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INTRODUCTION

During the past several years, the REFM group at the Northwest
anhd Alaska Fisheries Center has been investigating the fisheries
oceanography of northeast Pacific and Bering Sea salmon
populations. As part of this effort it has developed the NOPASA
model which simulates the oceanic wmigration of sockeye salmon
biomass (Favorite and Laevastu, 19279; Honkalehto and Rabe, in
prep.; Rabe and Honkalehto, in prep.). There has been much
discussion in the scientific literature of whether the food
resources in the North Pacific Ocean are adequate to support an
increase in salmon aquiculture (Sanger, 19725 Bailey et. al.,
19775 Walters et. al., 19785 Favorite and Laevastu, 197%). This
report details an investigation of potential salmon carrying

capacity using a biomass-based simulation model.

The determinatiaon of true carrying capacity of an ocean area
with respect to a given species must quantitatively account for
the species’ predators, competitors and food availability
(Favorite and Laevastu, 197?). Using a simple carrying capacity
simulation model and assuminhg salmon out-compete other potential
predators for their prey, an estimate was made ot the food
resources available to pink, coho, chum, king and sockeye
salmon. Yearly food requirements of each species were computed.
These were then compared with the best available prey biomass
estimates and the results interpreted in light of the ocean’s

potential to sustain salmon enhancement.



METHODS

Salmon diets

An extensive literature survey was conducted in order to
identify the major prey of five species of north Pacific salmon
(Oncorhynchus spp.? during the marine portion of their life
cycle. Pacific salmon feeding habit data aobtained during the
past several decades (Allen and Aron, 19385 Andrievskaya,
1958,1958685 Bailey et.al., 19773 Favorite, 12703 Kanno and Hamai,
19713 LeBrasseur, 19486,19272; Livingston and Goiney, 1783 Manzer,
12483 Nishiyama, 1970 Fritchard and Tester, 19445 Reid, 1%61)
were divided for analysis into offshore and nearshore data sets
to coincide with the different zooplankton and nekton productions
caused by differing depths and nutrient regimes. The sources and
sample sizes for each salmon species are given in Appendix Table
I. More data were available for sockeye salmon than ftor any other

species.

For each data set, the mean percent by weight of total stomach
contents from each food category was calculated. Simple offshore
means were entered into carrying capacity simulation for sockeve,
chum, ahd king salmon. As coho data included samples with fewer
than ten stomachs, weighted means were used. Figure 1 shows the

compositions of sockeye salmon (0. rnerktz) diets from several



sources. Figures 2, 3, and 4 present data used to estimate an
average diet composition for pink (0. gorbuscha), chum (0., kseta),

and coho (@, kisutch) salmon.,

Prey standing stock estimation

Recent zooplankton, larval fish and squid literature were
surveyed to check the validity of the standing stock
simulations. Biomass estimates were made treating zooplankton as
one category rather than as separate taxa for several reasons.
Euphausiids have been routinely under-sampled by net surveys,
especially day trawls, due to their net-avoidance ability and
their diurnal vertical migration. Although Brinton (12&82) showed
that the major concentrations of fuphausia pacifica in the north
Pacific lay in a narrow band near the Aleutians along the 435th
parallel, there is no information describing 7hAysancessa spp.,the
most common euphausiid found in salmon stomachs (Motoda and
Minoda, 1974). Although quantitative data existed for north
Pacific copepods, very little data are available for amphipods or

for the less abundant zooplankton.

Larval +ish biomass in the upper three hundred meters of the
northeast Pacific has been estimated from Bongo net hauls taken
across much of the north Pacific during sucéessive vears (Bates
and Clark, 19835 Clark, 1984; Kendall and Clark, 1982, 1982b;

Kendall et. al., 192805 Walline, 1980). From the average of these



estimates it was determined that larval fish biomass could be

simulated in the carrying capacity model as one-tenth of the

zoaoplankton standing crop.

The function of squid in marine food webs has often been
over looked, however, their rapid growth rates and piscivorous
habits make them important marine predators. They are also
important as prey of salman, albacore, sablefish, cod, sperm
whale, seal, and birds (Barraclough, 1267 Mercer, 1981).
Fisheries biologists are just now expanding the scope af Pacific
cephalopod research (S. Maupin, personal communication) and thus
available data are sparse. Squid species khowhn to be predators
and prey of Facific salmon are Berrylteuthis magister, Loligo
opalescens, and Ommastrephes sp. (Barraclough, 1967; Roper and
Young, 1975; Bernard, 1980). However, insufficient data on squid
stocks have been reported to estimate their biomasses for the
carrying capacity model (Laevastu, personal communications

Favaorite and Laevastu, 1279).

Carrying capacity simulation

Figure 5 is a flow chart outlining the Facific salmon carrying
capacity simulation model faor thirteen physiographic regions
using zooplankton biomass estimations from the month of July. A
description of this model has been presented by Favorite and

Laevastu, 197%9. Ensuing paragraphs highlight the assumptions and



principal =squations used in the model. Model input parameters

are summarized in Appendix Table II.

The sea-land table from the salmon migration simulation model,
MNOPASA (Honkalehto and Rabe,;in prep.), with a grid size of 190.5
km was superimposed with salmon abundance data (Figure &). The

biomass at each grid point and the total biomass were computed

for each species from the following equation:

SL(N,M) = (SK(N,M) ¥ PT ¥ WA(2,LY)) 7/ AR (1)
where SL(N,M) - salman species biomass in grams/km
SK{N, M) - species abundance at each grid point
FPT - praportion of each year class in the run
WA(2,LY) - weight of individual +fish in each year class
(grams)
AR - area (km ? of individual squares
N - grid rows 1-21, latitude (north to south)
M - grid columns 1-352, longitude (west to east)
LY - year

The assumptions were that zooplankton, larval and juvenile
fish, and squid made up 100% of the diet, and that diets differed
between species and between year classes. For each salmon
species and year class, the amounts of food regquired during one

or more vyears of their oceanic migration were calculated with the

following equation:



FOOD = SL{(N,M) ¥ R ¥ DAYS (2)

2
FOOD - +food requirement (grams/km ). Computed total
weight of food necessary to maintain the weight
sockeye salmon at given MOPASA grid point.

R - individual ration required in proportion of body
weight per davy

DAYS -~ number of days vear class individual is in ocean

In order to compute the total required food biomass at each
grid point, the food needed by each salmon species was multiplied
by the percentages of zooplankton, fish and squid estimated to
compose that species’ diet. The following equation illustrates

the computation of the sockeye salmon zooplankton requirement:

FE(N,M) = FE(N,M) + (FOOD ¥ EP) (3)

FE (N, M) - weight of zooplankton consumed at grid
point (N,M) by sockeye salmon

EP - proportion of zooplankton in sockeye diet
(varies with year class)

Pelagic north Facific zooplankton biomass was simulated with
the assumptions that zooplankton reproduce their biomass twice
each year and that hal+t of the zoaoplankton biomass is utilizable
by salmon (Favorite and Laevastu, 127%9). Monthly variations in
zooplankton biomass were simulated with a cosine function as

follows:



ZOP(N,M)=H1(I)+HZ(I)¥COS(FKAP¥ALPXTK) +H3 (I)#COS(ZKAFF¥ALFFXTK) (4)

3
where ZOP(N,M) zooplankton biomass (mg/m )

H1(I) - mean annual zooplankton biomass (mg/ms)
HZ(I) - 1/2 amplitude of mean annual biomass peak
H3(I) - amplitude of tertiary biomass peak

I - index for 1-13 physiographic regions of

the NOFASA grid.
PKAF - latitude effect in radians
ALP - 30-day periodicity in radians
ALPF - &0-day periodicity in radians
TK - month

ZKAPFP - 1460-day periodicity

Examples of the resulting biomass curves are given in Figures 7

and 8.

Finally, the percentage consumptions of zooplankton, larval and
juvenile +ish by Facific salmon were computed from the following

equations:

FO{N,M) = FE(N,M) / ZOFP(N,M) ¥ 100 (3)
FI(N,M) = FF(N,M) / FIS(N,M) ¥ 100 (&)
FE - total accumulated consumption of zooplankton

FO - percent of zooplankton stock consumed

FF - total accumulated consumption of fish

FIS - total +ish standing stock (mg/ms)

FI - percentage of fish standing stock consumed.



The distribution of sgquid biomass was not simulated due to lack
of reliable species abundance data. Thus the total computed
carrying capacity in this simulation refers to salmon consumption
of zooplankton and fish anly. As voung squid are an impaortant
food source for sockeye, their biomass will be added when data

become available.

RESULTS

Salmon diets

The food regime encountered by Pacific salmon during their
marine life stage varies according to time of year, location
(Andrievskaya, 1966), proximity to a coastline, latitude,
presence of other predators and natural variability in the prey
populations. Figures 1-4 illustrate the relative dietary
proportions of squid, ftish and zooplankton as determined fram
stomach content analysis for sockeye, pink, chum and coho salmon,
respectively. Coho salmon eat mainly fish while chum salmon eat
a wide variety of zooplankton taxa and few +ish or squid. Fink
and sockeye salmon diets are similar, although pink salmon
consume more fish. The data presented here show that
zooplankton, larval and juvenile fish represent about 65% of the

total salmonid diet, with squid making up the rest.



The Carrying Capacity Simulation Model

Initial runs of the carrying capacity model were made using
July zooplankton and larval fish biomasses only. The zooplankton
biomass generated in the subroutine ZOO0OCRO (Figure S) was
consistent with the overall biomasses reported by Motoda and
Minoda (1274) and Reid (1962). Results indicate that Pacific
salmon consume less than 0.353% of the available zooplankton
biamass and less than 5.0% of the larval fish biomass. Varying
latitude, month and area suggest the following: (1) prey biomass
decreases with increasing latitude within any given NOPASA grid
area, (2) the Aleutians, Bristol Bay and the Japan Sea are
regions of high prey density (areas 2, 10, 11, and 12,
respectively, in Figure &) and (3) the percent of zooplankton
biomass consumed does not vary greatly between months of the

year.

DISCUSSION

Most Oncorhynchus spp. stomachs contain a wide variety of food
items suggesting that salman in general are very opportunistics
they make use of available food as long as it falls in the
appropriate size range. Okada and Taniguchi (1271) found that

while juvenile chum and pink salmon are &40 mm or less they eat



relatively small prey (primarily microcopepaods, amphipods and
insects). At around &0mm (fork length) the salmon suddenly

switch to include much larger prey such as euphausiids, squid,
adult amphipods and fish larvae as well as the smaller prey in

their diets.

Food quality influences salmon diets, as different food taxa
provide quite different caloric values to salmon. Mishiyama
(1270) estimated that adult sockeye salmon consume approximately
Z% ot their body weight per day. Sockeye salmon preter
high-calorie food items like sguid, fish larvae and euphausiids
over relatively lower calorie prey such as pteropods and decapod
larvae. The availability of these preferred food items varies
depending on where they are in the ocean. Bristol Bay, for
example, provides a richer food environment than the open waters

of the Bering 5sa (Motoda and Minoda, 1774).

The presence of large runs of one salmon species may upset
normal feeding patterns of a less aggressive species where ranges
overlap during migration. Andrievskaya {(1948&) reported such an
interaction between pink, chum and sockeye salmon in the western
Pacific. Pink and sockeve salmon are more selective feeders than
chum salmon (Andrievshava, 19465 Barraclough, 1%484&8,1%487) and
their diets, which are similar, differ from the average chum
salmaon diet. During a large pink salman run year, pink and
sockeye salmon may out-compete chum for euphausiids, forcing the

chhum to rely on less desirable zooplankton such as pteropods.



Based on the above discussion it may be cancluded that
individual salmon species often display between-year diet
differences that compare in size to between-species diet
differences Wwithin a given year. In this simulation no allowance
for these sources of variability has been made. This limits the
simualation as it now stands, but does so in a manner consistent
with the data available. As more relevant diet data becaomes

available expansion of the simulation will be possible.

The carrying capacity simulation suggests that the standing
crop of salmon is not limited by the food supply during the ocean
portiaon of their life cvcle. Two further adjustments would allow
a more realistic representation of pelagic salmon feeding
dynanics. First, to answer the guestion of what happens when
prevy biowmass fluctuates between seasons (and vears) as Frost
{19284) and Motoda and Minoda (1974) have documented, the
zooplankton biomass simulation must be modified. Assuming steady
consumption rates for salmon during the year, the combination of
very low winter zooplankton crops and high salmon numbers may
locally strain zooplanktaon food supplies. This work is in
progress. Second, new data on sqgquid abundances must be
incorporated, because aonly with the entire salmon diet available
can a successful determination of oceanic carrying potential for
salmon be made. This is more difficult as it wmay be vears before
ennugh data exist to successfully model squid biomass

distributions and simulate their interactions with salmon.
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SALMON CARRYING CAPACITY SIMULATION MODEL
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'

PRINT: a table of mean
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4 "'Z00CRO"
N ( Input/species mean # )
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Compute required consumption
of zoopl., squid & fish as
FOOD = F(Biomass, prop. of body wt, #days)
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{Compute + Print % zoopl. consumed
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Figure S. Flow diagram for the salmon carrying capacity simulation
model.
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Figure 6. Sea-Land diagram used in zooplankton biomass simulation
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Figure 7. Simulation of average monthly zooplankton biomass (mg/m3)
in Areas I and II of Figure 6.
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Figure 8. Simulation of average monthly zooplankton biomass (mg/m3)
in Areas X and XI of Figure 6.
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AFFENDIX TABLE | . Salmon Diets Reference List and Sample Sizes
MO, FISH SAMFLED
SCURCE LOCATION SAMPLE DATE
Sockeye Fink Chum Coho
1. Kannho & a. 103 107 105 —— C,W Bering Sea Summer 1%9&6
Hamai (1971)
b. 142 7 123 o NE Bering Sea Summer 12&6
2. Nishyama a. 115 = = e W Bering Sea Summer 19466
(1970)
b. 38 == B == " Summer 12&%5
3. Manzer 87 24 o 4 G of Alaska Winter 1984
(1263)
4. Allen & 104 111 88 -~ W Pacitfic Summer 19255
Aron ((19358)
5. Andrievskavya 150 250 250 == W Pacitic August 193535
(1958)
&. Andrievskavya 2200 1700 3200 = W Pacific 1762
(19286) a. Summer
b. Spring
7. LeBrasseur a. -1 47 = 7z G aof Alaska Summer 1958
(1268&) adults
b.116& = = 28 G of Alaska Summer 17958
immatune
8. Pritchard a. —-— -= - 45 Vancouver BC 1239
& Tester
(12944) b. -- W == 128 " 1240
(. 2 == = 8é i 1941
2. Favorite 5880 -- -- e Subarctic Summer 1280
(1270) Pacitfic
10. Reid a. —-- - - = 200 SE Alaska Summer 19257
(1261)
b. -- = == 222 " Summer 1258

= 99 =
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Appendix Table II.

Input values for carrying capacity simulation.

North Pacific salmon

Percent of body weight

Salmon diet composition

Salmon

mean run size +30% required for consumption from stomach content analyses No. of days individual weights
escapement; Asian to maintain salmon biomass (% by weight) salmon feed (kg)
Species and N. American runs Age Age in ocean Age
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Sockeye 43,000,000 0.029 0.022 0,022 0.22 0.022 Zoopl 80 50 50 50 50 365
Squid 10 35 35 35 35 each of 0.3 0.9 1.9 2.5 3.0
Fish 10 15 15 15 15 5 years
King 7,000,000 Zoopl 80 91 91 91 91
Chum 57,000,000 Squid 10 1 1 1 1 365 0.4 1.0 2.0 3.2 4.0
King & Chum 64,000,000 0.028 0,021 0.021 0.021 0.021 Fish 10 8 8 8 8 each year
Zoopl 60 60 - - =
Pink 0.03 0.03 = - = Squid 20 20 = = = 550 0.8 1.5 - - -
165,000,000 Fish 20 20 - - -
Zoopl 25 25 - - =
Coho 14,000,000 0.03 0.03 - - - Squid 4 4 - = - 480 1.8 3.0 - - =
+ Fish 71 71 = = =
Total 286,000,000
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