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a b s t r a c t

Ecosystem-based fisheries management (EBFM) approaches allow a broader and more extensive
consideration of objectives than is typically possible with conventional single-species approaches.
Ecosystem linkages may include trophic interactions and climate change effects on productivity for the
relevant species within the system. Presently, models are evolving to include a comprehensive set of
fishery and ecosystem information to address these broader management considerations. The increased
scope of EBFM approaches is accompanied with a greater number of plausible models to describe the
systems. This can lead to harvest recommendations and biological reference points that differ
considerably among models. Model selection for projections (and specific catch recommendations)
often occurs through a process that tends to adopt familiar, often simpler, models without considering
those that incorporate more complex ecosystem information. Multi-model inference provides a frame-
work that resolves this dilemma by providing a means of including information from alternative, often
divergent models to inform biological reference points and possible catch consequences. We apply an
example of this approach to data for three species of groundfish in the Bering Sea: walleye pollock,
Pacific cod, and arrowtooth flounder using three models: 1) an age-structured “conventional” single-
species model, 2) an age-structured single-species model with temperature-specific weight at age, and
3) a temperature-specific multi-species stock assessment model. The latter two approaches also include
consideration of alternative future climate scenarios, adding another dimension to evaluate model
projection uncertainty. We show how Bayesian model-averaging methods can be used to incorporate
such trophic and climate information to broaden single-species stock assessments by using an EBFM
approach that may better characterize uncertainty.

Published by Elsevier Ltd.

1. Introduction

The Scientific and Statistical Committees, SSCs, of the Regional
Fishery Management Councils are required to provide recommen-
dations for overfishing limits, OFLs, and Acceptable Biological
Catches, ABCs, as well as evaluate whether a stock is subject to
overfishing or is in an overfished state. For most major stocks,
these recommendations are based on the outcomes of quantitative
stock assessment methods, which involve fitting population
dynamics models to monitoring data collected during fishing
and surveys. For stocks managed by the North Pacific and Pacific
Fishery Management Council (NPFMC, 2012; PFMC, 2011), the

stock assessments are based on single-species models that typi-
cally ignore the impacts of time-varying predation mortality.

Most stock assessments involve pre-specifying the values for
some of the parameters of the population dynamics model (e.g.,
the rate of natural mortality, M, fecundity as a function of length or
age, and the survey catchability coefficient), making structural
assumptions (e.g. vulnerability for a given fleet is a time-varying
logistic function of length, recruitment is related to spawning
stock size according to the Beverton–Holt form of the stock-
recruitment relationship), choosing the data sets used when fitting
the model (e.g., should fishery catch rate data be used or ignored
given uncertainties regarding the relationship between catch rate
and abundance), and assigning statistical weights to different
assessment data components. Although model fits to data may
be similar, the results of stock assessments can be highly sensitive
to parameter values and choices regarding model structure (e.g.,
Myers et al., 1994; Taylor and Stephens, 2013; Holsman et al., In
this issue; Patterson et al., 2001)
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In general, fisheries management advice (and hence OFLs and
ABCs) is based on a single “best” model (and hence set of
assumptions), and uncertainty is quantified about that model
conditioned on its assumptions being correct. Typically, uncer-
tainty is quantified using asymptotic methods, bootstrapping, or
Bayesian methods (Magnusson et al., 2013). However, many
sources of uncertainty are ignored when applying these methods,
so the measures of uncertainty reported to managers usually
underestimate the true amount of uncertainty (Ralston et al.,
2011; Punt et al., 2012). The difference between the OFL and the
ABC for a stock (the “buffer”) is meant to reflect the amount of
scientific uncertainty. ABCs are often set so that the probability
that the ABC exceeds the true OFL equals a selected value, P*
(where P*o 0.5), i.e. P(ABC4OFL)¼P* (Prager et al., 2003;
Shertzer et al., 2008; Prager and Shertzer, 2010). However, the
true probability that the ABC exceeds the OFL will be larger than
the P* estimate if uncertainty is underestimated. This would occur
if the uncertainty associated with assumptions regarding model
structure were ignored. Here we propose an example on how an
EBFM approach could be used frommultiple alternative ecosystem
models to provide a better accounting of structural uncertainties.

The use of multispecies and ecosystem models for fisheries
management is generally considered to be a key component of
Ecosystem Based Fisheries Management (EBFM) (Marasco et al.,
2007; Plagányi, 2007). However, similar to single-species stock
assessment methods, projections based on two ecosystem models
(or variants of one ecosystem model with alternative assumptions)
often reflect uncertainty about model structure and assumptions
regarding values for pre-specified parameters. For example,
Kaplan et al. (2013) evaluated the impacts of depleting forage
species in the California Current ecosystem using Atlantis (Fulton
et al., 2004, 2011a, 2011b; Horner et al., 2010) and Ecopath-with-
Ecosim (Christensen and Walters, 2004; Field et al., 2006). How-
ever, the results from these two ecosystem models differed
markedly and increased the uncertainty about whether reducing
forage species abundance would have a negative or positive effect
on some ecosystem components. In another study, Kinzey and
Punt (2009) showed that the results of a multispecies stock
assessment were sensitive to the choice of the relationship
between predation mortality and the density of predators and
prey. The multispecies models examined by Kinzey and Punt
(2009) predicted that Pacific cod (Gadus macrocephalus) in the
Aleutian Islands could have been increasing or decreasing prior to
1990 depending on this relationship. This illustrates that assump-
tions about functional responses can affect predictions in critical
ecosystem components. Regarding reference points, including
trophic interactions in models can have large impacts, especially
for key prey species (Collie and Gislason, 2001).

These considerations imply that alternative model formulations
should be based on plausible working hypotheses and assigning
model weights or prior probabilities (given the a priori likelihood
of the specified model). Ideally, within-model estimation uncer-
tainty would further contribute to statistical inference of the
combined multiple-model results. Results typically include projec-
tions of population size under alternative harvest control rules or
catch scenarios as well as specific outputs such as OFLs and ABCs.
Model averaging allows diverse, yet plausible, model results to
collectively be used to guide management, and can provide
estimates of uncertainty derived from both data fit (as is the case
with individual models) as well as model structure and assump-
tions. It allows the uncertainty regarding which model is correct to
be reflected in the advice used for management rather than simply
selecting a single “best” model and ignoring the others.

Here we provide a brief review of the multi-model inference for
fisheries assessment applications, focusing in particular on two
alternative ways to implement model averaging for EBFM. We then

use model averaging to integrate the results from three classes of
model (single-species, temperature-specific single-species,
temperature-specific multispecies) for three scenarios regarding
future catch in the eastern Bering Sea in terms of impacts on the
spawning stock biomass of walleye pollock (Gadus chalcogrammus),
Pacific cod and arrowtooth flounder (Atheresthes stomias).

2. Overview of model averaging

This study focuses on practical approaches for model averaging
and contrasts weighted versus unweighted methods. For the
weighted approach, we focus on a Bayesian Model Averaging
(BMA) and categorize unweighted methods as “ensemble” fore-
casting. Burnham and Anderson (2002) detail a number of alter-
natives, e.g., weighting models using AIC and others contrast
approaches including frequentist weights (Millar and Jardim,
2015). For our purposes, BMA requires that estimates of the
posterior probability of each candidate model be available. This
probability needs to be derived by fitting the model to available
data. However, the probability of the model given the data cannot
be derived for all models (e.g. dynamic ecosystem models) such as
Atlantis (Fulton et al., 2004, 2011a, 2011b; Kaplan et al., 2013) or
the Forage/Euphausiid Abundance in Space and Time (FEAST)
model (Aydin et al., In this volume) because they cannot be
formally fitted to data. It is consequently impossible to apply
BMA or methods which weight models based on other metrics of
model fit such as AIC weights in many situations. When this is the
case, posterior probability distributions can be approximated by
“envelopes of plausibility” derived from ensemble/Monte Carlo
runs of each model where each run is based on a different (yet
plausible) set of parameters, with the probability assigned to each
model based on expert judgment (i.e. the “Delphi method”), a
process which we refer to as “ensemble” forecasting. Butterworth
et al. (1996) proposed the following four-level scheme to assign
‘plausibility ranks’ to the hypotheses underlying alternative mod-
els that could be used to weight models when “ensemble”
forecasting is conducted:

1. how strong is the basis for the hypothesis in the data for the
species or region under consideration;

2. how strong is the basis for the hypothesis in the data for a
similar species or another region;

3. how strong is the basis for the hypothesis for any species; and
4. how strong or appropriate is the theoretical basis for the

hypothesis?

For the population dynamics models typical of fisheries man-
agement, BMA and ensemble forecasting fundamentally involve
making projections. Each model can be projected multiple times
(the outcomes will differ if there are multiple parameter choices
for each model or the projections account for future stochasticity
due to recruitment variability for example). The results of model
averaging can be summarized by the overall mean or median of
some quantity of management or scientific interest (the median is
used here), the spread of results, and by individual trajectories.
The mean of the projections is a “best estimate”, but simply
showing the median trajectory loses the advantage of conducting
multiple forecasts, namely to characterize uncertainty. Ianelli et al.
(2011) summarized the results of projections for multiple models
by illustrating intervals containing 50% and 80% of the combined
outcomes over future climate scenarios to illustrate the overall
uncertainty. They also showed a subset of individual trajectories to
characterize the nature of year-to-year variability.
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2.1. Bayesian Model Averaging (BMA)

The philosophy underlying Bayesian Model Averaging has been
outlined by several authors (e.g. Buckland et al., 1997; Durban et al.,
2005; Hoeting et al., 1999; Kass and Raftery, 1995; Raftery et al.,
2005; Chimielechi and Raftery, 2011). Ideally, BMA involves fitting
the range of models to the available data and computing the
probability of each model given the data. This weighting of models
should ideally be conducted using Bayes factors, which quantitatively
evaluates the credibility of a model relative to other models (Aitkin,
1991; Kass and Raftery, 1995). However, studies have weighted
alternative models, using, for example, the Deviance Information
Criterion (Spiegelhalter et al., 2002), Akaike's Information Criterion
(Akaike, 1973; Burnham and Anderson, 1998), and the Bayes Infor-
mation Criterion (Schwartz, 1978). The latter two weighting schemes
are non-Bayesian, but are relatively easy to compute in contrast to
Bayes factor and DIC which require that a Bayesian analysis be
conducted, which can be computationally prohibitive even for
relatively simple ecosystem models (e.g. Parslow et al., 2013).

Bayes factor, DIC, AIC, and BIC can only be computed if each
model is fit to the same data set. If the models are fit to different
data sets, weighting each model would require a more ad hoc
approach, such as fitting the models to a subset of the data and
predicting the remaining data (i.e., cross-validation). In this case,
the weight assigned to each model could be proportional to the
inverse of the mean square error associated with its predictions.

Given probabilities for each model, the Bayesian model averaged
forecast is constructed by conducting multiple projections for each
model and generating the overall forecast by selecting projections at
a sampling rate proportional to the probability of the model. Table 1
summarizes an application of Bayesian Model Averaging in which
five models are used to predict the fishing mortality and spawning
biomass corresponding to maximum sustainable yield (FMSY and
SMSY) for Atlantic cod (Gadus morhua; Hill et al., 2007; Brodziak and
Legault, 2005). The best model in Table 1 is RBH, but model RZBH is
almost as likely. The model-averaged results are as expected closest
to the best models, but the standard errors for the model-averaged
results are larger than for either of the two best models. The weights
assigned to each model in Table 1 are based on the Bayes factor.
Bayes factors can be computed in this case because all of the models
use the same data and the models are fairly simple.

2.2. Ensemble forecasting

Ensemble forecasting involves generating multiple projections
of future system state under different choices for assumptions or

parameter values. In principle, both structural and parameter
uncertainty can be addressed through the use of multi-model
ensembles. This approach is widely used in climate modeling
where uncertainty is reflected in the accuracy of the approxima-
tions to the well-known and accepted physical principles of
climate, and the inherent variability of the climate system. The
climate system is chaotic, and the timing and phases of major and
long-lasting fluctuations are largely unpredictable beyond time-
horizons of a few years. Consequently, slightly different initial
conditions for a climate model can lead to markedly different
outcomes 40–50 years into the future. Whether including climate
in population dynamics models has major impacts on the esti-
mated future state of the populations under investigation depends
on how the dynamics of the populations are linked to climate and
the strength of the associated relationships.

Probabilities can be assigned to model configurations (the
underlying model equations and the values for its parameters)
or entire model configurations can be considered plausible using
hindcast simulations of past conditions (e.g. Overland and Wang,
2007), although past performance is not necessarily a good
indicator of success in simulating future climate (Reifen and
Toumi, 2009). A’mar et al. (2009) based projections on six general
circulation models which were selected for both their accuracy
with respect to the historical data and their predictions with
respect to future climate scenarios. Specifically, these six models
were in the subset of models that replicated the spatial pattern
and temporal characteristics of the first principal component of
sea surface temperature (SST) in the North Pacific Ocean (the PDO)
observed in the latter half of the twentieth century (A’mar et al.,
2009). It is worth noting that unlike the tactical application of
ensemble forecasts used in climate systems, most fisheries appli-
cations are geared to making strategic decisions (i.e., devising
tactical approaches that are robust to the plausible, yet uncertain,
future outcomes).

2.3. Fisheries examples of model averaging

Model averaging in fisheries assessments is rare; the focus for
fisheries management tends to be either selection of a best model
or identification of harvest control rules that are robust to model
selection and parameter value uncertainty (Butterworth, 2007).
However, there are a few examples of where model averaging has
been applied to fisheries population dynamics models and these
are reviewed here.

2.3.1. Weighted model averaging
BMA has been applied to account for uncertainty regarding the

form of the stock-recruitment relationship (usually Ricker vs.
Beverton–Holt) and the error structure (autocorrelated or not,
and the distribution for the residuals) (Patterson, 1999; Brodziak
and Legault, 2005). BMAwas used by Brandon and Wade (2006) to
account for uncertainty regarding the form of the population
dynamics model underlying a stock assessment (density-depen-
dent or non-density-dependent, and whether the stock was at its
environmental carrying capacity at the start of the modeled
period) in an assessment of the Bering–Chukchi–Beaufort seas
stock of bowhead whales, Balaena mysticetus. The weights
assigned to each model by Brandon and Wade (2006) were based
on Bayes factor; they developed their posterior distributions for
each model using the sample-importance-resample algorithm,
which allowed straightforward computation of the posterior
probability of each model. Wilberg and Bence (2008) used Monte
Carlo simulation to show that model averaging of alternative
formulations for how fishery catchability changes over time
performed better than using DIC to select a “best” model.

Table 1
Spawning stock biomass (SMSY: thousands of metric tons) and fishing mortality rate
(FMSY: per year) associated with MSY for Georges Bank Atlantic cod (Gadus morhua)
based on five stock-recruitment models (Brodziak and Legault, 2005). Standard
deviations are given in parentheses.

Model Posterior probability SMSY FMSY

RBH 0.34 193.7 (26.2) 0.21 (0.03)
RABH 0.15 176.1 (39.1) 0.23 (0.05)
RZBH 0.33 188.7 (33.6) 0.22 (0.02)
RZABH 0.16 172.7 (34.6) 0.23 (0.03)
SRK 0.01 87.5 (57.4) 0.69 (0.01)
Model average 184.7 (38.2) 0.23 (0.06)
80% credibility intervals (135.8, 233.6) (0.15, 0.31)

RBH, informative recruitment priors with uncorrelated Beverton–Holt; RABH,
informative recruitment priors with autocorrelated Beverton–Holt; RZBH, informa-
tive recruitment and steepness priors with uncorrelated Beverton–Holt; RZABH,
informative recruitment and steepness priors with autocorrelated Beverton–Holt;
SRK, informative slope at origin priors with uncorrelated Ricker (Ricker, 1954,
modified from Hill et al., 2007).
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Brodziak and Piner (2010) used BMA to integrate uncertainty due
to the form of the stock-recruitment relationship (Ricker or Bever-
ton–Holt), the extent of autocorrelation about the stock-recruitment
relationship, and two values for the steepness of the stock-
recruitment relationship for striped marlin (Tetrapturus audax) in
the North Pacific. Unlike Brodziak and Legault (2005), Brodziak and
Piner (2010) approximated the Bayes factor using BIC.

2.3.2. “Unweighted” model averaging
The ensemble approach has been applied fairly extensively to

management of groundfish off the US west coast. For example, it was
applied to rebuilding strategies for cowcod (Sebastes levis) off south-
ern California that were developed by Dick and Ralston (2009). They
provided forecasts for a range of assessment models, each of which
was conditioned on one of a set of values for the steepness of the
Beverton–Holt stock-recruitment relationship. Each projection was
weighted based on a pre-specified probability distribution for steep-
ness. Hamel (2011) conducted projections to evaluate times for
Pacific Ocean Perch (Sebastes alutus) to rebuild to the proxy for the
biomass at which maximum sustainable yield is achieved, BMSY for
three models, given different levels of future fishing mortality and
catch. Two of these models were assigned probability 0.25 and the
third model was assigned a probability of 0.5 based on relative
plausibility provided in Hamel and Ono (2011).

Ianelli et al. (2011) evaluated the performance of management
strategies for walleye pollock in the eastern Bering Sea. Recruit-
ment was linked to predictions of SST from 82 Intergovernmental
Panel on Climate Change (IPCC) models—SST, among other envir-
onmental factors, was found by Mueter et al. (2011) to be a
possible factor affecting pollock recruitment. These 82 models
were selected by downscaling IPCC models to the eastern Bering
Sea ecosystem and using retrospective studies to identify models
that performed best for this system (Wang et al., 2010).

Kolody et al. (2008), Kolody (2011), and Davies et al. (2012)
developed an ‘uncertainty grid’ for assessments of swordfish
(Xiphias gladius) in the Indian and Pacific Oceans, and explored
structural uncertainty in a balanced factorial design. The results of
the assessment were presented in terms of box plots of output
statistics for each level of the factors considered. Kolody et al.
(2008) explored sensitivity to stock-recruitment steepness, mixing
proportions, growth rate/maturity/mortality options, the extent of
variation about the stock-recruitment relationship, selectivity
constraints, and data weights. Of 768 model configurations, a set
of 192 model configurations considered the “most plausible
ensemble” were used to summarize stock status. This ensemble
was selected using three metrics: the root mean square fit to the
catch rate index, the effective sample sizes for the length-
frequency data, and the difference between observed and model-
predicted mean catch lengths (similar to the method of Francis,
2011). Kolody (2011) assigned weights to each of the factors on
which the uncertainty grid was based using auxiliary information
and the quality of the fits to the data, which led to some factors,
such as that recruitment is related deterministically to spawning
biomass, being assigned zero weight.

Gardmark et al. (2013) evaluated a “biological ensemble mod-
eling approach” over different ecological assumptions including
climate forcing. They evaluated seven ecological models ranging
from single-species to food web models and concisely distilled
some key population indicators (e.g., extinction, increase from
2009 levels) under high and low fishing mortality scenarios.
Importantly, they were able to highlight the relative sensitivity
of biological characteristics and multispecies interactions from
climate effects on the populations of interest.

An unusual form of ensemble modeling has been applied to
calculate strike limits for the Bering–Chukchi–Beaufort Seas stock

of bowhead whales and the Eastern North Pacific stock of gray
whales, Eschrichtius robustus. This involves calculating strike limits
from two different methods and averaging them (Punt and
Donovan, 2007). The philosophy underlying this approach is that
each model can be wrong some of the time so averaging model
results will lead to an outcome that is never very badly wrong (but
is usually somewhat wrong).

3. Application to walleye pollock, Pacific cod and arrowtooth
flounder

3.1. Alternative models

Three classes of models formed the basis for the analysis (Table S1):

1. The single species assessment models currently used by the
AFSC to provide management advice for Eastern Bering Sea
(EBS) walleye pollock (e.g., Ianelli et al., 2012), Pacific cod (e.g.
Thompson and Lauth, 2012), and arrowtooth flounder (e.g.,
Spies et al., 2012). The assessments for these stocks are based
on software developed specifically for those stocks coded using
AD Model Builder (Fournier et al., 2012). All of the three single
species assessments have the following features in common:
(a) they are fundamentally age-structured and use an annual
time step; (b) estimates of annual fishing mortality rates are
conditioned on the total catch (retained and discards) esti-
mates, (c) fishery data (catch biomass and catch proportions at
age) are aggregated over seasons and areas within each year,
(d) proportions at age from surveys and fisheries are fitted
using estimated (or assumed) multinomial sample sizes, (e) life
history parameters and environmental effects are assumed
constant, and (f) survey indices (abundance or biomass) are
modeled using lognormal assumptions and annually-specified
observation errors (variances). Uncertainty in the projections
based on these models reflects both parameter uncertainty
(including selectivity), captured through MCMC sampling from
the joint posterior distribution, and process error, captured
through variation in recruitment about mean recruitment.

2. The Temperature-Specific Multispecies Model (MSMt, aka
CEATTLE for Climate-Enhanced Age-based model with
Temperature-specific Trophic Linkages and Energetics; Hols-
man et al., In this issue) is an example of a “model of
intermediate complexity” (Plagányi et al., 2014). The imple-
mentation of MSMt for the eastern Bering Sea includes the
three focal species, models natural mortality for each species
and age as the sum of a pre-specified residual natural mortality
and time-varying predation mortality due to the predators
included in the model. Predation mortality is driven by
temperature-dependent daily ration and a suitability function,
which is based on observed proportions of each prey species by
age in the diets of each predator species by age. Weight-at-age
is also assumed to depend on temperature and varies annually.
The parameters of MSMt are estimated by fitting the model to
data on catch age-composition as well as survey biomass index
and age-composition data. The projections of the model
assume that future recruitment at age-0 is lognormal about
mean recruitment. Two variants of MSMt are considered, one
that includes multispecies predator-prey interactions (MSMtA),
and one which assumes natural mortality is constant over time
(MSMtB). The latter differs from the single species models used
by AFSC in that weight-at-age in MSMtB depends on tempera-
ture and some other structural simplifications (e.g., constant
fishery selectivity over time). Stochasticity in future projections
based on MSMtA and MSMtB account only for process error in
future recruitment.
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Four climate scenarios are considered for MSMtA and MSMtB
because temperature influences weight-at-age and the predation
mortality function in MSMt. The first of four scenarios assumes
that future temperature equals the average observed temperatures
(temperature scenario 1). The next three of four temperature
scenarios are based on mean summer water column temperature
predicted from a ROMS model for the Bering Sea forced by three
statistically downscaled global climate models (Wang et al., 2010).
These temperature scenarios were:

Scenario 2 “ECHO-G version 4, T30 resolution model” (Legutke
and Voss, 1999),

Scenario 3 “CCMA model” (Canadian Centre for Climate Model-
ling and Analysis CGCM3-t47; Flato et al., 2000; Flato and
Boer, 2001; Kim et al., 2002, 2003), and

Scenario 4 “MIROC 3.2” (Watanabe et al., 2011; K-1 model
developers, 2004)

A single realization of each of these three climate scenarios was
used as plausible characterizations of atmospheric forcing and
oceanic boundary conditions for the regional ROMS forecasts of
the Bering Sea (2013–2040; Fig. 1).

3.2. Projections

Each projection of the 1000 iterations for each model involved
the forecast period (2013–2039). For the purposes of this study,
projected recruitment was assumed to have the same mean and
variance for each species as observed for the historical period. In
addition, population model projections included three alternative
constant future catch scenarios:

1. Catches set to the mean catch over the most recent 15 years
(Table 2).

2. Catches set to the maximum catch over the most recent 15
years (Table 2).

3. No future catches of any species.

4. Results

4.1. Results by model scenario

Figs. 2–4 shows the time-trajectories of spawning stock biomass
the three models individually and includes the effect of fishing. Also,
three sets of results are shown for the MSMtA and MSMtB models,
one for each climate scenario. There is relatively little difference
amongst the four climate scenarios for the MSMtA and MSMtB
models, although the projections including alternative future

temperature scenarios (rows 2–4 in Figs. 3 and 4) are more variable.
This is unsurprising given the low variability shown by the data in
Fig. 1.

The general patterns between the two single-species models
(AFSC; Fig. 2 and MSMtB; Fig. 4) share some qualitatively similar
traits but also show some major differences. Specifically, the declines
in abundance under the mean and maximum catches for pollock and
Pacific cod are much greater for MSMtB. The cause of the differences
between the two single-species models is unlikely to be due to
temperature impacts on weight-at-age because the qualitative dif-
ference in results remains even when future temperature equals the
historical mean. This is more likely due to differences in the
assumptions regarding fishery selectivity in projections where
MSMtB is balancing periods of selectivity shifted to be younger than
the age-specific maturity schedule whereas the more recent selec-
tivity trend is more focused on older pollock. In contrast, the single-
species model uses the assumption that the most recent 5-year
average selectivity-at-age is most appropriate for projection pur-
poses. This points out that simplifications in the MSMt models'
treatment of individual species are important to consider in evaluat-
ing projecting interactions and such factors should be considered
when developing relative weights among models.

The results are also markedly sensitive to whether MSMt is
applied in single-species or multispecies mode (Figs. 3 and 4).
Specifically pollock is predicted to decline and then rebuild under
all catch scenarios (including zero catch) for MSMtA (multispecies
mode) whereas pollock is predicted to increase under zero catch
and decline under mean and maximum catches for MSMtB
(single-species mode). The difference between the single-species
and multispecies predictions for cod is attributable primarily to
the combined effect of cod and arrowtooth predation and pollock
cannibalism in MSMtA. The abundance of Pacific cod is more
robust between MSMtA and MSMtB, but the extent of decline in
cod abundance is much greater under the multispecies version of
the model (again reflecting the importance on the source of age-1
cod predation). The trends in biomass of arrowtooth flounder are
similar between MSMtA and MSMtB for the first few years of the
projection period. However, unlike the MSMtB, MSMtA predicts
stability or an increasing trend in arrowtooth abundance post-
2030 (Figs. 3 and 5). Because the increasing trend in arrowtooth
abundance is not evident in MSMtB, this result is probably a
consequence of temperature effects of weight-at-age combined
with a slight decrease in predation by cod (and possibly pollock).

4.2. Model averaged results

Fig. 5 shows results for three model classes when results are
pooled over climate scenarios for the two MSMt models. Example
results of the projections, including those based on model aver-
aging, are summarized quantitatively in Table 3 by the median and
50% and 90% intervals for spawning biomass in 2039, the last year
of the projection period.

As expected, model averaging across climate scenarios (assigning
equal weight to each climate scenario) confirms that the impacts of
the different climate scenarios on the model outcomes are not large
(Fig. 5). The widths of the 90% intervals in Fig. 5 for the model-

Fig. 1. The four future temperature time-series on which the MSMt projections are
based. The constant temperature is the average over time for the “hindcast”
(dashed line).

Table 2
Catches (t) used in the projections.

Stock Mean catch over Maximum catch over
1998–2012 1998–2012

Pollock 1,226,280 1,490,900
Pacific cod 191,938 220,134
Arrowtooth flounder 13,458 17,737
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Fig. 3. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder (columns) for three catch series when the projections are based
on the MSMtA model. The results for each temperature scenario are shown as rows: average of hindcast values (a–c), ECHO-G (d–f), CCMA (g–i), and MIROC-ESM (j–l). The
bold lines are distribution medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the distributions.
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averaged results for MSMtA and MSMtB are narrower than those for
the individual climate models, suggesting that variation in recruitment
has a larger impact on uncertainty than the choice of climate model in
this case.

Fig. 5 (bottom panel) and Table 3 show results when all models are
averaged (with equal weight assigned to all three models). In this case,
the widths of the 90% intervals are wider for the model-averaged
results than for the results for each individual model, reflecting that
between-model variation is greater than the variation due to climate
scenario (models MSMtA and MSMtB), parameter uncertainty (AFSC
single-species models) and recruitment variation (all three models).

5. Discussion

Effectively capturing uncertainty is a key focus for modern stock
assessment science, and quantifying uncertainty in fisheries stock
assessment models has been a focus for stock assessment scientists for
decades (e.g., Patterson, 1999; Patterson et al., 2001; Hill et al., 2007;
Magnusson et al., 2013). A full accounting for uncertainty requires

adequately representing uncertainty regarding growth rates, natural
mortality, the form and parameters of the stock-recruitment relation-
ship, and how data are weighted. However, conventional approaches
to quantifying uncertainty fail to capture ‘model uncertainty’, i.e. the
uncertainty associated with the structural assumptions of a model. In
general, single-species stock assessments make a small number of
very strong assumptions (e.g. that natural mortality is independent of
time). On the other hand, multispecies and ecosystemmodels typically
require more numerous and more specific assumptions (e.g. that the
functional relationship for predator and prey has the Holling Type II
form) and commonly assume other simplifying assumptions (e.g.,
constant fishery selectivity). Since these model types each make
somewhat different types of compromises, applying model averaging
approaches (BMA or ensemble) is an appropriate way to express a
broader and presumably more comprehensive range of uncertainty.

Variability in climate scenarios contribute less to overall uncer-
tainty than recruitment variation for the MSMtA and MSMtB models
(Fig. 5, Table 3). However, model uncertainty is a more marked
source of uncertainty than parameter uncertainty, recruitment varia-
tion, and the choice of climate scenario. It is, however, noteworthy
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Fig. 4. Time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder (columns) for three catch series when the projections are based
on the MSMtB model. The results for each temperature scenario are shown as rows: average of hindcast values (a–c), ECHO-G (d–f), CCMA (g–i), and MIROC-ESM (j–l). The
bold lines are distribution medians, the light shaded areas contain 50% of the distributions and the dark shaded areas contain 90% of the distributions.
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that the impact of model uncertainty depends on the particular catch
scenario under investigation. It is largest for the zero catch scenario,
in particular given the impact of ‘release’ of Pacific cod, a major
predator of pollock in the MSMtA model. The models are more
consistent in their predictions when the projections are based on the
mean catch and most consistent for the projections based on the
maximum catch where the biomass of predators and concomitant
predation mortality is lowest (and thus differences between model
parameterizations of predation mortality are lowest).

Comparing alternative models has also raised another challenge in
developing more “holistic” multispecies models. As noted above,
simplifications in the multispecies model (e.g., constant fisheries
selectivity) can introduce substantial differences in projections. For
example, considering the estimated selectivity (Fig. S1) and mean
body mass at age (but the same natural mortality-at-age) for pollock
results in substantially different yield curves between the MSMt
model and the single species model used for projections (Fig. S2).
This highlights the need to compare potentially subtle fishery and
demographic characteristics when comparing multispecies projections
with their single-species counterparts. Nevertheless, the different ways
of modeling selectivity and body mass at age are plausible and do
reflect alternative hypotheses. Such choices made by modelers

(lacking evidence to favor alternatives) remain an important, often
unaccounted-for source of uncertainty. Ralston et al. (2011) character-
ized this type of uncertainty in single-stocks species stock assessments
by the extent of different assessment variations among analysts and a
similar approach could be extended to this type of model averaging.

The model forecasts were assigned equal probability in con-
structing the model-averaged forecasts. This was because there is
no way for the hindcast and forecast skills of the three models to
be compared at present. The ideal of using Bayes factor (or DIC,
AIC, BIC) is infeasible in this case because although the parameters
of the single-species model and MSMt are estimated by fitting
them to monitoring data, each model has slightly different
statistical weights and/or levels of aggregation in the data sources.
In principle, each model could be weighted objectively by a cross-
validation-like approach. For example, one could fit the model
including data only up to 2008 and using the fitted model to
predict the survey estimates of abundance for 2009, 2010, 2011,
etc. given the catches that actually occurred during 2009, 2010,
2011; models that fit the observations better would obtain a
higher weight.

The illustrative application of this paper was based on three
models. However, there are several other models that could have
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Fig. 5. Model averaged results (over climate scenarios) for time-trajectories of spawning stock biomass for walleye pollock, Pacific cod and arrowtooth flounder for three
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been included in the application. These include alternative multi-
species models such as the multispecies virtual population analy-
sis model of Jurado-Molina and Livingston (2002), and the
statistical multispecies model developed by Kinzey and Punt
(2009). Other models available for the Bering Sea include an
Ecosim model (Aydin et al., 2007), the FEAST model, the multi-
species surplus production model of Mueter and Megrey (2006),
and a spatially-structured model of pollock (Hulson et al., 2013)

Future work could involve evaluating the hindcast and forecast
skill of projections based on a single model as well as on a model
average of multiple models (c.f. Wilberg and Bence, 2008). This
could involve fitting the model to a subset of the data and
conducting projections. The skill of the modeling approach could
then be evaluated in terms of the percentiles of the predicted
distributions in which the actual observations occurred. Ideally,
the percentiles associated with the data should be uniformly
distributed over 0–100. Large numbers of observations in the
upper and lower tails of the forecast distributions would suggest
that uncertainty is underestimated while no or few observations in

the tails would suggest that uncertainty is overestimated. The
benefits of using single models or model-averaged results could
also be evaluated using simulations in which a true model is
defined and data typical of an actual situation generated. This
approach has been used extensively to evaluate the performance
of single-species stock assessment methods, but has only been
applied in a limited capacity for multispecies and ecosystem
models, Kinzey (2010) being a noteworthy exception.

Ultimately all approaches to applying model averaging involve
subjective choices. These range from the initial choice of models to
consider, along with a prior probability associated with each
model. The latter is particularly a concern when many of the
models are based on the same underlying philosophy. For exam-
ple, the single-species assessments and MSMt, while different in
several respects, make identical assumptions regarding many
biological and fishery processes and cannot be considered to be
totally independent. Similarly, MSMtA and MSMtB are identical
except that the former allows for time-varying predation mortality
while the latter does not.

Table 3
Percentiles of the distributions for the 2039 estimated spawning stock biomass for the individual models and for the model averaged results.

Model Climate
scenario

Pollock Pacific cod Arrowtooth flounder

Low
5%

Low
25%

Med.
50%

Up
75%

Up
95%

Low
5%

Low
25%

Med.
50%

Up
75%

Up
95%

Low
5%

Low
25%

Med.
50%

Up
75%

Up
95%

a) Zero catch scenario
MSMtB Average 3671 4566 5281 6208 8039 398 498 575 662 815 275 322 365 414 498

ECHO-G 3827 4764 5509 6471 8391 425 532 615 708 871 237 279 317 358 434
CCMA 4093 5089 5876 6906 8959 471 591 682 785 969 192 227 258 292 355
MIROC-ESM 3963 4931 5690 6696 8678 449 562 649 747 920 211 250 284 321 390

MSMtA Average 1525 2011 2461 3103 4683 258 310 354 405 497 217 265 313 368 470
ECHO-G 1426 1903 2359 3017 4649 261 313 357 410 510 181 221 261 308 395
CCMA 1359 1784 2226 2859 4342 275 329 376 432 531 142 174 206 242 309
MIROC-ESM 1500 1975 2412 3056 4566 279 334 381 438 537 163 199 237 278 352

Single
species

4042 5144 6269 7806 11,616 322 398 474 564 725 412 477 529 588 691

MSMtB Averaged 3830 4810 5620 6538 8450 432 544 628 730 902 212 260 304 357 445
MSMtA Averaged 1458 1894 2378 3022 4616 265 324 369 421 518 161 206 251 308 411
All Averaged 1631 2927 5088 6556 9653 294 381 478 611 812 178 254 331 476 617

b) Mean catch scenario
MSMtB Average 0 1 644 1919 3794 0 0 33 121 279 183 229 272 319 406

ECHO-G 0 55 996 2251 4159 0 6 83 176 342 148 188 225 266 341
CCMA 0 340 1447 2663 4737 0 46 143 240 423 110 144 175 208 271
MIROC-ESM 0 41 989 2306 4277 0 4 78 178 355 133 170 204 240 309

MSMtA Average 145 1609 2773 4160 7149 0 0 2 36 139 174 239 299 376 507
ECHO-G 104 1453 2642 4091 7216 0 0 5 51 161 132 187 237 306 422
CCMA 44 1312 2532 3929 7130 0 0 14 69 181 91 134 175 229 322
MIROC-ESM 105 1545 2797 4257 7404 0 0 5 53 170 121 172 219 278 381

Single
species

2031 2844 3651 4820 6973 0 61 170 261 437 357 421 471 531 632

MSMtB Averaged 0 66 993 2240 4311 0 5 81 184 360 129 176 216 266 353
MSMtA Averaged 66 1428 2669 4129 7216 0 0 5 52 167 116 172 229 306 446
All Averaged 0 1134 2636 3867 6380 0 2 73 189 378 127 198 279 427 561

c) Maximum catch scenario
MSMtB Average 0 0 0 2 1,784 0 0 0 5 156 152 198 240 287 374

ECHO-G 0 0 0 83 2,302 0 0 0 32 215 117 157 194 235 310
CCMA 0 0 0 402 2,865 0 0 12 104 305 82 116 146 179 241
MIROC-ESM 0 0 0 60 2,279 0 0 0 28 223 107 143 176 213 281

MSMtA Average 4 1,270 2,559 4,049 7,472 0 0 0 0 1 168 242 308 388 530
ECHO-G 4 1,273 2,593 4,111 7,729 0 0 0 0 3 124 190 248 318 443
CCMA 1 1,288 2,570 4,165 7,759 0 0 0 0 8 80 134 182 241 341
MIROC-ESM 2 1,286 2,678 4,284 7,867 0 0 0 0 3 115 174 224 288 401

Single
species

1,727 2,529 3,344 4,388 6,288 0 0 53 178 367 339 403 452 512 612

MSMtB Averaged 0 0 0 109 2,365 0 0 0 43 236 101 147 186 236 322
MSMtA Averaged 4 1,265 2,642 4,165 7,699 0 0 0 0 3 110 176 235 318 459
All Averaged 0 2 2,111 3,522 5,949 0 0 0 76 280 114 181 268 417 543
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The outcomes from this model averaging exercise are
expressed in terms of time-trajectories of spawning output given
a time-series of catches. However, the primary use of stock
assessments is to define whether overfishing is taking place and
whether the stock is in overfished stock, which, given the way
fisheries management advice is provided in the US, requires a way
to define the management reference points SMSY and FMSY. These
reference points are well-defined for the single-species assess-
ments (although the precision of the estimates even from single-
species models can be poor). However, there are several alter-
native ways to define these reference points for multispecies and
ecosystem models (Moffit et al., In this issue). Holsman et al. (In
this issue) illustrates how SMSY and FMSY can be calculated for a
range of definitions for SMSY and FMSY for three species included in
the analyses of this paper. Ultimately, model averaging could be
used to compute ensemble distributions for stock status relative to
reference points if probabilities could be assigned to each of the
definitions for SMSY and FMSY.

We suggest that model uncertainty can be as large, or even
exceed, many of the types of uncertainties considered routinely in
stock assessments. Use of model averaging can quantify the range
of outcomes from multiple models and better characterize uncer-
tainty. Given that ABCs and OFLs are often reduced based on
scientific uncertainty, accounting for model uncertainty can
inform buffers between OFLs and ABCs and hence provide an
improved ability to achieve fishery goals such as avoiding over-
fishing and preventing stocks from becoming overfished.
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