
 

௅ߠ ൌ
1

1 ൅ ݌ݔ݁ ቀെ݈݊ሺ19ሻ
ܮ െ ହ଴ߠ
ଽହߠ െ ହ଴ߠ

ቁ
  (Eq. 20)

 
 ହ଴ is the size at 50%ߠ
 ଽହ is the size at 95%ߠ
 
It might be useful to have ߠଽହ to be an offset of ߠହ଴ so that the logistic curve can be 
constrained to be increasing or decreasing. 
 
Inverse logistic  
The same as the logistic with –ln(19) replaced with ln(19) 
 
Broken stick/piecewise linear 
 
This function will need input on the number of breaks and may need to be implemented 
with smooth joiners to ensure differentiability. 
 
Size-specific parameters with smoothness penalties 
A parameter is estimated for each size bin and penalties are applied to control how much 
the curve changes from one size bin to the next (Maunder and Harley 2011; see Table 5). 
The method may only be practical for applications with a small number of size bins. This 
method scales the selectivity to average one, it might be better to also make the maximum 
equal one. 
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Table 5. Equations defining the penalties applied to the non-parametric selectivity curves.  
 
Description Equation  

First 

difference 

 

   
1

21
1

1

ln ln
l N

l l
l

s s
 




     

(Eq. 21)

Second 

difference 

 

     
2

22
1 2

1

ln 2 ln ln
l N

l l l
l

s s s
 

 


     

(Eq. 22)

Third 

difference 

 

       
3

23
1 2 3

1

ln 3ln 3ln ln
l N

l l l l
l

s s s s
 

  


       

(Eq. 23)

Scaling 
௦ୀଵߣ ቈ݈݊ ቆ

∑ ௟௟ݏ

ܰ
ቇ቉

ଶ

 (Eq. 24)

Monotonic 

increasing 

    2mon
1 1if      ln lnl l l ls s s s      

(Eq. 25)

 
where 1 , 2 , and 3  are the weighting factors for the first, second, and third 

difference, respectively, ls  is the selectivity for an individual of size class l, and N is the 

number of size classes in the model.  
 
 
Restricted size range 
This curve is equal to one for all sizes within the given size range. This parameterization 
has no estimated parameters. 
 
Stock Synthesis double normal  
This is the recommended Stock Synthesis selectivity curve (Methot and Wetzel in press). 
It is constructed by combining the peaks of two half normal curves with a plateau. It also 
allows control of the selectivity at the minimum and maximum size bins. By fixing some 
of the parameters the double normal can be used to implement an asymptotic selectivity 
curve similar to a logistic.  



QRA – Generic crab model - 8/15/2012  17

 
      1, 1, 2, 2,1 1l l l l l l lasc j j l j j des        (Eq. 26)

 
Where the smooth joiner functions are defined as 
 
  1

1
1,

1

1 exp 20
1

l
l

l

L
j

L





  

        
  (Eq. 27)

 
  1

2
2,

2

1 exp 20
1

l peak
l

l peak

L
j

L





  
    

     
  (Eq. 28)

 
 

      
 

 

2
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 
 

  
  

       
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(Eq. 29)
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

  
  
 
     


 

(Eq. 30)

 
   

 

2

min 1
min1

3

exp
exp

L
t




 
   

 
  (Eq. 31)

 
   

 

2

max 2

min 2
4

exp
exp

peakL
t




 
  
 
 

  (Eq. 32)

 
   

 

2

max 1
2 1

2

0.99

1 exp
width

peak width

L L
L


 


 

  
 

  (Eq. 33)

 
Where 

lL  is the midpoint of size bin l 

minL  is the midpoint of smallest size bin l 

maxL  is the midpoint of largest size bin l 

1  is the size at which 1   begins 

2  is the width for which 1   ( 2peak  is the size at which 1   ends) 

3  determines the slope of the ascending limb 
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4  determines the slope of the descending limb 

5  is value of   at Lmin 

6  is value of   at Lmax 

Lwidth is the width of the population size bins 
 
 
Cubic splines 
See Stock Synthesis implementation (Methot and Wetzel in press). 
 
Gamma 
 
 

݂ሺܮሻ ൌ
ሻߚ/ܮሺെ݌ݔఈିଵ݁ܮ

ሻߙሺ߁ఈߚ
  (Eq. 34)

 
Where  
 
  ߤ ൌ  ߚߙ (Eq. 35)
 
  ଶߪ ൌ ଶߚߙ (Eq. 36)
 
To formulate the gamma in terms of the mean and variance use the following equations 
 
 

ߚ ൌ
ଶߪ

ߤ
  (Eq. 37)

 
 

ߙ ൌ
ଶߤ

ଶߪ
  (Eq. 38)

 
 

Lognormal 
 
 

݂ሺܮሻ ൌ
1

ߨ2√ߪܮ
݌ݔ݁ ൭െ

൫݈݊ሺܮሻ െ ሺ݈݊ሺߤሻ ൅ ଶሻ൯ߪ0.5
ଶ

ଶߪ2
൱  (Eq. 39)

 
 

Normal  
 
 

݂ሺܮሻ ൌ
1

ߨ2√ߪ
݌ݔ݁ ቆെ

ሺܮ െ ሻଶߤ

ଶߪ2
ቇ  (Eq. 40)

 

Selectivity/catchability	
Selectivity is modeled using one of the size-based functions described above (e.g. the 
Stock Synthesis double normal). An additional “availability” parameter is used so that the 
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maximum selectivity can differ among categories within partitions. (the selectivities 
should be scaled, to the extent possible, so the selectivity of the category with the highest 
selectivity is equal to one). In addition to sharing selectivity among categories within 
partitions, selectivities can be shared among fisheries (i.e. mirroring). The possibility of 
multiple selectivities for each fishery or survey should be modeled to allow for the 
availability to be shared among fisheries or surveys, or to allow the modeling of escape 
gaps and minimum legal size (MLS) that changes over time.  
 
The use of multiple and shared selectivity curves can be used to implement the 
relationship between the BSFRF survey and the NMFS survey. The NMFS covers the 
whole stock, but the BSFRF survey only covers a component of the stock. The size of the 
individuals in the area covered by the BSFRF survey may differ from that of the whole 
stock; think of this as size specific availability. The selectivity of the BSFRF survey gear 
may differ from the selectivity of the NMFS survey gear. This can be modeled using two 
selectivity curves and one size based availability curve. The whole area NMFS survey 
can be modeled with the NMFS survey gear selectivity curve, the NMFS survey in the 
BSFRF survey area can be modeled as a combination of the NMFS survey gear 
selectivity curve and the availability curve. The BSFRF survey can be modeled using the 
BSFRF survey gear selectivity curve and the availability curve. This method uses some 
of the NMFS survey data twice and if this is considered a problem, then the NMFS 
survey data outside the BSFRF survey area could be modeled as the NMFS survey gear 
selectivity curve adjusted by some function of the availability curve. 
 
One approach is to input the following control variables: 
 
Number of selectivity curves 
Number of fisheries/partition assignments  
The fisheries, partitions, and partition categories that use each selectivity curve (a special 
value e.g. 0 can be used to specify that all fisheries, partitions, or categories within a 
partition use this selectivity curve) a negative number means all except that 
fishery/partition/category has that selectivity 
 
#Nselect 
4 
#Nselect_assignments 
3 
#Select_assigments 
#Selectivity Fishery Partition category 
1 1 1 1  #categroy 1 of partition 1 has selectivity 1 for fishery 1  
2 1 1 -1 #all categories except category 1 of partition 1 has selectivity 1 for fishery 

1 
3 2 0 0  #Fishery 2 has selectivity 2 for all partitions 
4 0 0 0  #All fisheries and partitions have this curve, e.g.  restricted size range 
 
The selectivity curves and other population processes can be time varying. 
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Discards	
The discards are modeled using a retention curve that is applied to the selectivity curve, 
where the discard proportion is the difference between the selectivity and retained curves. 
The retention curve is modeled using one of the size-based functions described above. As 
with the selectivity curves, the retention curves can be the same or differ among 
categories within partitions. An additional parameter is used to model the maximum 
retention. The discard mortality rate is modeled using one of the size-based functions 
described above with an additional parameter for the maximum discard mortality rate. 
The selectivity curves and the maximum discard rate can be time varying. 
 

Growth	
Growth can be modeled either using growth increments (the increment is added to the 
original size to define the growth transition matrix) or growth transition, both of which 
are modeled in terms of probability distributions or equivalently relative frequency 
distributions. Either way the model converts these into a growth transition matrix. Several 
options are available for the mean (ߤ), standard deviation (ߪ), and probability distribution 
(݂ሺܮሻ). A separate option to pre-specify (input) the complete growth transition matrix 
should be implemented. The growth parameters can be shared or differ among partition 
categories. Reliable methods for banding transition matrices (to avoid issues related to 
computer underflow) should be considered (Jim Ianelli pers. com.). 
 
for growth increment 
 

௅→௅ሖܩ ൌ න ݂௜௡௖൫ߤ௜௡௖, ,௜௡௖ߪ ,ܮ ሖܮ െ ሖܮ൯݀൫ܮ െ ൯ܮ
௅ି௅ሖ ା଴.ହ∆௅

௅ሖ ି௅ି଴.ହ∆௅
  (Eq. 41)

 
for growth transition 
 

௅→௅ሖܩ ൌ න ݂௧௥௔௡௦൫ߤ௧௥௔௡௦, ,௧௥௔௡௦ߪ ,ܮ ሖܮ ൯݀ܮሖ
௅ሖ ା଴.ହ∆௅

௅ሖ ି଴.ହ∆௅
  (Eq. 42)

 
Note that in general ߤ௜௡௖ ൌ ௧௥௔௡௦ߤ െ ௜௡௖ߪ and ܮ ്  ௧௥௔௡௦ߪ
 
The same functions for the mean, standard deviation, and distribution can generally be 
used for both the growth increment and the transition formulations. 
 

Mean	size	
 
linear function of size 
 
  ߤ ൌ ܽ ൅  ܮܾ (Eq. 43)

 
Von Bertalanffy 
This can be modeled using the Francis model with b=1 (see below). 

 
Richards/Schnute/Francis 
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We use Francis (1995) general model, which is based on Baker et al.'s (1991) size-based 
analog of Schnute's (1981) size-at-age model. The mean size after growth is defined by  
 
 

 
1

1 0, 0trans b a t a t bL e c e a b             (Eq. 44)

 
Where L is the initial size, 1t   (for the population dynamics model, but might differ 
from 1 for interpreting growth increment data from tags if this data is used in the 
likelihood function), and a, c, λ1 and λ2 are variables to make the calculations more 
convenient.  
 
 

2 1

2 1

ln
b b

b b

y y
a

 
 

   
  (Eq. 45)

 
 
 

2 1 1 2

1 1 2 2

b b b b

b b b b

y y
c

y y

 
 




  
  (Eq. 46)

 
  1 1 1y g     (Eq. 47)

 
  2 2 2y g     (Eq. 48)

 
The model includes five parameters; y1 and y2 are arbitrary fish sizes, small and large 
respectively, g1 and g2 are the mean growth increments for fish of sizes y1 and y2, 
respectively, over a given time period (usually year); and b, which has no biological 
meaning but describes the curvature in the model. The general growth model reduces to 
the von Bertalanffy growth model when b is set equal to one. 

 
Polynomial 
 
  ߤ ൌ ܽ ൅෍ܾ௜ܮ௜

௜

  (Eq. 49)

 
This formulation might need to be modified or constrained to ensure that ߤ ൒ 0 or 
௟ାଵߤ ൒  .௟ݑ
 
 

Variance	of	growth	distribution	
Constant 
Can be modeled using the linear function with b = 0 
 
 
Linear function of size 
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  ଶߪ ൌ ܽ ൅ ܮܾ (Eq. 50)
 
Can also be modeled using the polynomial with i = 1. 
 
Polynomial 

 
  ଶߪ ൌ ܽ ൅෍ܾ௜ܮ௜

௜

  (Eq. 51)

 
The polynomial might need a constraint to keep it positive or alternatively the 
exponentiated polynomial used.  
 
 

ଶߪ ൌ ݌ݔ݁ ൭ܽ ൅෍ܾ௜ܮ௜

௜

൱  (Eq. 52)

 

Distribution	
 
Gamma 
 
 

݂ሺܮሻ ൌ
ሻߚ/ܮሺെ݌ݔఈିଵ݁ܮ

ሻߙሺ߁ఈߚ
  (Eq. 53)

 
Where  
 

ߤ ൌ  ߚߙ
 

ଶߪ ൌ  ଶߚߙ
 
To formulate the gamma in terms of the mean and variance use the following equations 
 

ߚ ൌ
ଶߪ

ߤ
 

 

ߙ ൌ
ଶߤ

ଶߪ
 

 
Lognormal 
 
 

݂ሺܮሻ ൌ
1

ߨ2√ߪܮ
݌ݔ݁ ൭െ

൫݈݊ሺܮሻ െ ሺ݈݊ሺߤሻ ൅ ଶሻ൯ߪ0.5
ଶ

ଶߪ2
൱  (Eq. 54)

 
Normal  
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݂ሺܮሻ ൌ
1

ߨ2√ߪ
݌ݔ݁ ቆെ

ሺܮ െ ሻଶߤ

ଶߪ2
ቇ  (Eq. 55)

 

Recruitment	
Recruitment is modeled as mean recruitment for each area with annual (or time period if 
more than one recruitment event occurs during a year) penalized deviates. When there is 
spatial partition, an overall annual deviate is computed that is shared by all areas and then 
area specific annual deviates. This allows some correlation of recruitment among areas. 
Multiple covariates (I) are also available for either the variation common to all areas or 
the area specific variation. Inclusion of a stock-recruitment curve requires a definition of 
age, specifically the age-at-recruitment so that the recruitment can be linked to the 
spawning biomass. The stock-recruitment curve might be kept separate from the 
modeling of recruitment so that it can be applied to a flexible range of years. In area-
specific models the spawning biomass can be pooled across areas. Therefore, for a 
specific area, the proportion of the spawning biomass from each area used to create the 
spawning biomass of the area of interest is input (this can be equal to zero for all areas 
other than the area of interest to implement area-specific stock-recruitment relationships). 
In the initial implementation the stock-recruitment relationship is ignored. Recruitment is 
only to immature new-shell partitions and either the sex ratio fixed or estimated, or the 
recruitment strength and size composition estimated separately for males and females, 
with an optional penalty on the sex ratio. 
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௭

௝

ቍ 

(Eq. 56)

 
Bias correction of the recruitment deviates (∆) is implemented with tapering following 
Stock Synthesis (Methot and Taylor 2011). The equation below is defined for y, but 
could also differ by t and z. 
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  (Eq. 57)
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1�  the first year of the bias ramp up adjustment period 

2�  the last year of the bias ramp up adjustment period 

3�  the first year of the bias ramp down adjustment period 

4�  the last year of the bias ramp down adjustment period 

max�  the maximum bias adjustment  

 
A choice of distributions is available to distribute recruitment into the size classes. An 
option for estimating size specific parameters within a given size range should also be 
implemented. 
 
  ܴ௬,௧,௟

௭ ൌ ܴ௬,௧௭ ݂ሺܮሻ (Eq. 58)
 

 
Gamma 
 
 

݂ሺܮሻ ൌ
ሻߚ/ܮሺെ݌ݔఈିଵ݁ܮ

ሻߙሺ߁ఈߚ
  (Eq. 59)

 
Where  
 

ߤ ൌ  ߚߙ
 

ଶߪ ൌ  ଶߚߙ
 
To formulate the gamma in terms of the mean and variance use the following equations 
 

ߚ ൌ
ଶߪ
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ߙ ൌ
ଶߤ
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Lognormal 

 
 

݂ሺܮሻ ൌ
1

ߨ2√ߪܮ
݌ݔ݁ ൭െ

൫݈݊ሺܮሻ െ ሺ݈݊ሺߤሻ ൅ ଶሻ൯ߪ0.5
ଶ

ଶߪ2
൱  (Eq. 60)

 
Truncated or accumulated at the minimum size bin and at the upper size bin. 

 
 

Normal  
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݂ሺܮሻ ൌ

1

ߨ2√ߪ
݌ݔ݁ ቆെ

ሺܮ െ ሻଶߤ

ଶߪ2
ቇ  (Eq. 61)

 
Truncated or accumulated at the minimum size bin and at the upper size bin. 

 
 

Natural	mortality	
Several options can be used for natural mortality. Any of the size-based functions listed 
above can be used with the addition of a parameter to scale the absolute level of natural 
mortality. In addition, a special natural mortality function that is a size-based version of 
the Maunder–Lorenzen model (see Brodziak et al. 2011) that assumes M is inversely 
proportional to size up until the size at maturity and follows the logistic curve as 
individuals mature. The rate of natural mortality may be shared among partitions for 
juveniles. It also might be desirable to estimate the size at maturity (or first maturity) 
independent of the real size at maturity (in this case the size at maturity is simply where 
the natural mortality changes and not related to maturity). Maturity can be sex specific. 
Two versions of the model are implemented: 
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Where Mjuv, and Mmat are the main parameters to estimate.   controls the shape of the 
relationship between size and natural mortality and can be fixed at a standard value from 
Lorenzen (1996) or estimated. L50 is the size at 50% maturity (or alternatively a 
parameter defining the change in M relationship) and can be fixed or estimated. Lmat is 
the size at first maturity (or alternatively when the relationship deviates from Mjuv).    
 

Molting	
The probability of molting (growing) can be modeled using any of the size-based 
functions described above and can be shared or differ among partition categories. Shell 
condition and maturity state are likely to influence the molting probability. A terminal 
molt will need to be an option such that any individual that reaches this stage does not 
molt. This may be linked to the shell condition or maturity state. 

Movement		
Movement parameters can be modeled using any of the size-based functions. In some 
cases an additional parameter will be used to model the magnitude of the movement. 
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Movement could be modeled in logit space to ensure that it is between zero and one. 
Movement in one of the directions (e.g. remaining in the current area) will be calculated 
analytically rather than as a parameter so that movement sums to one. A penalty may 
need to be applied to ensure that the movements sum to one. Movement may need to be 
implemented so it changes over time and among partition categories. 
 
  ߰௭→௭́ ൌ ݂ሺܮሻ  (Eq. 64)
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Where N is number of areas. 
 

Initial	conditions	(Initial	numbers	by	partition	categories)	
Several methods are implemented to estimate the initial conditions.  

1) Any of the size-based functions can be used to model the numbers-at-size with the 
addition of a scaling parameter. The initial conditions can be shared (equal size 
distribution and/or numbers) or different among partition categories. 
Alternatively, the size component can be the same and the scaling component 
different. 

2) Equilibrium assumptions with parameters such as fishing mortality, average 
recruitment, and penalized lognormal recruitment deviates (see recruitment 
section for similar details) following the Stock Synthesis approach. i.e. the 
average recruitment is modeled over age using growth and survival. A recruitment 
deviate is added to each age, but not propagated to older ages. The average 
recruitment used could be the average used in the dynamics or a separate (or 
offset) parameter. Fishing mortality could be estimated for certain fisheries, or 
depending on the F method, equal to F in the first few time periods (re: 
MULTIFAN-CL, Fournier et al. 1998).  

3) Similar to (2) except the average F is the same as over the first few years of 
modeling time frame. This is similar to the MULTIFAN-CL approach (Fournier 
et al. 1998) and does not work for Pope’s approximation method.  

4) Recruitment for years [Startyear – x] to [startYear – 1] estimated. Fishing 
mortalities for each of the fisheries can also be estimated. Recruitment before 
[Startyear – x] is set to zero. 

Maturity	
Maturity can either be modeled as the probability of maturing if a maturity partition is 
specifically modeled (where a transition matrix is needed to model transition from 
immature to mature) or as the proportion mature-at-size (where the maturity at size is 
applied to the number at size to determine the number mature at size). Both of these can 
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be modeled using the size-specific functions presented above. A parameter restricted 
between zero and one can be used to scale the maximum probability of maturity.  

Data	
The setup for fitting to data needs to be flexible so that data can either be separate for 
each partition category or grouped across partition categories. 

Catch	
The model needs to fit to catch data when using the Fishing mortality approach that treats 
each fishing mortality as a parameter. The catch for each fishery is fit with either a 
normal or lognormal distribution and either in biomass or numbers. The catch can be fit 
as total, retained, and/or discarded. The catch estimates described below are for retained 
catch in weight, appropriate modifications can be made for catch-in-numbers or total or 
discarded catch. 
 
a) Continuous with M 
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b) Occurring during a short period (F is exploitation rate in this formulation) 
 
  ௬,௧ܥ

௙ ൌ෍ ௟ܰ݁݌ݔሺെ∆ܯሻ ቀ1 െ ௟ݓሖ௬,௧,௟൯ቁܨ൫െ݌ݔ݁
௟

  (Eq. 70)

 
  ሖ௬,௧ܨ

௙ ൌ ௬,௧ܨ
௙ ܵ௬,௧,௟

௙
௬ܸ,௧,௟
௙

  (Eq. 71)

 
 
Negative log-likelihoods 

 
 

     2

, ,

2
,

ˆ
ln | 0.5ln

2

y t y t

y t

C C
L C 



     
  

θ   (Eq. 72)

 



QRA – Generic crab model - 8/15/2012  28

 

   
  2

2

2
,

ˆln ln 0.5
ln | 0.5ln

2

t t

y t

C C
L C






        
  

θ   (Eq. 73)

 
 

Composition	
Several options are available for fitting to composition data. There should be flexibility in 
the definition of the size bins for the observations and the possibility of multiple 
definitions within an application. This allows for the inclusion of standard size 
composition data from scientific sampling (e.g. 1mm) as well as commercial size 
category data (e.g. small, medium, and large), which may be irregular bin sizes. There 
may be a need to model alternative size transition functions to allow for different 
measurements (e.g. a transition matrix would be needed to covert from the population 
size categories to weight categories to fit to weight composition data). The composition 
data can be treated independently for each partition category or sum to one over the 
partition categories and/or over partitions (e.g. to provide sex ratio information the size 
composition data proportions should sum to one over both males and females). 
 
Normal with binomial variance (based on Fournier et al. 1998) 
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Where τ is a parameter that scales the variance.

  
Where p and p̂  are the observed and predicted proportions at size and will sum to one 
across some specified set of partitions and partition categories.   scales the variance and 
is related to the effective sample size. The option to estimate   should be available.  
 
The variance could be calculated using the observed or predicted proportions. A constant 
can be added to the variance to insure it does not get too small or alternatively some sizes 
could be pooled.  
 
Multinomial 
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Where SS is the sample size. 
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This method is problematic if the predicted proportion is zero, a small additive constant 
may be added if appropriate or alternatively some sizes could be pooled. The multinomial 
offset might be needed to avoid over/underflow errors. 
 
 
Lognormal with variance inversely proportional to the proportion 
The size frequency data is fit using the method of Punt and Kennedy (1997) that uses a 
lognormal likelihood function for the proportions at size and assumes that the variance is 
proportional to the inverse of the predicted proportion.  
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The variance parameter can be estimated analytically: 
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This method is problematic if the observed data is zero, a small additive constant may be 
added if appropriate or alternatively some sizess could be pooled. The log normal bias 
correction factor should also be considered. 
 
Multivariate logistic  
Other composition likelihoods should also be considered. Schnute and Haigh (2007) use 
the logistic-normal (or multivariate logistic; Schnute and Richards, 1995) distribution, 
which they show can be converted into a multivariate normal with appropriate 
transformations. 
 

Indices	of	abundance	
Indices of abundance (e.g. surveys or CPUE) are fit using a lognormal distribution (other 
likelihood functions such as the normal and t-distribution should also be considered). 
Flexibility should be implemented so that the abundance indices can be separated or 
combined by size groups, partition categories or partitions. There should be an option for 
multiple catchabilities so that availability or the proportion of the area covered can be 
modeled and shared among surveys. For example, if the area of a survey changes over 
time, there could be a catchability for the survey in general, and then a catchability for 
each time period based on the area covered in that time period. This could be 
implemented using a method similar to that described above for catchability/selectivity.  
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Where   is the nonlinear relationship parameter. 
 
The catchability coefficient and standard deviation can be calculated analytically (The 
following equations assume that the variance is constant over time and need to modify for 
year specific variance scaling or additive values and the associated lognormal bias 
correction factor. Equations are also available for Bayesian analysis) 
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Discards	
The discard data can be modeled as explained in the section on catch data. 

Tagging	
The following is only an example of how tagging data might be integrated into the model. 
The tag data could include tag growth increment, tag-recapture, and tag-recapture with 
growth increment. The catch conditioned movement model of McGarvey and Feenstra 
(2002) might also be useful. 
 
We use Francis (1995) general method to estimate growth with mark-recapture data, 
which is based on Baker et al.'s (1991) size-based analog of Schnute's (1981) size-at-age 
model. Francis' model combines a general size-based growth function that predicts the 
mean growth increment from the size at release and time at liberty, with an error structure 
that includes both measurement error and individual variability in growth. This model 
was used by Maunder (2001) to estimate growth for skipjack tuna in the EPO. The 
observed growth increment is assumed to be normally distributed with the variance of the 
growth increment a function of both time at liberty and size at release using Maunder’s 
(2001) generalized growth variation model. To simplify the calculations, measurement 
error is assumed to either be only in size at recapture or that this assumption is an 
adequate approximation to measurement error in both the size at release and size at 
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recapture. A robust version of the normal distribution based likelihood is used to reduce 
the influence of outliers that may be due to incorrect recording of size or date 
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Where  

m  and 2
m  are the mean and variance of the measurement error, respectively. 

 
 

Mortality	
Total mortality or fishing mortality can be fit using the normal or lognormal likelihood 
functions. For example, the lognormal likelihood for age and time specific total mortality 
would be: 
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Weighting	and	priors	
Weighting factors should be included for all likelihood components. These should follow 
the Stock Synthesis approach where the lambdas are all set to one unless explicitly 
modified. One addition is to allow a change to influence all fisheries and/or surveys (see 
the approach for assigning selectivity parameters above). 
 
Priors should be implemented on all model parameters similar to the approach used in 
Stock Synthesis. The priors should include the Normal, Lognormal, and beta  
distributions. The beta distribution can be used for parameters that are between zero and 
one or other bounds such as steepness of the stock-recruitment relationship, which is 
between 0.2 and one. 
 
Normal 
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Lognormal 
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Bounded Beta (from Methot and Wetzel in press) 
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The standard deviation additive and multiplicative factors should be estimable for all 
likelihood components. Algebraic (maximum likelihood) solutions should be 
implemented where possible. Although, there should also be the ability to estimate them 
as free parameters, particularly if Bayesian MCMC is being applied. The analytic 
solution for Bayesian methods should also be considered.  
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