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Estimation of area swept is a key component for standardizing catch per unit effort (CPUE) data from fish-
ery independent bottom trawl surveys and survey trawl gear experiments. Given technological advances
and the proliferation of data streams from net mensuration equipment and global positioning system
(GPS), techniques for estimating survey effort can be improved. Here we investigate new analytical tech-
niques for improving the accuracy and precision of survey effort estimation. Sources of error and bias
associated with two of the components used to compute area swept as a measure of fishing effort, dis-
ottom trawl survey
istance fished
et width
equential outlier rejection

tance fished by the trawl and net spread, are systematically examined and their influence quantified using
both simulated and survey data. New analytical methods, a cubic spline smoothing algorithm to smooth
GPS and net spread data, a haversine great circle algorithm to calculate distance between smoothed GPS
track points, and a sequential outlier rejection algorithm to diminish the influence of noise on mean net
spread estimates are shown to reduce or even eliminate the influence of biased observations on area

swept estimators.

. Introduction

Fishery-independent trawl surveys provide vital information for
sh stock assessment and management in many countries through-
ut the world. Abundance estimates based on results from these
urveys are considered to be more reliable than those derived
trictly from commercial fisheries data because survey effort and
rawl catchability can be controlled through standardization (e.g.,
tauffer, 2004) to minimize variability of these two parameters in
ime and space. The problem of both spatial or temporal changes in
atchability that result in bias leading to errors in stock assessment
nd management and its ramifications have been well studied (e.g.,
everton and Holt, 1957; Byrne et al., 1981; Collie and Sissenwine,
983; Pennington, 1986; Swain et al., 1994; Pennington and Godø,
995). However, the analogous problem of spatial or temporal
ariability in the error associated with fishing effort estimation
as surprisingly received little attention (e.g., Gould et al., 1997),
lthough this bias is often combined or confounded with changes

n catchability.

Technological advances have allowed for greater precision in
he estimation of effort in trawl surveys over time. For instance,

Abbreviations: GPS, global positioning system; CPUE, catch per unit effort;
FSC, Alaska Fisheries Science Center; NMFS, National Marine Fishery Service; SOR,
equential outlier rejection; MSE, mean squared error.
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fishing time (e.g., catch/hour) is often used as a standard unit of
effort, but even relatively small differences in mean vessel speed
over the sampling period can produce large changes in the sam-
pled area or catch rates (Alderstein and Ehrich, 2002). The advent
of more accurate and precise positioning methods (i.e., GPS) allows
better estimates of the distance traveled by the net during the
sampling period (distance fished) and many surveys currently use
distance as the standard unit of effort. The development of acoustic
net mensuration systems now allows continuous monitoring and
recording of net spread throughout the tow (ICES, 2009), which in
tandem with distance fished can be used to calculate area swept
(distance fished × net spread) allowing a much more accurate, pre-
cise, and unbiased estimator of standard fishing effort. This study
focuses on the development of methods to more accurately and
precisely estimate components of survey effort that may reduce
some of the variability of bottom trawl survey area swept estimates.
This is done by systematically evaluating the methods currently
being used at the U.S. National Marine Fisheries Service (NMFS),
Alaska Fisheries Science Center (AFSC), to screen data coming from
survey instrumentation, in addition to examining the analytical
procedures used to compute area swept as latent sources of bias.
Although we use only data from the AFSC surveys, the methods
presented here should be applicable to other bottom trawl surveys
around the world that use area swept estimates of effort derived
from GPS and acoustic net mensuration equipment.

A known source of error in the estimation of distance fished

is the noise inherent in the GPS system. GPS noise results from
atmospheric conditions, measurement noise, ephemeris errors (the
difference between actual and expected orbital position of a GPS
satellite), clock drift, or multipath errors (error resulting from a

dx.doi.org/10.1016/j.fishres.2011.04.007
http://www.sciencedirect.com/science/journal/01657836
http://www.elsevier.com/locate/fishres
mailto:stan.kotwicki@noaa.gov
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s Rese

s
b
t
s
c
t
t
p
t
p
t
o
c
p
s
a
e
f
m

d
e
E
t
v
u
m
l
t
a
m
b
b
o

s
t
t
t
m
o
m
d
m
b
d
s
p
l
e
o
c
m
t
o
o
w

2

2

d
d

S. Kotwicki et al. / Fisherie

ignal that rebounds from a local obstruction before being received
y the GPS unit; Hofmann-Wellenhof et al., 1997), hence each posi-
ion along a tow path is subject to estimation error. Additional
ystematic sources of error can also result from GPS antenna motion
aused by the pitch and roll of the vessel. A popular approach
o reducing the effect of these types of error has been to reduce
he polling frequency of positional information (Palmer, 2008). As
olling frequency decreases, the error in distance fished as a frac-
ion of the total distance fished decreases. Some surveys decrease
olling frequency to the lowest rate possible and calculate the dis-
ance fished as a straight line between the start and end positions
f the tow (e.g., Stauffer, 2004). However, low polling frequency
an result in large underestimation of distance fished when tow
aths are sinuous (Palmer, 2008). Another approach has been to
mooth GPS data before the application of a distance algorithm in
n attempt to describe the true tow path after noise removal. Sev-
ral different smoothing algorithms have been applied to GPS data
rom trawl surveys, including simple exponential smoothing and

oving average type smoothers (Stauffer, 2004).
Bias can also result from the algorithm used to estimate the

istance fished along a smoothed tow path. Most surveys have
mployed a variant of either a great circle (Vincenty, 1975) or a
uclidean (Stauffer, 2004) distance estimator. Some implementa-
ions of the great circle estimator are inaccurate when estimating
ery small distances due to rounding errors introduced through the
nderlying trigonometric functions (Snyder, 1987). The Euclidean
ethod of estimating distance underestimates the path length over

ong distances on the Earth’s surface, since it assumes a planar sys-
em and yields the length of the chord bounding the segment whose
rc (the distance traveled) connects the chord’s endpoints. This esti-
ation error is likely quite small over the short distance covered

y a typical survey tow (ca. 1–3 km). Euclidean estimators can also
e inaccurate over short distances if the assumed ellipsoidal model
f the earth’s surface is incorrect.

The accuracy of net spread observations from net mensuration
ystems are affected by several factors. Sound sources other than
he two transducers that produce sound at or near the specified
ransmission frequencies can result in incorrect readings. Although
he beam angles of these systems are typically quite large, misalign-

ent of the transducers can lead to indirect path signals resulting in
verestimation of the distance between the transducers. Any move-
ent of the sensors independent of the movement of the net or

oors can also result in measurement error. The most common net
ensuration systems estimate the distance between transducers

y converting the time between sending and receiving a signal into
istance, assuming a constant sound speed of 1500 m s−1. However,
ound speed is not constant and varies with water temperature,
ressure, and salinity. Therefore errors also can occur in the calcu-

ation of mean spread estimates when surveys sample over variable
nvironmental conditions. Mean net spread estimates for a tow are
ften calculated by first eliminating spurious observations, typi-
ally rejecting values outside an acceptable range, and calculating a
ean from the remaining spread values (ICES, 2009). We will refer

o this method as gating (or using fixed gates) in the remainder
f this manuscript. If accurate spread measurements are excluded
r inaccurate spread measurements are included, biased estimates
ill result.

. Material and methods

.1. Distance fished
We considered two components of estimation of over ground
istance fished: the data smoother and the algorithm to estimate
istance from the smoothed points. Four smoothing algorithms
arch 110 (2011) 198–206 199

were evaluated: a moving average smoother; simple exponential
smoothing (Brown and Meyer, 1961); Friedman’s super smoother
(Friedman, 1984); and the cubic spline (Hastie and Tibshirani,
1990). A series of simulations were undertaken to evaluate the
relative performance of each smoother. Each simulation consisted
of first constructing a tow path with a total distance traveled of
2.778 km (1.5 nm) simulating GPS data collected at 2 s intervals for
30 min at a speed of three knots. The course along the tow path
was changed at each observation by randomly choosing a course
change from a range of allowed values at the given sinuosity level.
As the sinuosity level increased, the range of course change allowed
between consecutive observations increased, thereby increasing
the sinuosity of the tow path. The result was then considered the
‘known’ tow path. Random noise was added to the known tow
path by randomly choosing a distance from a normal distribution
with a standard deviation equal to the pre-selected noise level and
then randomly choosing a direction from the known observation.
The ‘observed’ position was then calculated using the distance and
direction from the known position. Each smoother was then applied
to the simulated GPS data and a distance was calculated for the
smoothed tow path. Since each smoother investigated has some
sort of smoothing parameter mechanism to control overall smooth-
ness, each smoother was investigated at several smoothness levels
which we hereafter refer to as span. Five hundred simulations were
conducted at each of six noise levels (1, 5, 10, 15, 25, 50), six sin-
uosity levels (0.05, 1, 2.5, 5, 7.5, 10), and seven span levels (4, 6, 8,
10, 15, 30, and 60; Fig. 1).

The running mean smoother used mimicked the smoother cur-
rently used to smooth GPS data from AFSC surveys. The latitude
and longitude of each smoothed position was estimated as the
mean of the latitudes and longitudes of the current point and span
level × 2−1 points both before and after the current point. For sim-
ple exponential smoothing, the smoothing parameter ˛ was set at
2 × (span+1)−1. We used the ‘supsmu’ function in R to implement
the super smoother, using a span of span × (total number of GPS
observations)−1. We used the ‘smooth spline’ function in R (version
2.11.1, R Development Core Team (2010)) to implement the cubic
spline algorithm, setting the number of knots argument (nknots) to
(total number of GPS observations)·span−1. Although the spans are
not completely analogous among the smoothers due to their differ-
ent methodologies, we hoped that the inclusion of this parameter
would give us some insight into the tradeoffs between the ability
to accurately measure distance while the vessel is changing course
and eliciting the true vessel path in the presence of large amounts
of noise. The mean and variance of the differences between esti-
mated and known tow path lengths were examined to evaluate
each smoother’s robustness to random noise and changes in course
(i.e., sinuosity).

The distance algorithm used was an implementation of the
haversine great-circle algorithm (Sinnott, 1984) correcting for the
oblate spheroid of the earth. This algorithm was chosen because
of its ability to accurately estimate distance even for points in
very close proximity (i.e., <1 m apart). Some great circle algorithms
commonly used to calculate distance do not perform well at small
distances due to rounding errors incurred in the underlying inverse
cosine function. The haversine algorithm avoids the inverse cosine
function and therefore allows much more accurate estimation of
small distances.

2.2. Net spread

Two aspects of net spread estimation were considered. First,

simulated net spread data were used to develop a robust method of
estimating mean spread using iterative sequential outlier rejection
(SOR) and smoothing. Second, survey observations of temperature
and depth were used to estimate sound speed on a tow-by-tow
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ig. 1. Results of smoother comparison simulations. Each plot depicts a comparison
cross all sinuosity levels. Each boxplot represents the range, median, and upper an

asis to increase the accuracy of acoustically-derived estimates of
pread.

A flexible and robust procedure was developed in R to estimate
ean net spread, even under conditions of noisy and biased raw

ata, which is often a case with actual survey data. Net spread
ata simulating a 30 min tow were created by choosing a starting
et spread value, then allowing the net spread to vary randomly
ithin given limitations at two second intervals, creating a series

f ‘known’ net spread values. Random noise was created for each
nown value by randomly selecting a value from a normal distri-
ution with a mean of zero and a given standard deviation (noise

evel), and adding this value to the known net spread value. Non-
andom error (bias) was then added in a similar way by selecting
rom a beta distribution with a given bias level specified by the ˛
nd ˇ parameters. Using this method, we were able to examine in
etail the effects of both random (noise) and non-random (bias)
rror on mean net spread estimates. Appropriate ranges of noise
nd bias were determined from extensive observations of previ-
usly collected survey net spread data. Simulations were conducted
t 11 noise levels with standard deviation between 0.5 and 5 m and
ix bias levels from −2 to +2 m. Five hundred iterations at each

ombination of standard deviation and bias level were performed.

A sequential outlier rejection and smoothing procedure was
teratively applied to the simulated data to identify and reject out-
iers from the raw data stream. The SOR procedure was initiated
e performance for smoothers used in simulations at different span and noise levels
quartiles of a simulation with 500 replicates.

by fitting a cubic spline smoother to the simulated net spread data
and removing points greater than a given rejection distance from
the smoothed line. We began with a rejection distance of 20 m.
Then the cubic spline was fitted to the data again and outlier rejec-
tion distance decreased by 0.1 m. This procedure was iteratively
repeated in increments of 0.1 m until all values > 0.1 m from the
smoothed line were rejected. The squared error (SEi) and bias (Bi)
were then calculated for each SOR iteration by comparison to the
known values. The mean squared error (MSEi) for each iteration
was calculated according to the formula: MSEi = SEi + B2

i
Results from the iterative SOR simulation (Fig. 2) were analyzed

to identify the minimum MSEi (MMSE). The MMSE was then used
to estimate a SOR stopping rule most appropriate for each com-
bination of noise and bias levels. The mean stopping distance and
95% confidence bounds for each combination were then calculated
(Fig. 3). The noise level determined the stopping rule almost exclu-
sively, while bias levels had little or no effect (except for the highest
noise levels). As a result, a function that related stopping distance
to noise level was calculated and this function was used to deter-
mine the stopping rule in the generalized SOR procedure (Fig. 4).
This function would be used to estimate the most appropriate stop-

ping rule for the SOR procedure when analyzing actual survey data.
Results from SOR procedure were then compared to the outcome of
the fixed gate outlier rejection that is currently used in AFSC. This
method rejects all the values that are outside an acceptable range,
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Fig. 2. Example of the stopping rule estimation in the sequential outlier rejection
(SOR) simulation analysis. The stopping rule was estimated from the total error (solid
line) which was the sum of the squared error (open circles) and the squared bias
(dashed line). The vertical line indicates the minimum mean square error (MMSE).
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oise has the most deterministic effect on the stopping rule while bias has con-
iderably smaller effect or no effect at all for smaller noise levels.

hich is 10–22 m for all Alaskan bottom trawl surveys conducted

y the AFSC.

In order to test the effects of improving the accuracy of
coustically-derived net spread by using a more accurate estimate
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ig. 4. Generalized relation between the sequential outlier rejection (SOR) stopping
istance and noise level (y = −0.3034x2 + 2.9428x − 0.1112).
Fig. 5. Bias that remains in the net spread estimates after processing raw net spread
data, using no outlier rejection, fixed gates to reject outliers, and sequential outlier
rejection (SOR).

of sound speed, we applied Coppens formula (Coppens, 1981) as
follows:

c(D,S,t) = c(0,S,t) + (16.23 + 0.253t)D + (0.213 − 0.1t)D2 + [0.016 +
0.0002(S − 35)](S − 35)tD

where c(0,S,t) = 1449.05 + 45.7t − 5.21t2 + 0.23t3 + (1.333 −
0.126t + 0.009t2)(S − 35),where t is temperature in degrees Celsius
divided by 10, S is salinity in parts per thousand, and D is depth
in kilometers. Ranges of validity of this formula are: temperature
0–35 ◦C, salinity 0–45 parts per thousand, and depth 0–4000 m.

Mean depth and temperature were observed with a micro-
bathythermograph for most of the tows between 1999 and 2007.
Salinity observations were unavailable so a constant of 32 ppt was
assumed. The ratio of the resulting estimated sound speed to the
assumed 1500 m s−1 was used to infer the bias associated with the
use of a fixed sound speed in net spread calculations.
2.3. Effect on CPUE estimates

The effect of implementation of these new methods was
assessed using data collected during Aleutian Islands, Bering Sea,
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Fig. 6. Spatial variability in net spread data as observed during the 2003 Bering Sea survey (map on the left) and the effect of proposed methodological changes on effort
estimated from 2003 wing spread data (with 95% least significant difference confidence bounds; graph on the right). Note that highest bias was observed for net spreads in
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he range of 19–22 m, which correspond to the western and deeper side of the sur
emoved by application of SOR procedure.

nd Gulf of Alaska surveys conducted between 2007 and 2010. Area
wept was calculated for each tow using both current and new
ethods and the differences between these estimates were cal-

ulated as percent change in area swept estimates between new
nd old methods.

. Results

.1. Distance fished

The cubic spline smoother generally outperformed all other
nvestigated smoothers in the simulations in terms of robustness
o sinuosity of the tow path, random noise, and choice of span. The
ubic spline produced estimates that were consistently very close
o the known values and less variable than any other smoother
xamined (Fig. 1), although true distance fished was consistently
nderestimated by a small amount (typically < 0.5%). The series of
imulations clearly demonstrated the importance of choosing an
ppropriate span for a given noise level, although the cubic spline
moother was much more robust in this regard than the other
moothers. Span levels that were smaller than indicated by the
oise resulted in overestimates of distance fished, while too large a
pan level undersmoothed the data resulting in underestimates of
istance fished. The errors associated with too small a span were
ften quite large, particularly in the case of the simple exponential
moother and the supersmoother (Fig. 1). All four smoothers under-
stimated distance fished at the highest levels of sinuosity and large
pans, particularly when the noise levels were high, although again
he cubic spline estimates were less variable and closer to the actual
alues than the other smoothers.

.2. Net spread

The SOR procedure increased the accuracy and precision of
et spread estimation in simulated data and consistently pro-
uced better estimates of net spread than methods that use fixed
ates (currently used in AFSC) for removing outliers (Fig. 5). Most

mportantly, it greatly reduced the induced bias resulting from
he asymmetrical distribution of simulated net spread observation
rrors. The apparent asymmetrical distribution of net spread error
s commonly seen in the net mensuration data, and the SOR proce-
ea, resulting in the spatially variable bias in the area swept estimates. This bias is

dure appeared to consistently capture the spread signal from the
noise and apparent bias (Fig. 6).

Estimated sound speeds during survey tows were always less
than the assumed 1500 m s−1, ranging from 1394 to 1497 (Fig. 7),
and varied considerably in both space and time in all three surveys
resulting in bias ranging from 7.1% to 0.2%. Lower temperatures and
higher pressures in deeper water resulted in lower sound speeds
than in shallower areas, resulting in a spatial bias in all survey areas
(example of Gulf of Alaska in Fig. 8). Sound speeds were also lower
in years with lower water temperatures, resulting in an important
source of temporal bias (example of Bering Sea in Fig. 9).

3.3. Effect on CPUE estimates

The effect of implementation of the new methods on CPUE esti-
mates between 2007 and 2010 is presented in Fig. 10. The use of the
cubic spline resulted in corrections of area swept estimates ranging
from −7 to 9% with majority of the tows ranging between −3 and
2%. SOR corrections were in the range from −7 to 10%, with majority
of the corrections ranging between −2 and 2%. Application of esti-
mated sound velocities resulted in negative corrections for all tows
ranging from −4 to −1% with majority between −4 and −2%. The
application of all three corrections collectively changed area swept
from approximately −10 to 7% with the majority of corrections in
the range from −5 to 0%.

4. Discussion

We have shown an important, yet often overlooked, source
of bias in abundance estimates that can result from the analyti-
cal methodology used to estimate the individual components of
area swept (i.e., distance fished and net spread). Based on our
results, we propose three new analytical methodologies (cubic
spline smoother, haversine algorithm, and SOR) to estimate area
swept that will reduce or eliminate sources of spatial or temporal
bias associated with these calculations.

A necessary assumption for most fisheries stock assessments

where fishery-independent survey data are available is that the
index of abundance derived from a survey is directly related to
the true abundance of the species of interest. Random error in the
estimation of catch, effort, or catchability decreases the probability



S. Kotwicki et al. / Fisheries Research 110 (2011) 198–206 203

Fig. 7. Histograms of the distribution of sound speeds in near-bottom area calculated from Coppens formula (Coppens, 1981) by taking into account mean depth and
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emperature observed for each tow where data were available for AFSC tows betw
leutian Islands (grey columns).

f detecting changes in population density and lowers confidence
n abundance estimates, but is not a source of bias. Survey esti-

ates often exhibit much higher interannual variability than would
e expected from within-survey variability (Francis et al., 2003).
everal authors have demonstrated success in reducing the effects
f interannual observation error from time series of survey esti-
ates through modeling efforts (e.g., Byrne et al., 1981; Collie

nd Sissenwine, 1983; Pennington, 1985; Stockhausen and Fogarty,
007). However, identifying and eliminating sources of observa-
ion error is preferable to removing their effects after the fact.
iased estimates are not problematic for most stock assessments
s long as they are stationary in both space and time. However,
on-stationary biases that are not properly accounted for lead to
nreliable estimators of abundance.

For most trawl surveys, trawl catchability is unknown but
ssumed to be stationary and there is a large body of literature on

he problems that can result when this assumption is not met (e.g.,
odø and Engås, 1989; Hilborn and Walters, 1992; Wilberg et al.,
010). However, similar problems can arise if the unit of effort is

ig. 8. Variability in bias associated with lack of correction for sound speeds vs.
epth in the Gulf of Alaska surveys.
999 and 2007 in Bering Sea (white columns), Gulf of Alaska (black columns), and

spatially or temporally non-stationary. Considerable attention has
been given in recent years to the standardization of survey gear and
procedures to reduce variability in survey estimates (e.g., Stauffer,
2004; ICES, 2009) since it has been demonstrated that inconsistent
trawl performance (i.e., non-standard trawl geometry) can result
in variable catch efficiency and increased uncertainty in CPUE esti-
mates (e.g. Koeller, 1991; Weinberg and Kotwicki, 2008). These
efforts have helped reduce problems of non-stationary effort that
were caused by non-uniformity of survey gear or trawling meth-
ods used on different vessels or by different vessel personnel. Our
work goes a step further by examining the algorithms used in effort
estimation and proposing new methodologies that can be used to
improve them.

4.1. Bias associated with GPS random error

Attempts to limit the effect of GPS noise often include a smooth-
ing algorithm to estimate the actual tow path. Several of the
smoothing algorithms we tested produced biased estimates of dis-
tance fished in the presence of noisy GPS data, especially when
inappropriate spans were used. When noisy GPS data are suspected,
but the magnitude of the noise is unknown, it is best to err on the
side of choosing too large a span rather than too small a span as
the magnitude of the potential errors associated with the latter
is much larger. The current AFSC method (i.e., the running mean
smoother) often overestimates distance fished and this bias rapidly
increases at noise levels greater than 5 m. The quality of GPS data
collected routinely on the surveys we examined between 1992 and
2007 has increased over time for several reasons including higher
quality receivers and the introduction of the Wide Area Augmen-
tation System (WAAS) in North America. As a result, noise levels
have decreased over time resulting in interannual differences in
GPS noise bias. Many sources of GPS error are also temporally auto-
correlated, which may translate into spatial differences in GPS posi-
tional accuracy as our survey vessels move through a survey area.

The elimination of spatially and temporally variable noise levels
in our GPS data is important to prevent biased abundance estimates.
Our simulation work shows conclusively that the bias associated
with GPS noise levels can be minimized through the use of a more
robust smoothing algorithm (i.e., the cubic spline), and we rec-

ommend it to replace the current running mean smoother. The
cubic spline smoother also produced the least variable estimates
of distance fished because it was superior at reducing the effect
of random noise, thereby increasing the precision of area swept
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ig. 9. Examples of spatial variability in bias (%) associated with lack of correction
ote temporal aspect of variability in bias associated with between-year difference

stimates. The only situation in which the cubic spline does not
erform well with actual GPS data is in the rare case of large GPS
lunders and this is true of all smoothers we examined. Therefore

e recommend eliminating these obvious positional errors before

he application of the distance fished procedure. Fortunately, these
lunders are easily detected by plotting and examining the raw GPS
ata.

ig. 10. Histograms of the relative differences between the old and new estimates of area
pline for spread, and corrected sound velocity for spread) are applied on individual ba
laskan waters.
und speeds in the Bering Sea in years 1999 (colder year) and 2003 (warmer year).
mperature.

4.2. Bias associated with asymmetrical distribution of outliers in
net spread data
Raw net spread data are often very noisy. Fixed gating meth-
ods assume that mean net spread values will vary around a known
mean value and that measurement error around the mean is ran-
dom. When net spread is markedly different from the assumed

swept when proposed corrections (cubic spline for distance fished, SOR and cubic
sis (three upper rows) or collectively (last row) for three bottom trawl surveys in



s Rese

m
i
r
s
a
t
m
i
a
c
s
a

i
m
i
d
l
s
l
r
p
l
p
d
e
s

4
s

a
i
a
d
a
b
t
s
o
d
o
m
b

4
a

m
d
H
a
v
a
i
c
t
m
n
e
l

2
w

S. Kotwicki et al. / Fisherie

ean or when there is a trend in the spread data, the use of inflex-
ble gating can create an asymmetrical distribution of error in the
educed data set, even when the observed errors are random and
ymmetrical, resulting in a biased estimate of mean net spread. In
ddition, net spread is dependent on depth which can result in spa-
ial biases in mean net spread estimates. Regardless of the gating

echanism used, asymmetrical net spread error around the mean
s often observed and brings with it similar problems even if the
ctual mean net spread is close to the assumed mean. Estimates
an also be biased when net spread and data density vary over a
ingle tow, since intervals with a higher density of observations
re more influential in the calculation of the mean spread.

The SOR procedure resolves the gating problem by establish-
ng flexible gates which are symmetrical around the instantaneous

ean signal from the data. These gates can be established by apply-
ng the stopping rule function presented above to the net spread
ata from the survey. It also yields unbiased estimates when out-

iers are asymmetrically distributed relatively far from the mean
ignal. However, in some cases, asymmetrically distributed errors
ying close to the mean signal were not removed by the SOR,
esulting in an apparent small residual bias. Despite these minor
roblems, we recommend the use of the SOR procedure as a much

ess biased alternative to the fixed gate method. The SOR procedure
resented here can be used for outlier rejection in the net spread
ata and is broadly applicable to other types of data. However, for
ach new application it would be necessary to perform analogous
imulations in order to estimate an appropriate stopping rule.

.3. Bias associated with assumption of constant sound speed in
eawater

The assumption of a sound speed of 1500 m s−1 was not reason-
ble for most of the tows in Alaskan trawl surveys. High variability
n near bottom temperatures among the three surveys (e.g., Lauth
nd Acuna, 2007) resulted not only in large intra-annual spatial
ifferences in the magnitude of the bias but also in significant inter-
nnual differences related to the natural temperature fluctuations
etween years (Figs. 8 and 9). Additional bias can be attributed to
he depth-dependence of sound speed through water. The obvious
patial and temporal aspects of this bias recommend the adoption
f the tow-by-tow method of sound speed estimation using in situ
epth, temperature and salinity observations when available. To
btain corrected net spread data (or net height) the ratio of the esti-
ated sound speed to the assumed sound speed can be multiplied

y the estimates of net spread obtained directly from instruments.

.4. Considerations for implementing new methods to improve
rea swept estimates

Maintaining consistent methodology through time is one of the
ost important considerations for any survey whose goals include

eveloping a time series to track changes in abundance over time.
owever, when new methods and technologies are developed that
llow more precise and less biased estimates, the benefits of pro-
iding the best possible estimates going forward must be weighed
gainst the potential cost of devaluing the time series by chang-
ng methodology. In our case the decision is made easier since the
hanges we are proposing involve analytical methodology rather
han data collection and we will be able to retroactively apply these

ethods to years for which the requisite data are available begin-
ing in the early 1990s. We also believe that reasonably accurate
stimates for earlier years could be derived from modeling efforts

everaging data from later years.

The new area swept estimates for the years between 2007 and
010 (Fig. 10) indicate that the expected corrections for these years
ill range between −5 and 0%. However we believe that correc-
arch 110 (2011) 198–206 205

tions may be greater in years prior to 2007 due to lower quality
of GPS or net spread data. These new methods of estimating area
swept will undoubtedly result in changes to previously published
abundance estimates of all species assessed by AFSC bottom trawl
surveys and therefore some disruption in the current time series.
However, considering that we will be able to project the proposed
changes back about 15 years and the fact that current stock assess-
ments will be minimally affected by potentially small biases in
earlier years, we feel that the benefits of implementing the method-
ological changes described outweigh any problems posed by lack
of information from earlier survey years and fulfill our obligation
to provide population estimates using the best possible scientific
methods.

5. Summary

Some methodologies that are chosen to estimate effort in fishery
independent surveys are likely an additional source of uncertainty
in abundance estimates from these surveys. They are also likely to
change and develop over time, but shortcomings of these method-
ologies can be easily overlooked in the attempts to standardize
surveys, and their effect on the error in CPUE estimates is often
unknown. In the light of the findings of this investigation it is appar-
ent that the sources of error in the estimates of effort in bottom
trawl surveys can be significant and it is important that we consider
them carefully as we seek to standardize surveys (ICES, 2004).
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